Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42815
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林嘉明(Jia-Ming Lin)
dc.contributor.authorPei-Hui Linen
dc.contributor.author林沛慧zh_TW
dc.date.accessioned2021-06-15T01:24:31Z-
dc.date.available2011-09-16
dc.date.copyright2009-09-16
dc.date.issued2009
dc.date.submitted2009-07-23
dc.identifier.citationAi, J. (1997a). 'Headspace solid phase microextraction. Dynamics and quantitative analysis before reaching a partition equilibrium.' Analytical Chemistry 69(16): 3260-3266.
Ai, J. (1997b). 'Solid phase microextraction for quantitative analysis in nonequilibrium situations.' Analytical Chemistry 69(6): 1230-1236.
Börjesson, T., Stöllman, U., et al. (1990). 'Volatile metabolites and other indicators of Penicillium aurantiogriseum growth on different substrates.' Applied and Environmental Microbiology 56(12): 3705-3710.
Börjesson, T., Stöllman, U., et al. (1992). 'Volatile metabolites produced by six fungal species compared with other indicators of fungal growth on cereal grains.' Applied and Environmental Microbiology 58(8): 2599-2605.
Barnab, S., Beauchesne, I., et al. (2008). 'Plasticizers and their degradation products in the process streams of a large urban physicochemical sewage treatment plant.' Water Research 42(1-2): 153-162.
Beguin, H. and Nolard, N. (1994). 'Mould biodiversity in homes I. Air and surface analysis of 130 dwellings.' Aerobiologia 10(2): 157-166.
Björk, F., Eriksson, C. A., et al. (2003). 'Degradation of components in flooring systems in humid and alkaline environments.' Construction and Building Materials 17(3): 213-221.
Bjurman, J. and Kristensson, J. (1992). 'Volatile production by Aspergillus versicolor as a possible cause of odor in houses affected by fungi.' Mycopathologia 118(3): 173-178.
Burger, H. (1990). 'Bioaerosols: prevalence and health effects in the indoor environment.' Journal of Allergy and Clinical Immunology 86(5): 687-701.
Claeson, A. S., Levin, J. O., et al. (2002). 'Volatile metabolites from microorganisms grown on humid building materials and synthetic media.' Journal of Environmental Monitoring 4(5): 667 - 672.
Cooley, J. D., Wong, W. C., et al. (1998). 'Correlation between the prevalence of certain fungi and sick building syndrome.' British Medical Journal 55(9): 579.
Dales, R., Liu, L., et al. (2008). 'Quality of indoor residential air and health.' Canadian Medical Association Journal 179(2): 147-152.
Dunn, J. E. and Tichenor, B. A. (1988). 'Compensating for sink effects in emissions test chambers by mathematical modeling.' Atmospheric Environment 22(5): 885-894.
Edwards, R. D., Jurvelin, J., et al. (2001). 'VOC concentrations measured in personal samples and residential indoor, outdoor and workplace microenvironments in EXPOLIS-Helsinki, Finland.' Atmospheric Environment 35(27): 4531-4543.
Fang, L., Clausen, G., et al. (1999). 'Impact of temperature and humidity on chemical and sensory emissions from building materials.' Indoor Air 9(3): 193-201.
Fiedler, K., Schutz, E., et al. (2001). 'Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials.' International Journal of Hygiene and Environmental Health 204(2-3): 111-121.
Fischer, G. and Dott, W. (2003). 'Relevance of airborne fungi and their secondary metabolites for environmental, occupational and indoor hygiene.' Archives of Microbiology 179(2): 75-82.
Fisk, W. J., Lei-Gomez, Q., et al. (2007). 'Meta-analyses of the associations of respiratory health effects with dampness and mold in homes.' Indoor Air 17(4): 284-296.
Gorny, R. L., Reponen, T., et al. (2002). 'Fungal fragments as indoor air biocontaminants.' Applied and Environmental Microbiology 68(7): 3522-3531.
Grant, C., Hunter, C. A., et al. (1989). 'The moisture requirements of moulds isolated from domestic dwellings.' International Biodeterioration 25(4): 259-284.
Gravesen, S., Nielsen, P. A., et al. (1999). 'Microfungal contamination of damp buildings-examples of risk constructions and risk materials.' Environmental Health Perspectives 107 Suppl 3: 505-8.
Haas, D., Habib, J., et al. (2007). 'Assessment of indoor air in Austrian apartments with and without visible mold growth.' Atmospheric Environment 41(25): 5192-5201.
Health Canada. (2007). 'Residential indoor air quality guidelines: moulds.' from http://www.hc-sc.gc.ca/ewh-semt/pubs/air/mould-moisissure-eng.php.
Horn, O., Nalli, S., et al. (2004). 'Plasticizer metabolites in the environment.' Water Research 38(17): 3693-3698.
HSDB. 'Benzaldehyde, acetophenone.' from http://toxnet.nlm.nih.gov /cgi-bin/sis/htmlgen?HSDB.
Jaakkola, J. J., Hwang, B. F., et al. (2005). 'Home dampness and molds, parental atopy, and asthma in childhood: a six-year population-based cohort study.' Environmental Health Perspectives 113(3): 357-61.
Jaakkola, J. J., Oie, L., et al. (1999). 'Interior surface materials in the home and the development of bronchial obstruction in young children in Oslo, Norway.' American Journal of Public Health 89(2): 188-192.
Jaakkola, J. J., Verkasalo, P. K., et al. (2000). 'Plastic wall materials in the home and respiratory health in young children.' American Journal of Public Health 90(5): 797-799.
Jurvelin, J. A., Edwards, R. D., et al. (2003). 'Residential indoor, outdoor, and workplace concentrations of carbonyl compounds: relationships with personal exposure concentrations and correlation with sources.' Journal of the Air and Waste Management Association 53(5): 560.
Kamijima, M., Sakai, K., et al. (2002). '2-Ethyl-1-hexanol in indoor air as a possible cause of sick building symptoms.' Journal of Occupational Health 44(3): 186-191.
Kaminski, E., Stawicki, S., et al. (1974). 'Volatile flavor compounds produced by molds of Aspergillus, Penicillium, and fungi imperfecti.' Applied and Environmental Microbiology 27(6): 1001-1004.
Kataoka, H., Lord, H. L., et al. (2000). 'Applications of solid-phase microextraction in food analysis.' Journal of Chromatography A 880(1-2): 35-62.
Kim, J. L., Elfman, L., et al. (2007). 'Indoor molds, bacteria, microbial volatile organic compounds and plasticizers in schools-associations with asthma and respiratory symptoms in pupils.' Indoor Air 17(2): 153-163.
Kim, K. Y. and Kim, C. N. (2007). 'Airborne microbiological characteristics in public buildings of Korea.' Building and Environment 42(5): 2188-2196.
Klepeis, N. E., Nelson, W. C., et al. (2001). 'The national human activity pattern survey (NHAPS): a resource for assessing exposure to environmental pollutants.' Journal of Exposure Analysis and Environmental Epidemiology 11(3): 231-252.
Korpi, A., Järnberg, J., et al. (2009). 'Microbial volatile organic compounds.' Critical Reviews in Toxicology 39(2): 139 - 193.
Korpi, A., Pasanen, A. L., et al. (1998). 'Volatile compounds originating from mixed microbial cultures on building materials under various humidity conditions.' Applied and Environmental Microbiology 64(8): 2914-2919.
Lee, T., Grinshpun, S. A., et al. (2006). 'Culturability and concentration of indoor and outdoor airborne fungi in six single-family homes.' Atmospheric Environment 40(16): 2902-2910.
Lord, H. and Pawliszyn, J. (2000). 'Evolution of solid-phase microextraction technology.' Journal of Chromatography A 885(1-2): 153-193.
Matysik, S., Herbarth, O., et al. (2008). 'Determination of volatile metabolites originating from mould growth on wall paper and synthetic media.' Journal of Microbiological Methods 75(2): 182-187.
Mendell, M. J. (2007). 'Indoor residential chemical emissions as risk factors for respiratory and allergic effects in children: a review.' Indoor Air 17(4): 259-277.
Mersiowsky, I., Weller, M., et al. (2001). 'Fate of plasticised PVC products under landfill conditions: a laboratory-scale landfill simulation reactor study.' Water Research 35(13): 3063-3070.
Nalli, S., Cooper, D. G., et al. (2002). 'Biodegradation of plasticizers by Rhodococcus rhodochrous.' Biodegradation 13(5): 343-52.
Nalli, S., Cooper, D. G., et al. (2006a). 'Metabolites from the biodegradation of di-ester plasticizers by Rhodococcus rhodochrous.' Science of the Total Environment 366(1): 286-294.
Nalli, S., Horn, O. J., et al. (2006b). 'Origin of 2-ethylhexanol as a VOC.' Environmental Pollution 140(1): 181-185.
Nilsson, T., Larsen, T. O., et al. (1996). 'Application of head-space solid-phase microextraction for the analysis of volatile metabolites emitted by Penicillium species.' Journal of Microbiological Methods 25(3): 245-255.
Norbäck, D., Wieslander, G., et al. (2000). 'Asthma symptoms in relation to measured building dampness in upper concrete floor construction, and 2-ethyl-1-hexanol in indoor air.' The International Journal of Tuberculosis and Lung Disease 4: 1016-1025.
OSHA. (2006). 'Chemical sampling information.' from http://www.osha.gov/dts/chemicalsampling/data/CH_240525.html.
Pasanen, A. L., Kalliokoski, P., et al. (1991). 'Laboratory studies on the relationship between fungal growth and atmospheric temperature and humidity.' Environment International 17(4): 225-228.
Pasanen, A. L., Korpi, A., et al. (1998). 'Critical aspects on the significance of microbial volatile metabolites as indoor air pollutants.' Environment International 24(7): 703-712.
Pawliszyn, J. (1997). Solid phase microextraction-theory and practice. New York, John Wiley & Sons, Inc.
Putus, T., Tuomainen, A., et al. (2004). 'Chemical and microbial exposures in a school building: adverse health effects in children.' Archives of environmental health 59(4): 194.
Ren, P., Jankun, T. M., et al. (2001). 'The relation between fungal propagules in indoor air and home characteristics.' Allergy 56(5): 419.
Robbins, C. A., Swenson, L. J., et al. (2000). 'Health effects of mycotoxins in indoor air: a critical review.' Applied Occupational and Environmental Hygiene 15(10): 773 - 784.
Roy, R. K. (2001). Design of experiments using the Taguchi approach: 16 steps to product and process improvement New York, John Wiley & Sons, Inc.
Sakai, K., Kamijima, M., et al. (2006). 'Indoor air pollution by 2-ethyl-1-hexanol in non-domestic buildings in Nagoya, Japan.' Journal of Environmental Monitoring 8(11): 1122.
Salthammer, T., Bednarek, M., et al. (2002). 'Formation of organic indoor air pollutants by UV-curing chemistry.' Journal of Photochemistry and Photobiology A: Chemistry 152(1-3): 1-9.
Su, H. J., Wu, P. C., et al. (2001). 'Exposure assessment of indoor allergens, endotoxin, and airborne fungi for homes in southern Taiwan.' Environmental Research 85(2): 135-144.
Sunesson, A., Vaes, W. H. J., et al. (1995). 'Identification of volatile metabolites from five fungal species cultivated on two media.' Applied and Environmental Microbiology 61(8): 2911-2918.
Sunesson, A. L., Nilsson, C. A., et al. (1996). 'Volatile metabolites produced by two fungal species cultivated on building materials.' Annals of Occupational Hygiene 40(4): 397-410.
Tuomainen, A., Seuri, M., et al. (2004). 'Indoor air quality and health problems associated with damp floor coverings.' International Archives of Occupational and Environmental Health 77(3): 222-226.
Uhde, E. and Salthammer, T. (2007). 'Impact of reaction products from building materials and furnishings on indoor air quality-a review of recent advances in indoor chemistry.' Atmospheric Environment 41(15): 3111-3128.
Van Lancker, F., Adams, A., et al. (2008). 'Use of headspace SPME-GC-MS for the analysis of the volatiles produced by indoor molds grown on different substrates.' Journal of Environmental Monitoring 10(10): 1127.
Vas, G. and Vékey, K. (2004). 'Solid-phase microextraction: a powerful sample preparation tool prior to mass spectrometric analysis.' Journal of Mass Spectrometry 39(3): 233-254.
Viitanen, H. (1994). 'Factors affecting the development of biodeterioration in wooden constructions.' Materials and Structures 27(8): 483-493.
Wilkins, K., Larsen, K., et al. (2003). 'Volatile metabolites from indoor molds grown on media containing wood constituents.' Environmental Science and Pollution Research 10(4): 206-208.
Wolfe, N. L., Steen, W. C., et al. (1980). 'Phthalate ester hydrolysis: linear free energy relationships.' Chemosphere 9(7-8): 403-408.
Wolkoff, P. (1999). 'How to measure and evaluate volatile organic compound emissions from building products. A perspective.' Science of the Total Environment 227(2-3): 197-213.
Zhang, Z., Yang, M. J., et al. (1994). 'Solid-phase microextraction. A solvent-free alternative for sample preparation.' Analytical Chemistry 66(17): 844A-853A.
Zuraimi, M. S., Roulet, C. A., et al. (2006). 'A comparative study of VOCs in Singapore and European office buildings.' Building and Environment 41(3): 316-329.
中華民國環境保護署環境檢驗所. (2004). '環境檢驗方法偵測極限測定指引.' from http://www.niea.gov.tw/business/?id=38.
陳東榮 (1993). 住宅室內空氣品質(CO、CO2、PM10)現場測定與評估檢討. 台南, 國立成功大學建築研究所. 碩士論文.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42815-
dc.description.abstract近年來,室內裝潢大量使用塑化建材,可能是病態大樓症候群(sick building syndrome, SBS)的危險因子之一。研究指出添加於塑膠中以增加其柔軟性及使用性的塑化劑,經微生物分解後會產生2-乙基己醇(2-ethyl-1-hexanol, 2-ethylhexanol, 2EH),而相對濕度(relative humidity, RH)為影響化合物自建材逸散及微生物生長的重要變項。因此,本研究之目的為探討塑化建材、真菌及相對濕度間互動產生2-乙基己醇及其他化合物之關係。
研究採用田口氏實驗設計法(Taguchi method),設塑化建材、真菌及相對濕度為變項,每個變項有三個水準,組合成9個試驗組。各組試驗均在20 mL取樣瓶內進行,內置塑化建材,真菌培養於建材,相對濕度則利用飽和鹽類溶液調控。樣品採集於第1天、第4天、第7天、第10天及第14天以polyacrylate纖維進行頂空固相微萃取(headspace solid phase microextraction, HS-SPME),隨後利用GC/FID分析化合物。2-乙基己醇及其他未知化合物則曾先行使用GC/MS定性。實驗數據處理使用Qualitek-4軟體進行變異數分析(ANOVA analysis)。
結果顯示2-乙基己醇僅在有地毯建材的試驗中可測得,且其濃度於14天內無明顯變化;而在壁布建材的試驗中可測得苯甲醛及苯乙酮兩種化合物,其生成量隨時間呈現遞減的趨勢。此三種化合物可在僅有塑化建材的試驗中測得,常於一天達最大量,且非顯著的微生物揮發性有機化合物(microbial volatile organic compounds, MVOCs)。ANOVA分析結果顯示塑化建材對2-乙基己醇、苯甲醛及苯乙酮生成的影響分別為47.71%-85.20%、90.72%-96.33%及90.18%-96.90%,相對濕度和真菌的影響則很小。

塑化建材為影響揮發性有機化合物(volatile organic compounds, VOCs)產生的決定因素,而化合物的物種則隨著建材性質而異。另外建議考慮將本研究的試驗系統及採樣分析方法作為室內建材使用前的快速篩選工具。
zh_TW
dc.description.abstractPlastics are often used as building materials and likely involving in sick building syndrome (SBS) in recent years. The previous studies proposed that plasticizers added to plastics for imparting flexibility and workability may be degraded to form 2-ethyl-1-hexanol (2-ethylhexanol, 2EH) by microorganisms. And relative humidity (RH) influences chemical emission from building materials and growth of fungi. In that, this study was focused on the yields of 2EH and other prominent compounds in association with plastic building materials, fungi, and RH.
Taguchi Method was employed for experimental design to form nine trials where plastic building materials, fungi and RH were parameters and each parameter had three levels. The treatment for each trial was conducted in a 20 mL vial with functions of cultivation of microorganisms on plastic building materials and control of different RH by saturated salt solution. 2EH and other prominent compounds were sampled by headspace solid phase microextraction (HS-SPME) with polyacrylate fiber on days 1, 4, 7, 10 and 14. The samples were analyzed by GC/FID. The qualitative analyses for unidentified compounds were performed using GC/MS. ANOVA analysis was performed using the Qualitek-4 software.
The results indicated that 2EH was detected only in the trials having floor covering as a building material in the experimental system and the concentrations of 2EH were not apparently different in 14 days. Two specific compounds, benzaldehyde and acetophenone, but 2EH were found in the trials having wall covering as a building material, and the amount of the two compounds descended in 14 days. The highest amounts for the three compounds usually occurred on the 1st day and no prominent amount could be attributed to microbial volatile organic compounds (MVOCs). The ANOVA analysis demonstrated that plastic building materials were the predominant parameter governing the yield of 2EH, benzaldehyde and acetophenone and the influence percent were 47.71%-85.20%、90.72%-96.33% and 90.18%-96.90%, respectively. Fungi as well as RH had no significant influence on production of the compounds.
In conclusion, the plastic building materials are the determinants to yield the volatile organic compounds (VOCs) and the chemical species emitted are dependent on the characteristics of materials. The experimental system used in this study is suggested to be an applicable way for accessing the emission of VOCs from new building materials beforehand.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:24:31Z (GMT). No. of bitstreams: 1
ntu-98-R96844001-1.pdf: 710741 bytes, checksum: 132e81a529240347b8c58d741f22b30b (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents摘要 I
Abstract III
目錄 V
圖目錄 IX
表目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 2-乙基己醇 3
2.1.1 2-乙基己醇之特性及來源 3
2.1.2 人體暴露於2-乙基己醇之途徑及其健康效應 4
2.1.3 2-乙基己醇之環境流佈 5
2.2 室內真菌探討 6
2.3 空氣中2-乙基己醇之採樣分析 8
2.4 固相微萃取技術 9
2.4.1 基本原理 9
2.4.2 儀器裝置及實驗步驟 11
2.5 田口氏實驗設計 12
第三章 材料與方法 15
3.1 研究架構 15
3.2 實驗設計 16
3.3 變項控制 16
3.3.1 塑化建材 16
3.3.2 相對濕度 16
3.3.3 真菌 17
3.4 試驗腔的設計 17
3.5 樣本採樣策略 18
3.6 2-乙基己醇的採樣分析 18
3.6.1 2-乙基己醇的採樣介質及方法 18
3.6.1.1 不同相對溼度環境中,固相微萃取纖維之採樣率測試 18
3.6.2 2-乙基己醇的GC/FID分析 19
3.6.2.1 標準溶液製備與檢量線建立 19
3.6.2.2 方法偵測極限與定量極限 20
3.6.2.3 GC/FID分析參數設定 20
3.6.2.4 樣本分析 20
3.7 化合物的GC/MS定性分析 20
3.8 數據整理 21
第四章 結果 23
4.1 2-乙基己醇之檢量 23
4.2 SPME纖維在三種相對濕度環境中採集2-乙基己醇的測試結果 23
4.3 真菌、塑化建材及相對濕度共構試驗環境中所產生的化合物 23
4.4 化合物產生的時序變化 24
4.5 化合物的生成量與真菌、塑化建材及相對濕度等變項之關係 24
4.5.1 2-乙基己醇(2-ethylhexanol)的生成 24
4.5.2 苯甲醛(benzaldehyde)及苯乙酮(acetophenone)的生成 25
第五章 討論 27
第六章 結論與建議 33
參考文獻 35
附錄 67
儀器設備 67
標準真菌菌株及試劑 68
相對濕度變化與2-乙基己醇濃度之關係 69
化合物隨時間變化符合Ln(Q/M0) = -k1•t逸散模式之關係 70
圖目錄
圖 1 酯類化合物在酸性及鹼性環境中之水解反應 (Björk et al., 2003) 41
圖 2 苯二甲酸二乙基己基酯(di(2-ethylhexyl)phthalate, DEHP)及己二酸二辛酯(di(ethylhexl)adipate, DEHA)經生物分解產生2-乙基己醇之代謝途徑 (Horn et al., 2004) 41
圖 3 Supelco公司製造之商業化固相微萃取裝置 (Zhang et al., 1994) 42
圖 4 飽和鹽類溶液控制密閉容器內相對濕度與時間之關係 43
圖 5 實驗系統 44
圖 6 2-乙基己醇之GC/MS分析圖譜 45
圖 7 2-乙基己醇之GC/FID分析圖譜 46
圖 8 2-乙基己醇標準溶液以GC/FID分析之檢量線 47
圖 9 不同濕度環境,2-乙基己醇採集量及其氣體濃度與採樣時間乘積關係 48
圖 10 固相微萃取trial 2、trial 4及trial 9第四天樣本之GC/MS圖譜 49
圖 11 固相微萃取trial 3、trial 5及trial 7第四天樣本之GC/MS圖譜 50
圖 12 第四天樣本之2-乙基己醇、苯甲醛、苯乙酮、naphthalene及2,5-bis(1,1- dimethylethyl)phenol離子碎裂圖 51
圖 13 2-乙基己醇濃度、苯甲醛及苯乙酮反應面積與採樣時間之關係 52
表目錄
表 1 2-乙基己醇之物理化學基本特性 53
表 2 商業化固相微萃取纖維一覽 (Vas and Vékey, 2004) 54
表 3 研究設計與選用之直交表(L9 array) 55
表 4 2-乙基己醇(2-ethyl-1-hexanol, 2EH)標準溶液以GC/FID分析之結果 56
表 5 2-乙基己醇(2-ethyl-1-hexanol, 2EH)之偵測極限及定量極限測試結果* 56
表 6 Polyacrylate纖維於三種相對濕度環境中採集2-乙基己醇之結果 57
表 7 GC/MS分析樣本經質譜資料庫比對之定性結果 58
表 8 Polyacrylate纖維萃取2-乙基己醇之結果 59
表 9 Polyacrylate纖維微萃取苯甲醛之結果(以反應面積表示) 60
表 10 Polyacrylate纖維微萃取苯乙酮之結果(以反應面積表示) 61
表 11 Polyacrylate纖維微萃取2-乙基己醇之結果分析 62
表 12 Polyacrylate纖維微萃取苯甲醛之結果分析(以反應面積表示) 62
表 13 Polyacrylate纖維微萃取苯乙酮之結果分析(以反應面積表示) 63
表 14 2-乙基己醇之濃度影響因子變異數分析* 64
表 15 苯甲醛之反應面積影響因子變異數分析* 65
表 16 苯乙酮之反應面積影響因子變異數分析* 66
dc.language.isozh-TW
dc.subject苯甲醛zh_TW
dc.subject相對濕度zh_TW
dc.subject苯乙酮zh_TW
dc.subject塑化建材zh_TW
dc.subject真菌zh_TW
dc.subject固相微萃取zh_TW
dc.subject2-乙基己醇zh_TW
dc.subjectsolid phase microextractionen
dc.subject2-ethyl-1-hexanolen
dc.subjectbenzaldehydeen
dc.subjectacetophenoneen
dc.subjectplastic building materialen
dc.subjectfungien
dc.subjectrelative humidityen
dc.title塑化建材在有真菌及濕度的環境生成2-乙基己醇之研究zh_TW
dc.titleDetermination of 2-Ethyl-1-hexanol Produced by Plastic Building Materials in Environment Affected by Fungi and Humidityen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張靜文,蔡詩偉
dc.subject.keyword2-乙基己醇,苯甲醛,苯乙酮,塑化建材,真菌,相對濕度,固相微萃取,zh_TW
dc.subject.keyword2-ethyl-1-hexanol,benzaldehyde,acetophenone,plastic building material,fungi,relative humidity,solid phase microextraction,en
dc.relation.page70
dc.rights.note有償授權
dc.date.accepted2009-07-24
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
694.08 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved