Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42796
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張上鎮
dc.contributor.authorYu-Tang Tungen
dc.contributor.author童鈺棠zh_TW
dc.date.accessioned2021-06-15T01:23:48Z-
dc.date.available2019-12-31
dc.date.copyright2009-07-28
dc.date.issued2009
dc.date.submitted2009-07-23
dc.identifier.citation吳志鴻(2004)相思樹心材具抗氧化及抗發炎成分之分析與鑑定。國立臺灣大學森林環境暨資源學系博士班論文。191 pp。
林修賢(2007)相思樹葉子抗氧化活性成分之分析與鑑定。國立臺灣大學森林環境暨資源學系碩士班論文。120 pp。
黃志煜(2006)相思樹花之抗氧化活性成分分析與鑑定。國立臺灣大學森林環境暨資源學系碩士班論文。91 pp。
黃志煜、童鈺棠、林修賢、張上鎮(2007)相思樹花應用於抗氧化花茶之潛能。中華林學季刊 40(1):123–133。
劉慎孝(1975)由森林經理觀點論台灣之森林更新與造林問題(下)。台灣林業1(2):5–16。
衛生署 (2007)中華民國九十六年死因統計結果摘要。行政院衛生署,台北。
Ali, M., A. Heaton, and D. Leach (1997) Triterpene esters from Australian Acacia. J. Nat. Prod. 60:1150–1156.
Andreasen, M.F., L.P. Christensen, A.S. Meyer, and A. Hansen (2000) Content of phenolic acids and ferulic acid dehydrodimers in 17 rye (Secale cereale L.) varieties. J. Agric. Food Chem. 48:2837–2842.
Andreasen, M.F., P.A. Kroon, G. Williamson, and M.T. Garcia-Conesa (2001) Intestinal release and uptake of phenolic antioxidant diferulic acids. Free Radic. Biol. Med. 31:304–314.
Azuma, K., K. Ippoushi, M. Nakayama, H. Ito, H. Higashio, and J. Terao (2000) Absorption of chlorogenic acid and caffeic acid in rats after oral administration. J. Agric. Food Chem. 48:5496–5500.
Beauchamp, C. and I. Fridovich (1971) Superoxide dismutase: improved assays and an assay applicable to polyacrylamide gels. Anal. Biochem. 44:276–287.
Beers, R.F. and I.W. Sizer (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195:133–140.
Boll, M., L.W. Weber, E. Becker, and A. Stampfl (2001) Pathogenesis of carbon tetrachloride-induced hepatocyte injury. Bioactivation of CCl4 by cytochrome P450 and effects on lipid homeostasis. Z. Naturforsch. 56:111–121.
Booth, A.N., M.S. Masri, D.J. Robbins, O.H. Emerson, F.T. Jones, and F. Deeds (1959) The metabolic fate of gallic acid and related compounds. J. Biol. Chem. 234:3014–3016.
Bourne, L.C. and C. Rice-Evans (1998) Bioavailability of ferulic acid. Biochem. Biophys. Res. Commun. 253:222–227.
Cerutti, P. (1994) Oxy-radicals and cancer. J. Lancet. 344:862–863.
Chaillou, L.L. and M.A. Nazareno (2006) New method to determine antioxidant activity of polyphenols. J. Agric. Food Chem. 54:8397–8402.
Chang, S.T., J.H. Wu, S.Y. Wang, P.L. Kang, N.S. Yang, and L.F. Shyur (2001) Antioxidant activity of extracts from Acacia confusa bark and heartwood. J. Agric. Food Chem. 49:3420–3424.
Chen, C.W. and C.T. Ho (1995) Antioxidant properties of polyphenols extracted from green and black tea. J. Food Lipids 2:35–46.
Chen, C.Y., F.R. Chang, C.M. Teng, and Y.C. Wu (1999) Cheritamine, a new N-fatty acyl tryptamine and other constituents from the stem of Annona cherimola. J. Chin. Chem. 46:77–86.
Chen, Y., M. Wang, R.T. Rosen, and C.T. Ho (1999) 2,2-Diphenyl-1-picrylhydrazyl radical-scavenging active components from Polygonum multiflorum Thund. J. Agric. Food Chem. 47:2226–2228.
Chua, M.T., Y.T. Tung, and S.T. Chang (2007) Antioxidant activities of ethanolic extracts from the twigs of Cinnamomum osmophloeum. Bioresource Technol. 99:1918–1925.
Chung, Y.C., C.T. Chang, W.W. Chao, C.F. Lin, and S.T. Chou (2002) Antioxidative activity and safety of the 50% ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1. J. Agric. Food Chem. 50:2454–2458.
Cleveland, J.L. and M.B. Kastan (2000) A radical approach to treatment. Nature 407: 309–311.
Clifford, M.N. (1999) A nomenclature for phenols with special reference to tea, Vol. 41, CRC Press, Washington, DC, pp. 393–397.
Clifford, M.N. (2000) Chlorogenic acids and other cinnamates: nature, occurrence, dietary burden, absorption and metabolism. J. Sci. Food Agric. 80:1033–1043.
Comporti, M. (1985) Lipid peroxidation and cellular damage in toxic liver injury. Lab. Invest. 53:599–623.
Cotelle, N., J.L. Bemier, J.P. Catteau, J. Pommery, J.C. Wallet, and E.M.Gaydou (1996) Antioxidant properties of hydroxyl-flavones. Free Radic. Biol. Med. 20:35–43.
Croteau, R., T.M. Kutchan, and N.G. Lewis (2000) Natural Products (Secondary Metabolites). In: Buchanan, B., W. Gruissem, and R. Jones (Eds.), Biochemistry & Molecular Biology of Plants, American Society of Plant Physiologists, pp. 1250–1318.
Cui, C.B., Y. Tezuka, T. Kikuchi, H. Nakano, T. Tamaoki, and J.H. Park (1990) Constituents of a fern, Davallia mariesii Moore. I. Isolation and structures of davallialactone and a new flavanone glucuronide. Chem. Pharmaceut. Bull. 38: 3218–3225.
Cuvelier, M.E., H. Richard, and C. Berset (1992) Comparison of the antioxidative activity of some acid phenols: structure-activity relationship. Biosci. Biotechnol. Biochem. 56:324–325.
Dey, A., D. Parmar, A. Dhawan, D. Dash, and P.K. Seth (2002) Cytochrome P450 2E1 dependent catalytic activity and lipid peroxidation in rat blood lymphocytes. Life Sci. 71:2509–2519.
Ding, H.Y., Y.C. Wu, and H.C. Lin (2000) Phytochemical and pharmacological studies on Chinese changzhu. J. Chin. Chem. Soc. 47:561–566.
Dinis, T.C.P., V.M.C. Madeira, and L.M. Almeida (1994) Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 315:161–169.
Diplock, A.T., J.L. Charleux, G. Grozier-Willi, F.J. Kok, C. Rice-Evans, M. Roberfroid, W. Stahl, and J. Vina-Ribes (1998) Functional food science and defense against reactive oxidative species. British J. Nutr. 80:S77–S112.
Draper, H.H. and M. Hadley (1990) Malondialdehyde determination as an index of lipid peroxidation. Methods Enzymol. 186:421–431.
Duh, P.D. (1998) Antioxidant activity of burdock (Arctium lappa L.): Its scavenging effect on free radical and active oxygen. J. Am. Oil Chem. Soc. 75:455–461.
Duh, P.D., Y.Y. Tu, and G.C. Yen (1999) Antioxidant activity of water extract of harng Jyur (Chrysanthemum morifolium Ramat). Lebensm.-Wiss. U.-Technol. 32:269–277.
Dziedzic, S.Z. and B.J.F. Hudson (1983) Hydroxy isoflavones as antioxidants for edible oils. Food Chem. 11:161–166.
Forni, L.G., J.E. Packer, T.F. Slater, and R.L. Willson (1983) Reaction of the trichloromethyl and halothane-derived peroxy radicals with unsaturated fatty acids: a pulse radiolysis study. Chem. Biol. Interact. 45:171–177.
Friedman, S.L. (2000) Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J. Biol. Chem. 275:2247–2250.
Fukumoto, L.R. and G. Mazza (2000) Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 48:3597–3604.
Gerothanassis, I.P., V. Exarchou, V. Lagouri, A. Troganis, M. Tsimidou, and D. Boskou (1998) Methodology for identification of phenolic acids in complex phenolic mixtures by high-resolution two-dimensional nuclear magnetic resonance. Application to methanolic extracts of two oregano species. J. Agric. Food Chem. 46:4185–4192.
Gordis, E. (1969) Lipid metabolites of carbon tetrachloride. J. Clin. Invest. 48:203–209.
Gordon, M.H. (1990) The mechanism of antioxidant action in vitro. In: Hudson, B.J.F. (Ed.), Food Antioxidants, Elsevier Applied Science, London, pp. 1–18.
Griffith, O.W. (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal. Biochem. 106:207–212.
Gruebele, A., K. Zawaski, D. Kaplan, and R.F. Novak (1996) Cytochrome P4502E1- and cytochrome P4502B1/2B2-catalyzed carbon tetrachloride metabolism: effects on signal transduction as demonstrated by altered immediate-early (c-fos and c-jun) gene expression and nuclear AP-1 and NF-kappa B transcription factor levels. Drug Metab. Dispos. 24:15–22.
Gülçin, I., I.G. Şat, Ş. Beydemir, and Ö.I. Küfrevioglu (2004) Evaluation of the in vitro antioxidant properties of extracts of broccoli ( Brassica oleracea L.). Ital. J. Food Sci. 16:17–30.
Gülçin, I. (2006) Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicol. 217:213–220.
Gülçin, I., V. Mshvildadze, A. Gepdiremen, and R. Elias (2006) Antioxidant activity of a triterpenoid glycoside isolated from the berries of Hedera colchica: 3-O-( β-D-glucopyranosyl)-hederagenin. Phytother. Res. 20:130–134.
Gülçin, I., M. Elmastaş, and H.Y. Aboul-Enein (2007) Determination of antioxidant and radical scavenging activity of Basil (Ocimum basilicum L. Family Lamiaceae) assayed by different methodologies. Phytother. Res. 21(4):354–361.
Gutteridge, J.M.C. (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin. Chem. 41:1819–1828.
Halliwell, B. (1997) Antioxidants and human diseases: a general introduction. Nutr. Rev. 55:S44–52.
He, S.X., J.Y. Luo, Y.P. Wang, Y.L. Wang, H. Fu, J.L. Xu, G. Zhao, and E.Q. Liu (2006) Effects of extract from Ginkgo biloba on carbon tetrachloride-induced liver injury in rats. World J. Gastroenterol. 12(24):3924–3928.
Ho, C.T. (1992) Phenolic compounds in food: an overview. In: Huang, M.T., C.T. Ho, and C.Y. Lee (Eds.) Phenolic Compounds in Food and their Effects on Health II: Antioxidants and Cancer Prevention, American Chemical Society, Washington, DC, pp. 2–7.
Hsiao, G., M.Y. Shen, K.H. Lin, M.H. Lan, L.Y. Wu, D.S. Chou, C.H. Lin, C.H. Su, and J.R. Sheu (2003) Antioxidative and hepatoprotective effects of Antrodia camphorata extract. J. Agric. Food Chem. 51:3302–3308.
Hung, M.Y., T.Y. Fu, P.H. Shih, C.P. Lee, and G.C. Yen (2006) Du-Zhong (Eucommia ulmoides Oliv.) leaves inhibits CCl4-induced hepatic damage in rats. Food Chem. Toxicol. 44:1424–1431.
Jacob, R.A. (1995) The integrated antioxidant system. Nutr. Res. 15:755–766.
Jain, A., M. Soni, L. Deb, A. Jain, S.P. Rout, V.B. Gupta, and K.L. Krishna (2008) Antioxidant and hepatoprotective activity of ethanolic and aqueous extracts of Momordica dioica Roxb. leaves. J. Ethnopharmacol. 115:61–66.
Janero, D.R. (1990) Malondialdehyde and thiobarbituric acid reactivity as diagonostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic. Biol. Med. 9:515–540.
Kedage, V.V., J.C. Tilak, G.B. Dixit, T.P. Devasagayam, and M. Mhatre (2007) A study of antioxidant properties of some varieties of grapes (Vitis vinifera L.). Crit. Rev. Food Sci. Nutr. 47(2):175–185.
Ketcha, D.M. and G.W. Gribble (1985) A convient synthesis of 3-acylindoles via Friedel-Crafts acylation of 1-(phenylsulfonyl) indole. A new route to pyridocarbazole-5,11-quinones and ellipticine. J. Org. Chem. 50:5451–5457.
Kumar, R.S., T. Sivakumar, R.S. Sunderam, M. Gupta, U.K. Mazumdar, P. Gomathi, Y. Rajeshwar, S. Saravanan, M.S. Kumar, K. Murugesh, and K.A. Kumar (2005) Antioxidant and antimicrobial activities of Bauhinia racemosa L. stem bark. Braz. J. Med. Biol. Res. 38:1015–1024.
Lajis, N.H. and N.K. Mohammad (1994) Extraction, identification and spectrophotometric determination of second ionization constant of methyl gallate, a constituent present in the fruit shells of Pithecellobium jiringa. Organic chemistry, including medical chemistry 33:609–612.
Lee, S.S., S.M. Chang, and C.H. Chen (2001) Chemical constituents from Alseodaphne andersonii. J. Nat. Prod. 64(12):1548–1551.
Lee, T.H., F. Qiu, G.R. Waller, and C.H. Chou (2000) Three new flavonol galloylglycosides from leaves of Acacia confusa. J. Nat. Prod. 63:710–712.
Lee, T.H., D.Z. Liu, F.L. Hsu, W.C. Wu, and W.C. Hou (2006) Structure-activity relationships of five myricetin galloylglycosides from leaves of Acacia confusa. Bot. Stud. 47:37–43.
Lowry, O.H., N.J. Rosebrough, A.L. Farr, and R.J. Randall (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.
Lu, H. and G.T. Liu (1992) Anti-oxidant activity of dibenzocyclooctene lignans isolated from schisandraceae. Planta Med. 58:311–313.
Luster, M.I., P.P. Simeonova, R.M. Gallucci, J.M. Matheson, and B. Yucesoy (2000) Immunotoxicology: role of inflammation in chemical-induced hepatotoxicity. Int. J. Immunopharmacol. 22:1143–1147.
Luximon-Ramma, A., V.S. Neergheen, T. Bahorun, A. Crozier, V. Zbarsky, K.P. Datla, D.T. Dexter, and O.I. Aruoma (2006) Assessment of the polyphenolic composition of the organic extracts of Mauritian black teas: a potential contributor to their antioxidant functions. Biofactors 27:79–91.
Maksimović, Z., S. Petrović, M. Pavlović, N. Kovacević, and J. Kukić (2007) Antioxidant activity of Filipendula hexapetala flowers. Fitoterapia 78(3):265–267.
Manach, C., A. Scalbert, C. Morand, C. Rémésy, and L. Jimenez (2004) Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 79:727–747.
Manach, C., G. Williamson, C. Morand, A. Scalbert, and C. Rémésy (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 81(suppl):230S–242S.
McLean, E.K., A.E. McLean, and P.M. Sutton (1969) Instant cirrhosis. An improved method for producing cirrhosis of the liver in rats by simultaneous administration of carbon tetrachloride and phenobarbitone. Br. J. Exp. Pathol. 50:502–506.
Moghadasian, M.H. (2002) Experimental atherosclerosis-A historical overview. Life Sci. 70:855–865.
Naito, Y., M. Sugiura, Y. Yamaura, C. Fukaya, K. Yokoyama, Y. Nakagawa, T. Ikeda, M. Senda, and T. Fujita (1991) Quantitative structure-activity relationship of catechol derivatives inhibiting 5-lipoxygenase. Chem. Pharmaceut. Bull. 39:1736–1745.
Nawwar, M.A.M., A.M.A. Souleman, J. Buddrus, H. Bauer, and M. Linscheid (1984) Polyphenolic constituents of the flowers of Tamarix nilotica: the structure of nilocitin, a new digalloylglucose. Tetrahedron let. 25:49–52.
Negro, C., L. Tommasi, and A. Miceli (2003) Phenolic compounds and antioxidant activity from red grape marc extracts. Bioresource Technol. 87:41–44.
Nihei, K.I., A. Nihei, and I. Kubo (2004) Molecular design of multifunctional food additives: antioxidative antifungal agents. J. Agric. Food Chem. 52:5011–5020.
Ohkawa, H., N. Ohishi, and K. Yagi (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95:351–358.
Oktay, M., I. Gülçin, and Ö.I. Küfrevioğlu (2003) Determination of in vitro antioxidant activity of fennel ( Foeniculum vulgare) seed extracts. Lebensm. Wiss. Technol. 36:263–271.
Oyaizu, M. (1986) Studies on product of browning reaction prepared from glucosamine. Jap. J. Nutr. 44:307–315.
Özcelik, B., J.H. Lee, and D.B. Min (2003) Effects of light, oxygen and pH on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method to evaluate antioxidants. J. Food Sci. 68:487–490.
Packer, L., G. Rimbach, and F. Virgili (1999) Antioxidant activity and biologic properties of a procyanidin-rich extract from pine (Pinus maritima) bark, pycnogenol. Free Radic. Bio. Med. 27:704–724.
Pereira, J.A., A.P. Pereira, I.C. Ferreira, P. Valentao, P.B. Andrade, R. Seabra, L. Estevinho, and A. Bento (2006) Table olives from Portugal: phenolic compounds, antioxidant potential, and antimicrobial activity. J. Agric. Food Chem. 54(22):8425–8431.
Perez Tamayo, R. (1983) Is cirrhosis of the liver experimentally produced by CCl4 and adequate model of human cirrhosis? Hepatology 3:112–120.
Pietta, P.G. (2000) Flavonoids as antioxidant. J. Nat. Prod. 63:1035–1042.
Potter, D.K. and H.L. Fuller (1968) Metabolic fate of dietary tannins in chickens. J. Nutr. 96:187–191.
Pronzato, M.A., C. Domenicotti, E. Rosso, A. Bellocchio, M. Patrone, U.M. Marinari, E. Melloni, and G. Poli (1993) Modulation of rat liver protein kinase C during 'in vivo' CCl4-induced oxidative stress. Biochem. Biophys. Res. Commun. 194:635–641.
Rahman, M.D., T. Katayama, T. Suzuki, and T. Nakagawa (2007) Stereochemistry and biosynthesis of (+)-lyoniresinol, a syringyl tetrahydronaphthalene lignan in Lyonia ovalifolia var. elliptica I: isolation and stereochemistry of syringyl lignans and predicted precursors to (+)-lyoniresinol from wood. J. Wood Sci. 53:61–167.
Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Bio. Med. 26:1231–1237.
Robbins, J.R. (2003) Phenolic acids in foods: an overview of analytical methodology. J. Agric. Food Chem. 51:2866–2887.
Sánchez-Moreno, C. (2002) Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci. Technol. Int. 8:121–137.
Scheline, R.R. (1966) The decarboxylation of some phenolic acids by the rat. Acta. Pharmacol. Toxicol. 24:275–285.
Seigler, D.S. (2003) Phytochemistry of Acacia-sensu lato. Biochem. Syst. Ecol. 31:845–873.
Seghiri, R., R. Mekkiou, O. Boumaza, S. Benayache, J. Bermijo, and F. Benayache (2006) Phenolic compounds from Centaurea Africana. Chem. Nat. Com. 42:610–611.
Shahidi, F. and P.K.Wanasundara (1992) Phenolic antioxidants. Crit. Rev. Food Sci. Nutr. 32:67.
Shahrzad, S. and I. Bitsch (1998) Determination of gallic acid and its metabolites in human plasma and urine by high-performance liquid chromatography. J. Chromatogr. B. Biomed. Sci. Appl. 705:87–95.
Shahrzad, S., K. Aoyagi, A. Winter, A. Koyama, and I. Bitsch (2001) Pharmacokinetics of gallic acid and its relative bioavailability from tea in healthy humans. J. Nutr. 131(4):1207–1210.
Sherwin, E.R. (1978) Oxidation and antioxidants in fat and oil processing. J. Am. Oil Chem. Soc. 55:809–814.
Shon, M.Y., S.D. Choi, G.G. Kahng, S.H. Nam, and N.J. Sung (2004) Antimutagenic, antioxidant and free radical scavenging activity of ethyl acetate extracts from white, yellow and red onions. Food Chem. Toxicol. 42:659–666.
Silva, C.G., R.S. Herdeiro, C.J. Mathias, A.D. Panek, C.S. Silveira, V.P. Rodrgiues, M.N. Renno, D.Q. Falcao, D.M. Cerqueira, A.B.M. Minto, F.L.P. Nogueira, C.H. Quaresma, J.F.M. Silva, F.S. Menezes, and E.C.A. Eleutherio (2005) Evaluation of antioxidant activity of Brazilian plants. Pharmacol. Res. 52:229–233.
Singh, R., S. Singh, S. Kumar, and S. Arora (2007) Evaluation of antioxidant potential of ethyl acetate extract/fractions of Acacia auriculiformis A. Cunn. Food Chem. Toxicol. 45(7):1216–1223.
Singleton, V.L. (1981) Naturally occurring food toxicants: phenolic substances of plant origin common in foods. Adv. Food Res. 27:149–242.
Soares, J.R., T.C.P. Dinis, A.P. Cunha, and L.M. Ameida (1997) Antioxidant activity of some extracts of Thymus zygis. Free Radic. Res. 26:469–478.
Sokmen, M., M. Angelova, E. Krumova, S. Pashova, S. Ivancheva, A. Sokmen, and J. Serkedjieva (2005) In vitro antioxidant activity of polyphenol extracts with antiviral properties from Geranium sanguineum L. Life Sci. 76(25):2981–2993.
Song, L., J.Y. Ding, C. Tang, and C.H. Yin (2007) Compositions and biological activities of essential oils of Kadsura longepedunculata and Schisandra sphenanthera. Am. J. Chin. Med. 35(2):353–364.
Sugiura, M., Y. Naito, Y. Yamaura, C. Fukaya, and K.Yokoyama (1989) Inhibitory activities and inhibition specificities of caffeic acid derivatives and related compounds toward 5-lipoxygenase. Chem. Pharmaceut. Bull. 37:1039–1043.
Szymonik-Lesiuk, S., G. Czechowska, M. Stryjecka-Zimmer, M. Stomka, A. Madro, K. Celinski, and M. Wielosz (2003) Catalase, superoxide dismutase and glutathione peroxidase activities in various rat tissue after carbon tetrachloride intoxication. J. Hepatobiliary Pancreat. Surg. 10:309–315.
Takahashi, S., T. Takahashi, S. Mizobuchi, M. Matsumi, K. Morita, M. Miyazaki, M. Namba, R. Akagi, and M. Hirakawa (2002) Increased cytotoxicity of carbon tetrachloride in a human hepatoma cell line overexpressing cytochrome P450 2E1. J. Int. Med. Res. 30:400–405.
Tan, J.W., P. Bednarek, H.K. Liu, B. Schneider, A. Svatos, and K. Hahlbrock (2004) Universally occurring phenylpropanoid and species-specific indolic metabolites in infected and uninfected Arabidopsis thaliana roots and leaves. Phytochemistry 65:691–699.
Tanaka, M., C.W. Kuie, Y. Nagashima, and T. Taguchi (1998) Applications of antioxidative Maillard reaction products from histidine and glucose to sardine products. Nippon Suisan Gakk. 54:1409–1414.
Tietze, F. (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal. Biochem. 27:502–522.
Tsuda, T., M. Watanabe, K. Ohshima, A. Yamamoto, S. Kawakishi, and T. Osawa (1994) Antioxidative components isolated from the seed of tamarind (Tamarindus indica L.). J. Agric. Food Chem. 42:2671–2674.
Tsukada, S., J.K. Westwick, K. Ikejima, N. Sato, and R.A. Rippe (2005) SMAD and p38 MAPK signaling pathways independently regulate alpha1(I) collagen gene expression in unstimulated and transforming growth factor-beta-stimulated hepatic stellate cells. J. Biol. Chem. 280:10055–10064.
Tung, Y.T., J.H. Wu, C.Y. Hsieh, P.S. Chen, and S.T. Chang (2009) Free radical-scavenging phytochemicals of hot water extracts of Acacia confusa leaves detected by on-line screening method. Food Chem. 115:1019–1024.
Wang, S.Y., H.N. Chang, K.T. Lin, C.P. Lo, N.S. Yang, and L.F. Shyur (2003) Antioxidant properties and phytochemical characteristics of extracts from Lactuca indica. J. Agric. Food Chem. 51:1506–1512.
Watanabe, A. and Y. Oshima (1965) Metabolism of gallic acid and tea catechin by rabbit. Agric. Biol. Chem. 29:90–93.
Weber, L.W., M. Boll, and A. Stampfl (2003) Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit. Rev. Toxicol. 33:105–136.
William, R.B. and W.P. Michael (1994) Antioxidant nutrients and protection from free radicals. Nutrit. Toxicol. 19–48.
Wills, P.J. and V.V. Asha (2006) Protective effect of Lygodium flexuosum (L.) Sw. extract against carbon tetrachloride-induced acute liver injury in rats. J. Ethnopharmacol. 107:7–11.
Wu, J.H., Y.T. Tung, S.Y. Wang, L.F. Shyur, Y.H. Kuo, and S.T. Chang (2005) Phenolic antioxidants from the heartwood of Acacia confusa. J. Agric. Food Chem. 53:5917–5921.
Wu, J.H., Y.T. Tung, S.C. Chien, S.Y. Wang, Y.H. Kuo, L.F. Shyur, and S.T. Chang (2008a) Effect of phytocompounds from the heartwood of Acacia confusa on inflammatory mediator production. J. Agric. Food Chem. 56:1567–1573.
Wu, J.H., C.Y. Huang, Y.T. Tung, and S.T. Chang (2008b) Online RP-HPLC-DPPH screening method for detection of radical-scavenging phytochemicals from flowers of Acacia confusa. J. Agric. Food Chem. 56:328–332.
Xu, G., X. Ye, J. Chen, and D. Liu (2007) Effect of heat treatment on the phenolic compounds and antioxidant capacity of citrus peel extract. J. Agric. Food Chem. 55(2):330–335.
Yamaguchi, T., H. Takamura, T. Matoba, and J. Terao (1998) HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-diphenyl-2-picrylhydrazyl. Biosci. Biotech. Biochem. 62:1201–1204.
Yamazaki, K., Y. Nakamura, and Y. Kondo (2003) Solid-phase synthesis of indolecarboxylates using palladium-catalyzed reactions. J. Org. Chem. 68:6011–6019.
Yoshikawa, T., Y. Naito, and M. Kondo (1997) Food and diseases. In: Hiramatsu, M., T. Yoshikawa, and M. Inoue (Eds.), Free Radicals and Diseases, Plenum press, New York, pp. 11–19.
Zangar, R.C., J.M. Benson, V.L. Burnett, and D.L. Springer (2000) Cytochrome P450 2E1 is the primary enzyme responsible for low-dose carbon tetrachloride metabolism in human liver microsomes. Chem. Biol. Interact. 125:233–243.
Zawaski, K., A. Gruebele, D. Kaplan, S. Reddy, A. Mortensen, and R.F. Novak (1993) Evidence for enhanced expression of c-fos, c-jun, and the Ca2+-activated neutral protease in rat liver following carbon tetrachloride administration. Biochem. Biophys. Res. Commun. 197:585–590.
Zong, L., M. Inoue, M. Nose, K. Kojima, N. Sakaguchi, K. Isuzugawa, T. Takeda, and Y. Ogihara (1999) Metabolic fate of gallic acid orally administered to rats. Biol. Pharm. Bull. 22:326–329.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42796-
dc.description.abstract相思樹(Acacia confusa Merr.)為臺灣本土樹種,主要分佈於臺灣低海拔的山地與丘陵地,為傳統用藥之一。本研究針對樹皮乙醇抽出物及其各可溶部進行DPPH自由基清除試驗、總抗氧化力試驗、超氧自由基清除試驗、還原力測定、脂質過氧化抑制試驗及亞鐵離子螯合試驗等抗氧化活性評估,試驗結果顯示,樹皮乙醇抽出物各可溶部中,以乙酸乙酯可溶部清除DPPH自由基活性(EC50值 = 3.2 μg/mL)、總抗氧化力(2.0 mM Trolox)、清除超氧自由基活性(EC50值 = 4.7 μg/mL)、還原能力及螯合亞鐵離子能力(EC50值 = 253.0 μg/mL)最佳。因此,乃利用管柱層析與高效能液相層析進一步分離,共得25個化合物;並證實相思樹樹皮乙酸乙酯可溶部所分離的化合物包括3,4-Dihydroxybenzoic acid、3,4-Dihydroxybenzoic acid ethyl ester 、3,4,5-Trihydroxybenzoic acid(五倍子酸)及3,4,5-Trihydroxybenzoic acid ethyl ester等皆具極佳的抗氧化活性。因此,無論是相思樹樹皮或其化合物皆極具開發成為天然抗氧化劑之潛力,可避免自由基所帶來的各種疾病。
進一步利用四氯化碳誘導老鼠慢性肝損傷之動物試驗模式探討相思樹樹皮抽出物及五倍子酸(相思樹樹皮有效之抗氧化成分)之護肝功效。將六週齡大的SD大白鼠分成7組,每組六隻,包括(A)正常對照組、(B)CCl4處理組、(C)CCl4處理組並餵食水飛薊(50 mg/kg/day)、(D)CCl4處理組並餵食低劑量抽出物(50 mg/kg/day)、(E)CCl4處理組並餵食高劑量抽出物(250 mg/kg/day)、(F)CCl4處理組並餵食五倍子酸(50 mg/kg/day)及(G)餵食高劑量抽出物(250 mg/kg/day)。B、C、D、E及F組皮下注射0.75 mL/kg of BW之CCl4(40% CCl4/Olive oil, v/v),每星期一次,而A及G組則以等量之橄欖油取代,試驗為期九週。試驗結果顯示,相思樹樹皮抽出物及五倍子酸處理組皆能顯著降低肝損傷大白鼠血漿中AST及ALT活性,並有效降低CYP2E1表現量(p < 0.05)。且相思樹樹皮抽出物處理組能有效增加肝損傷大白鼠紅血球中超氧化物歧化酶活性、麩胱甘肽過氧化酶活性、GSH/GSSG(Glutathione/Oxidized glutathione)比值及肝臟中麩胱甘肽還原酶、麩胱甘肽過氧化酶及過氧化氫酶活性,並降低血漿中脂質過氧化物(p < 0.05)。此外,五倍子酸處理組則能有效增加肝損傷大白鼠紅血球及肝臟中的抗氧化酵素(超氧化物歧化酶、麩胱甘肽還原酶、麩胱甘肽過氧化酶及過氧化氫酶)活性及GSH/GSSG比值,並可降低血漿及肝臟中脂質過氧化物(p < 0.05)。綜合上述結果顯示,相思樹樹皮抽出物及五倍子酸皆具護肝功效,能有效抑制四氯化碳所引發的氧化壓力。
zh_TW
dc.description.abstractAcacia confusa Merr. (Leguminosae), a species indigenous to Taiwan, is widely distributed on the hills and lowlands of Taiwan, and it is traditionally used as a medicinal plant. The antioxidant activities of A. confusa bark extract and its soluble fractions were examined using various antioxidant assays, such as DPPH, TEAC, NBT, reducing power, lipid peroxidation, and metal chelating ability. Results showed that among all the fractions from ethanolic extracts of bark, the EtOAc soluble fraction exhibited the best antioxidant performance with DPPH free-radical scavenging activity (EC50 value = 3.2 μg/mL), trolox equivalent antioxidant capacity (2.0 mM Trolox), superoxide radical scavenging activity (EC50 value = 4.7 μg/mL), reducing power, and ferrous ion-chelating ability (EC50 value = 253.0 μg/mL). Furthermore, following by CC and HPLC, 25 pure phenolic compounds were isolated from ethanolic extracts of A. confusa bark. This study also demonstrated that phenolic compounds, such as 3,4-dihydroxybenzoic acid, 3,4-dihydroxybenzoic acid ethyl ester, 3,4,5-trihydroxybenzoic acid, and 3,4,5-trihydroxybenzoic acid ethyl ester obtained from EtOAc soluble fraction of A. confusa bark exhibited excellent antioxidant activities. Therefore, bark extracts and the derived phytochemicals from A. confusa have a great potential to prevent disease caused by the overproduction of radicals and also it might be used as a potential source of natural antioxidant.
The hepatoprotective effects of A. confusa bark extract and gallic acid, an active constituent obtained from A. confusa bark, were evaluated against carbon tetrachloride (CCl4)-induced hepatotoxicity in male Sprague-Dawley rats. Rats were randomly assigned to seven groups; olive oil (control group), CCl4 injection (CCl4 group), dietary supplementation with silymarin at a dose of 50 mg/kg plus CCl4 injection (silymarin + CCl4 group), dietary supplementation with crude extract at a relatively low dose of 50 mg/kg plus CCl4 injection (low dose of 50 mg/kg crude extract + CCl4 group), dietary supplementation with crude extract at a relatively high dose of 250 mg/kg plus CCl4 injection (high dose of 250 mg/kg crude extract + CCl4 group) , dietary supplementation with gallic acid at a dose of 50 mg/kg plus CCl4 injection (gallic acid + CCl4 group), and dietary supplementation with crude extract at a relatively high dose of 250 mg/kg (high dose of 250 mg/kg crude extract group). Rats in CCl4 group, silymarin + CCl4 group, low dose of 50 mg/kg crude extract + CCl4 group, high dose of 250 mg/kg crude extract + CCl4 group, and gallic acid + CCl4 group were subcutaneously injected with 0.75 mL/kg of 40% CCl4 dissolved in olive oil once a week, while rats in control group and high dose of 250 mg/kg crude extract group were only injected with 0.75 mL/kg of olive oil. The experimental period was 9 weeks. Results showed the rats treated with crude extract and gallic acid showed significantly decreased plasma AST and ALT activities and CYP2E1 levels than those in CCl4 group (p < 0.05). Additionally, treatment with A. confusa bark extract significantly increased SOD activity, GPX activity and GSH/GSSG ratio in the erythrocytes, increased GRD, GPX and CAT activities in the hepatocytes, and decreased lipid peroxides in the plasma on CCl4-induced hepatotoxicity in rats (p < 0.05). Moreover, the antioxidant enzyme (SOD, GRD, GPX, and CAT) activities and GSH/GSSG ratio were increased by gallic acid in the erythrocytes and hepatocytes compared with those administered with CCl4 only (p < 0.05). Besides, gallic acid also reduced significantly lipid peroxides in the hepatocytes and plasma compared with CCl4 only (p < 0.05). These results suggested that A. confusa bark extract and gallic acid showed the hepatoprotective effect under CCl4-induced oxidative stress.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:23:48Z (GMT). No. of bitstreams: 1
ntu-98-F91625059-1.pdf: 5684173 bytes, checksum: 3549b6c6966e9ff964cd165a9c3da7f6 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents目錄................................................I
圖目錄..............................................IV
表目錄..............................................XVII
摘要................................................1
Abstract............................................3
貳、文獻回顧........................................9
一、活性氧之種類....................................9
(一)超氧自由基....................................10
(二)過氧化氫......................................10
(三)氫氧自由基....................................11
(四)過氧化脂質....................................11
二、酚酸類化合物....................................12
(一)酚酸類化合物之結構............................12
(二)酚酸類化合物之生合成途徑......................13
(三)酚酸類化合物結構對抗氧化活性之影響............15
(四)酚酸類化合物之生物可利用性....................16
三、四氯化碳造成肝損傷之作用機制....................17
(一)四氯化碳誘導肝損傷之作用機制..................17
(二)四氯化碳誘導肝損傷動物模式之相關研究..........19
參、材料與方法......................................21
一、試驗材料........................................21
(一)相思樹........................................21
(二)試驗動物......................................21
(三)藥品與溶劑....................................21
二、試驗方法........................................22
(一)相思樹抽出物之萃取............................22
(二)相思樹樹皮抽出物之分離與純化..................22
1. 液相–液相分配...................................22
2. 管柱層析與高效能液相層析.........................22
3. 化合物結構鑑定...................................23
(三)相思樹樹皮抽出物之抗氧化活性試驗..............24
1. DPPH自由基清除試驗...............................25
2. 總抗氧化力試驗...................................25
3. 超氧自由基清除試驗...............................25
4. 還原力測定.......................................26
5. 脂質過氧化抑制試驗...............................26
6. 亞鐵離子螯合試驗.................................27
(四)相思樹樹皮抽出物之總酚類含量測定..............27
(五)相思樹樹皮抽出物之護肝活性功能評估............27
1. 動物試驗前處理...................................27
2. 肝功能指數與肝臟組織病理分析.....................29
3. 抗氧化酵素活性試驗...............................30
4. 脂質代謝測定.....................................33
5. 脂質過氧化物測定.................................34
6. 抗氧化物質濃度測定...............................35
7. 肝臟微粒體中細胞色素P450 2E1蛋白質表現...........36
(六)統計分析......................................39
肆、結果與討論......................................40
一、相思樹乙醇抽出物之抗氧化活性評估................40
二、相思樹樹皮乙醇抽出物及各可溶部之抗氧化活性篩選..41
(一)清除DPPH自由基活性............................42
(二)總抗氧化力....................................43
(三)清除超氧自由基活性............................45
(四)還原能力......................................47
(五)抑制脂質過氧化能力............................48
(六)螯合亞鐵離子能力..............................50
三、相思樹樹皮抽出物及各可溶部之總酚類含量..........51
四、相思樹樹皮具抗氧化活性成分之分離與純化..........52
五、相思樹樹皮乙酸乙酯可溶部中化合物之抗氧化活性....139
(一)清除DPPH自由基活性............................139
(二)總抗氧化力....................................140
(三)清除超氧自由基活性............................141
(四)還原能力......................................142
六、酚類化合物抗氧化活性與其結構之關係..............143
七、相思樹樹皮乙醇抽出物及五倍子酸之護肝功能........146
(一)體重、攝食量與相對肝臟重量....................146
(二)肝功能指數....................................147
(三) 抗氧化酵素活性................................151
1. 超氧化物歧化酶活性...............................152
2. 麩胱甘肽還原酶活性...............................154
3. 過氧化氫酶活性...................................156
4. 麩胱甘肽過氧化酶活性.............................158
(四) GSH/GSSG比值..................................160
(五) 脂質過氧化物濃度..............................162
(六) 脂質代謝......................................164
1. 血漿中三酸甘油酯濃度.............................164
2. 血漿中總膽固醇濃度...............................165
(七) 肝臟微粒體中細胞色素P450 2E1蛋白質表現........166
(八) 肝臟組織病理學檢查及評分......................169
伍、結論............................................172
陸、參考文獻........................................175
dc.language.isozh-TW
dc.title相思樹樹皮抽出物之抗氧化活性及護肝功效zh_TW
dc.titleAntioxidant Activity and Hepatoprotective Effects of
the Extractives from Acacia confusa Bark
en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee謝瑞忠,蘇裕昌,王升陽,楊素卿,王松永,張惠婷
dc.subject.keyword相思樹,抗氧化活性,樹皮,四氯化碳,護肝功效,五倍子酸,zh_TW
dc.subject.keywordAcacia confusa,Antioxidant activity,Bark,Carbon tetrachloride,Hepatoprotective effect,Gallic acid,en
dc.relation.page185
dc.rights.note有償授權
dc.date.accepted2009-07-24
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
5.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved