Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42789
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉懷勝(Hwai-Shen Liu)
dc.contributor.authorYou-Chen Linen
dc.contributor.author林右晨zh_TW
dc.date.accessioned2021-06-15T01:23:33Z-
dc.date.available2012-07-30
dc.date.copyright2009-07-30
dc.date.issued2009
dc.date.submitted2009-07-23
dc.identifier.citationAhmed, A. K., S. W. Schaffer, and D. B. Wetlaufer. 1975. Nonenzymic Reactivation of Reduced Bovine Pancreatic Ribonuclease by Air Oxidation and by Glutathione Oxidoreduction Buffers. Journal of Biological Chemistry 250: 8477-8482.
Anfinsen, C., and E. Haber. 1961. Studies on Reduction and Re-Formation of Protein Disulfide Bonds. Journal of Biological Chemistry 236: 1361-1363.
Anfinsen, C. B. 1973. Principles That Govern Folding of Protein Chains. Science 181: 223-230.
Anfinsen, C. B., E. Haber, M. Sela, and F. H. White. 1961. Kinetics of Formation of Native Ribonuclease during Oxidation of Reduced Polypeptide Chain. Proceedings of the National Academy of Sciences of the United States of America 47: 1309-1314.
Armstrong, F. B. 1989. Biochemistry. Oxford University Press, New York.
Baneyx, F. 1999. Recombinant protein expression in Escherichia coli. Current Opinion in Biotechnology 10: 411-421.
Batas, B., C. Schiraldi, and J. B. Chaudhuri. 1999. Inclusion body purification and protein refolding using microfiltration and size exclusion chromatography. Journal of Biotechnology 68: 149-158.
Batas, D., and J. B. Chaudhuri. 1996. Protein refolding at high concentration using size-exclusion chromatography. Biotechnology and Bioengineering 50: 16-23.
Benkerroum, N. 2008. Antimicrobial activity of lysozyme with special relevance to milk. African Journal of Biotechnology 7: 4856-4867.
Blake, C. C. F., D. F. Koenig, G. A. Mair, A. C. T. North, D. C. Phillips, and V. R. Sarma. 1965. Structure of Hen Egg-White Lysozyme - a 3-Dimensional Fourier Synthesis at 2a Resolution. Nature 206: 757-761.
Bulaj, G., T. Kortemme, and D. P. Goldenberg. 1998. Ionization-reactivity relationships for cysteine thiols in polypeptides. Biochemistry 37: 8965-8972.
Campbell, M. K. 1999. Biochemistry. Saunders College Pub., Philadelphia.
Campbell, M. K. 2009. Biochemistry. Thomson/Brooks/Cole, United States.
Canfield, R. E., and A. K. Liu. 1965. Disulfide Bonds of Egg White Lysozyme (Muramidase). Journal of Biological Chemistry 240: 1997-2002.
Canfield, R. E., E. Osserman, and S. Beychok. 1974. Lysozyme. Academic Press, New York.
Clark, E. D. 2001. Protein refolding for industrial processes. Current Opinion in Biotechnology 12: 202-207.
Clark, E. D., D. Hevehan, S. Szela, and J. Maachupalli-Reddy. 1998. Oxidative renaturation of hen egg-white lysozyme. Folding vs aggregation. Biotechnology Progress 14: 47-54.
Clark, E. D. B. 1998. Refolding of recombinant proteins. Current Opinion in Biotechnology 9: 157-163.
Cleland, W. W. 1964. Dithiothreitol New Protective Reagent for Sh Groups. Biochemistry 3: 480-482.
Cunningham, F. E., V. A. Proctor, and S. J. Goetsch. 1991. Egg-White Lysozyme as a Food Preservative - an Overview. Worlds Poultry Science Journal 47: 141-163.
Darnell, J. E. 1990. Molecular cell biology. Distributed by W.H. Freeman, New York.
Delfini, C., M. Cersosimo, V. Del Prete, M. Strano, G. Gaetano, A. Pagliara, and S. Ambro. 2004. Resistance screening essay of wine lactic acid bacteria on lysozyme: Efficacy of lysozyme in unclarified grape musts. Journal of Agricultural and Food Chemistry 52: 1861-1866.
Dickerson, R. E. 1969. The structure and action of proteins. Harper & Row, New York.
Dinner, A. R., A. Sali, L. J. Smith, C. M. Dobson, and M. Karplus. 2000. Understanding protein folding via free-energy surfaces from theory and experiment. Trends in Biochemical Sciences 25: 331-339.
Dobson, C. M. 2003. Protein folding and misfolding. Nature 426: 884-890.
Dobson, C. M., P. A. Evans, and S. E. Radford. 1994. Understanding How Proteins Fold - the Lysozyme Story So Far. Trends in Biochemical Sciences 19: 31-37.
E.Creighton, T. 2000. Protein folding coupled to disulphide-bond formation. Mechanisms of protein folding, Edited by R. H. Pain: 250-278.
Fahey, E., and J. B. Chaudhuri. 2001. Molecular characterisation of size exclusion chromatography refolded urokinase-plasminogen activator. Chemical Engineering Science 56: 4971-4978.
Fischer, B., I. Sumner, and P. Goodenough. 1993. Isolation, Renaturation, and Formation of Disulfide Bonds of Eukaryotic Proteins Expressed in Escherichia-Coli as Inclusion-Bodies. Biotechnology and Bioengineering 41: 3-13.
Fleming, A. 1922. On a remarkable bacteriolytic element found in tissues and secretions. Proceedings of the Royal Society of London Series B-Containing Papers of a Biological Character 93: 306-317.
Gao, Y. G., Y. X. Guan, S. J. Yao, and M. G. Cho. 2002. Refolding of lysozyme at high concentration in batch and fed-batch operation. Korean Journal of Chemical Engineering 19: 871-875.
Garrett, R. 2007. Biochemistry. Thomson Brooks/Cole, Belmont, CA.
Gilbert, H. F. 1990. Molecular and Cellular Aspects of Thiol Disulfide Exchange. Advances in Enzymology and Related Areas of Molecular Biology 63: 69-172.
Goldberg, M. E., R. Rudolph, and R. Jaenicke. 1991. A Kinetic-Study of the Competition between Renaturation and Aggregation during the Refolding of Denatured Reduced Egg-White Lysozyme. Biochemistry 30: 2790-2797.
Goto, M., Y. Hashimoto, T. Fujita, T. Ono, and S. Furusaki. 2000. Important parameters affecting efficiency of protein refolding by reversed micelles. Biotechnology Progress 16: 1079-1085.
Gu, Z. Y., Z. G. Su, and J. C. Janson. 2001. Urea gradient size-exclusion chromatography enhanced the yield of lysozyme refolding. Journal of Chromatography A 918: 311-318.
Haber, E., and C. B. Anfinsen. 1961. Regeneration of Enzyme Activity by Air Oxidation of Reduced Subtilisin-Modified Ribonuclease. Journal of Biological Chemistry 236: 422-424.
Hagen, A. J., T. A. Hatton, and D. I. C. Wang. 1990a. Protein Refolding in Reversed Micelles. Biotechnology and Bioengineering 35: 955-965.
Hagen, A. J., T. A. Hatton, and D. I. C. Wang. 1990b. Protein Refolding in Reversed Micelles - Interactions of the Protein with Micelle Components. Biotechnology and Bioengineering 35: 966-975.
Hagihara, Y., S. Aimoto, A. L. Fink, and Y. Goto. 1993. Guanidine Hydrochloride-Induced Folding of Proteins. Journal of Molecular Biology 231: 180-184.
Hash, J. H. 1974. Lysozyme. Academic Press, New York.
Hasselberger, F. X. 1978. Uses of Enzymes and Immobilized Enzymes. 198.
Hevehan, D. L., and E. D. Clark. 1997. Oxidative renaturation of lysozyme at high concentrations. Biotechnology and Bioengineering 54: 221-230.
Ishii, Y., T. Teshima, A. Kondo, K. Murakami, S. Sonezaki, H. IOgawa, Y. Kato, and H. Fukuda. 1997. Operation conditions of enzyme refolding by chaperonin and recycle system using ultrafiltration. Chemical Engineering Journal 65: 151-157.
Jaenicke, R. 1974. Reassociation and Reactivation of Lactic-Dehydrogenase from Unfolded Subunits. European Journal of Biochemistry 46: 149-155.
Jaenicke, R. 1987. Folding and Association of Proteins. Progress in Biophysics & Molecular Biology 49: 117-237.
Johnson, L. N., and D. C. Phillips. 1965. Structure of Some Crystalline Lysozyme-Inhibitor Complexes Determined by X-Ray Analysis at 6 a Resolution. Nature 206: 761-763.
Katoh, S., M. Terashima, H. Kishida, and H. Yagi. 1997. Refolding efficiency of lysozyme in fed-batch system. Journal of Chemical Engineering of Japan 30: 964-966.
Katoh, S., Y. Sezai, T. Yamaguchi, Y. Katoh, H. Yagi, and D. Nohara. 1999. Refolding of enzymes in a fed-batch operation. Process Biochemistry 35: 297-300.
Katoh, Y., M. Farshbaf, N. Kurooka, D. Nohara, and S. Katoh. 2000. High yield refolding of lysozyme and carbonic anhydrase at high protein concentrations. Journal of Chemical Engineering of Japan 33: 773-777.
Kiefhaber, T., R. Rudolph, H. H. Kohler, and J. Buchner. 1991. Protein Aggregation Invitro and Invivo - a Quantitative Model of the Kinetic Competition between Folding and Aggregation. Bio-Technology 9: 825-829.
Lanckriet, H., and A. P. J. Middelberg. 2004. Continuous chromatographic protein refolding. Journal of Chromatography A 1022: 103-113.
Lehninger, A. L. 2005. Lehninger principles of biochemistry. W.H. Freeman, New York.
Lilie, H., E. Schwarz, and R. Rudolph. 1998. Advances in refolding of proteins produced in E-coli. Current Opinion in Biotechnology 9: 497-501.
London, J., C. Skrzynia, and M. E. Goldberg. 1974. Renaturation of Escherichia-Coli Tryptophanase after Exposure to 8 M Urea - Evidence for Existence of Nucleation Centers. European Journal of Biochemistry 47: 409-415.
Lyles, M. M., and H. F. Gilbert. 1991. Catalysis of the Oxidative Folding of Ribonuclease-a by Protein Disulfide Isomerase - Dependence of the Rate on the Composition of the Redox Buffer. Biochemistry 30: 613-619.
MaachupalliReddy, J., B. D. Kelley, and E. D. Clark. 1997. Effect of inclusion body contaminants on the oxidative renaturation of hen egg white lysozyme. Biotechnology Progress 13: 144-150.
Maeda, Y., H. Yamada, T. Ueda, and T. Imoto. 1996. Effect of additives on the renaturation of reduced lysozyme in the presence of 4 M urea. Protein Engineering 9: 461-465.
Maeda, Y., H. Koga, H. Yamada, T. Ueda, and T. Imoto. 1995. Effective Renaturation of Reduced Lysozyme by Gentle Removal of Urea. Protein Engineering 8: 201-205.
Makrides, S. C. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiological Reviews 60: 512-538.
Marchal, R., D. Chaboche, R. Douillard, and P. Jeandet. 2002. Influence of lysozyme treatments on Champagne base wine foaming properties. Journal of Agricultural and Food Chemistry 50: 1420-1428.
Marston, F. A. O. 1986. The Purification of Eukaryotic Polypeptides Synthesized in Escherichia-Coli. Biochemical Journal 240: 1-12.
Mathews, C. K. 2000. Biochemistry. Benjamin Cummings, San Francisco, Calif.
Matsubara, M., D. Nohara, and T. Sakai. 1992. Difference between Guanidinium Chloride and Urea as Denaturants of Globular-Proteins - the Possibility of Application to Improved Refolding Processes. Chemical & Pharmaceutical Bulletin 40: 550-552.
Matsubara, M., D. Nohara, E. Kurimoto, Y. Kuroda, and T. Sakai. 1993. Loose Folding and Delayed Oxidation Procedures Successfully Applied for Refolding of Fully Reduced Hen Egg-White Lysozyme. Chemical & Pharmaceutical Bulletin 41: 1207-1210.
McKee, T. 2009. Biochemistry. Oxford University Press, New York.
Merck. 11th edition: 3382.
Nölting, B. 2006. Protein folding kinetics. Springer, New York.
Neurath, H., J. P. Greenstein, F. W. Putnam, and J. O. Erickson. 1944. The chemistry of protein denaturation. Chemical Reviews 34: 157-265.
Orsini, G., C. Skrzynia, and M. E. Goldberg. 1975. Renaturation of Reduced Polyalanyl-Chymotrypsinogen and Chymotrypsinogen. European Journal of Biochemistry 59: 433-440.
Pauling, L., and R. B. Corey. 1951. Configurations of Polypeptide Chains with Favored Orientations around Single Bonds - 2 New Pleated Sheets. Proceedings of the National Academy of Sciences of the United States of America 37: 729-740.
Phillips, D. C. 1967. Hen Egg-White Lysozyme Molecule. Proceedings of the National Academy of Sciences of the United States of America 57: 484-495.
Proctor, V. A., and F. E. Cunningham. 1988. The Chemistry of Lysozyme and Its Use as a Food Preservative and a Pharmaceutical. Crc Critical Reviews in Food Science and Nutrition 26: 359-395.
Radford, S. E., C. M. Dobson, and P. A. Evans. 1992. The Folding of Hen Lysozyme Involves Partially Structured Intermediates and Multiple Pathways. Nature 358: 302-307.
Raman, B., T. Ramakrishna, and C. M. Rao. 1996. Refolding of denatured and denatured/reduced lysozyme at high concentrations. Journal of Biological Chemistry 271: 17067-17072.
Roger H, P. 2000. Mechanisms of protein folding. Oxford University Press, New York.
Rothwarf, D. M., and H. A. Scheraga. 1992. Equilibrium and Kinetic Constants for the Thiol Disulfide Interchange Reaction between Glutathione and Dithiothreitol. Proceedings of the National Academy of Sciences of the United States of America 89: 7944-7948.
Rudolph, R., and S. Fischer. 1990. Process for obtaining renatured proteins. US Patent 4,933,434.
Rudolph, R., and H. Lilie. 1996. In vitro folding of inclusion body proteins. Faseb Journal 10: 49-56.
Ruegg, U. T., and J. Rudinger. 1977. cleavage of disulfide bonds in pproteins. Methods Enzymol 47: 111.
Rupley, J. A. 1967. Binding and Cleavage by Lysozyme of N-Acetylglucosamine Oligosaccharides. Proceedings of the Royal Society of London Series B-Biological Sciences 167: 416-428.
Sadana, A. 1995. Protein Refolding and Inactivation during Bioseparation - Bioprocessing Implications. Biotechnology and Bioengineering 48: 481-489.
Salton, M. R. J. 1952. Cell Wall of Micrococcus-Lysodeikticus as the Substrate of Lysozyme. Nature 170: 746-747.
Saxena, V. P., and D. B. Wetlaufe. 1970. Formation of 3-Dimensional Structure in Proteins .1. Rapid Nonenzymic Reactivation of Reduced Lysozyme. Biochemistry 9: 5015-5022.
Sharon, N. 1967. Chemical Structure of Lysozyme Substrates and Their Cleavage by Enzyme. Proceedings of the Royal Society of London Series B-Biological Sciences 167: 402-415.
Szajewski, R. P., and G. M. Whitesides. 1980. Rate Constants and Equilibrium-Constants for Thiol-Disulfide Interchange Reactions Involving Oxidized Glutathione. Journal of the American Chemical Society 102: 2011-2026.
Teipel, J. W., and D. E. Koshland. 1971a. Kinetic Aspects of Conformational Changes in Proteins .1. Rate of Regain of Enzyme Activity from Denatured Proteins. Biochemistry 10: 792-797.
Teipel, J. W., and D. E. Koshland. 1971b. Kinetic Aspects of Conformational Changes in Proteins .2. Structural Changes in Renaturation of Denatured Proteins. Biochemistry 10: 798-805.
Terashima, P., K. Suzuki, and S. Katoh. 1996. Effective refolding of fully reduced lysozyme with a flow-type reactor. Process Biochemistry 31: 341-345.
van den Berg, B., E. W. Chung, C. V. Robinson, and C. M. Dobson. 1999. Characterisation of the dominant oxidative folding intermediate of hen lysozyme. Journal of Molecular Biology 290: 781-796.
Vandenbroeck, K., E. Martens, S. Dandrea, and A. Billiau. 1993. Refolding and Single-Step Purification of Porcine Interferon-Gamma from Escherichia-Coli Inclusion-Bodies - Conditions for Reconstitution of Dimeric Ifn-Gamma. European Journal of Biochemistry 215: 481-486.
Wang, S. S. S., C. K. Chang, M. J. Peng, and H. S. Liu. 2006. Effect of glutathione redox system on lysozyme refolding in size exclusion chromatography. Food and Bioproducts Processing 84: 18-27.
Xue, Q. G., K. L. Schey, A. K. Volety, F. L. E. Chu, and J. F. La Peyre. 2004. Purification and characterization of lysozyme from plasma of the eastern oyster (Crassostrea virginica). Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology 139: 11-25.
Yasuda, M., Y. Murakami, A. Sowa, H. Ogino, and H. Ishikawa. 1998. Effect of additives on refolding of a denatured protein. Biotechnology Progress 14: 601-606.
Yutani, K., A. Yutani, A. Imanishi, and T. Isemura. 1968. Mechanism of Refording of Reduced Random Coil Form of Lysozyme. Journal of Biochemistry 64: 449-455.
Zettlmeissl, G., R. Rudolph, and R. Jaenicke. 1979. Reconstitution of Lactic-Dehydrogenase - Non-Covalent Aggregation Vs Reactivation .1. Physical-Properties and Kinetics of Aggregation. Biochemistry 18: 5567-5571.
周若莟. 2008. 變性劑中各成份在透析操作中移除方式的設計對溶菌酶復性效果之影響. 台灣大學碩士論文.
林煜祺. 2006. 復性緩衝液中氧化還原對之動力學分析. 台灣大學碩士論文.
張哲魁. 2005. 以大小排阻層析法進行蛋白質復性之研究. 台灣大學博士論文.
張棨翔. 2007. 二硫代蘇糖醇對溶菌酶變性及復性程序之影響. 台灣大學碩士論文.
張學凱. 2004. 復性緩沖液中的成分對蛋白質復性之研究. 台灣大學碩士論文.
廖彗媚. 2003. 復性緩衝液中氧化還原反應對溶菌酶復性之研究. 台灣大學碩士論文.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42789-
dc.description.abstract蛋白質進行復性程序前需先進行變性溶解的步驟,故在進入復性程序時,變性程序中所存在的各種藥劑會一起進入復性系統中,對於復性結果產生影響。96孔盤活性測試具有可快速且大量獲得溶菌酶活性的優點,因此,本實驗經由直接稀釋法進行溶菌酶的復性,並搭配96孔盤活性測試(0.8g/L的基質,10秒/90秒的測量時間,基質對於溶菌酶之體積比例為200μL比10μL,待測溶菌酶濃度0.01g/L~0.1g/L),探討變性程序中還原態二硫代蘇糖醇(DTTRed)的殘留對於溶菌酶復性所造成之影響,也由復性程序中尿素濃度的改變,探討復性環境中尿素濃度對於溶菌酶性活性回復率之影響。
大小排阻層析法(Size Exclusion Chromatography,SEC)可測出溶菌酶與DTTRed進行變性24小時後所殘留之DTTRed,只要知道初始DTTRed與初始溶菌酶濃度(Lyi),即得知氧化態DTT(DTTOxi)濃度而進一步算出殘留之DTTRed。在直接稀釋法結果中,溶菌酶之活性回復率隨著殘留DTTRed濃度不同呈現三種趨勢:(a)氧化還原對控制區 (b)聚集體控制區 (c)殘留DTTRed控制區,調整各控制區內的最大影響因子即可使得活性回復率提升。活性回復率與溶菌酶的濃度為反比關係,加入尿素可有效減少聚集體並提升活性回復率,1M尿素使得最終復性溶菌酶小於0.16g/L時有80%以上之活性回復率;2M尿素使得最終復性溶菌酶小於0.5g/L時有75%以上之活性回復率;3M尿素所提供之疏水性作用力過多,但可有效提升1g/L以上最終復性溶菌酶的活性回復率。實驗結果顯示,聚集體形成極快,變性溶菌酶接觸復性液瞬間就有可能因聚集體的產生降低活性回復效果,當最終尿素濃度為1M且初始變性溶菌酶高於10g/L時,初期聚集體的量使得活性回復率下降;最終尿素濃度為2M時,只要初始尿素濃度大於1.76M,初始變性溶菌酶在25g/L以下,復性初期形成的聚集體不會對活性回復率產生影響。
zh_TW
dc.description.abstractBefore the renaturation process, proteins need to be denatured and dissolved. Thus, when entering renaturation process, the denaturing chemicals are carried over into the refolding system and affected the performance of renaturation process. In this investigation, we used the direct dilution method to refold lysozyme, and measured the activity recovery by an efficient 96 well microplate method (0.8g/L Micrococcus lysodeikticus, 10s/90s measuring time, substrate and lysozyme volume ratio of 200μl and 10μl, for the lysozyme concentration range 0.01g/L~0.1g/L.). We examined the effect of the carried-over DTTRed from the denaturation process on the refolding performance. The effect of urea on the refolding of lysozyme was also explored by varying the concentration of urea in the refolding condition.
Size exclusion chromatography (SEC) was applied to determine the carried-over DTTRed after lysozyme denaturation. With the initial concentration of DTTRed and lysozyme(Lyi), we could calculate the concentration of DTTOxi by the equation , and accordingly the concentration of the carried-over DTTRed. From the results of direct dilution method, the relationship among lysozyme activity recovery, lysozyme concentration, and carried-over DTTRed concentration could be divided into three regions including the redox control region, aggregate control region, and DTTRed control region. An improvement in the activity recovery could be achieved through the proper regulation of the contributing factors in each region. Generally speaking, the activity recovery was inversely proportional to the lysozyme concentration and the addition of urea could reduce the aggregation. 1M of urea helps to recover the activity of lysozyme up to final concentration of 0.16g/L with more than 80% yield. 2M of urea could recover the enzyme activity up to 0.5g/L with the yield more than 75%. Although 3M of urea resulted in stronger hydrophobic interaction, it could still recover the activity of lysozyme of final concentration more than 1g/L efficiently. According to our experimental results, the rapid formation of aggregates would occur as soon as the denaturated lysozyme was in contact with the refolding buffer. With 1M of final concentration of urea and 10g/L of initial concentration of lysozyme, the amount of initial aggregates would lead to a reduction in activity recovery. However, a better inhibition of initial aggregate formation was observed when the final concentration of urea was 2M and initial concentration of urea was above 1.76M. We believe our work may contribute to a better design of protein refolding processes.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:23:33Z (GMT). No. of bitstreams: 1
ntu-98-R96524049-1.pdf: 4460323 bytes, checksum: d4e4876bfe0509e069dd3b8d7bc5036b (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
第二章 文獻回顧 2
2-1 蛋白質功能及組成 2
2-2 穩定蛋白質結構之作用力 8
2-3 溶菌酶(LYSOZYME) 12
2-3-1 溶菌酶簡介 12
2-3-2 溶菌酶的結構 14
2-3-3 溶菌酶之活性 18
2-4 蛋白質變性 19
2-5 蛋白質復性 22
2-5-1 蛋白質復性與雙硫鍵形成 25
2-5-2 蛋白質復性與聚集體形成 26
2-6 蛋白質復性方法 28
2-6-1 直接稀釋法(direct dilution) 28
2-6-2 透析法(dialysis) 35
2-6-3 大小排阻層析法(size exclusion chromatography,SEC) 36
2-6-4 逆微胞法(reverse micells) 37
2-7 二硫代蘇糖醇(dithiothreitol,DTT) 39
第三章 實驗裝置、藥品與步驟 42
3-1 實驗裝置 42
3-2 實驗藥品 42
3-3 實驗步驟 44
3-3-1 【實驗試劑備製步驟】 44
3-3-2 【96孔盤測活性】 45
3-3-3 【溶菌酶之活性測定】 45
3-3-4 【溶菌酶之變性】 46
3-3-5 【直接稀釋法復性溶菌酶於二小時內之活性變化】 47
3-3-6 【復性緩衝液存放時間對復性效果的影響】 47
3-3-7 【失活步驟中隨時間測量溶菌酶之殘餘活性】 48
3-3-8 【氧化態DTT校正曲線】 48
3-3-9 【DTT殘留測試】 48
3-3-10 【直接稀釋法實驗】 49
第四章 實驗動機與目的 52
第五章 96孔盤活性測量 54
5-1 微量盤式分析儀與分光光譜儀燈光照射方式比較 54
5-2 微量盤式分析儀與分光光譜儀體積比較 55
5-3 微量盤式分析儀與分光光譜儀溶液混合方式比較 56
5-4 基質濃度調整 56
5-4-1 長時間測量 57
5-4-2 增加基質濃度 60
5-4-3 縮短測量活性的時間 62
5-5 活性測量結論 64
5-6 測量活性之方法尋找 64
第六章 直接稀釋法 66
6-1 直接稀釋法於兩個小時內之活性變化 66
6-1-1 實驗動機 66
6-1-2 實驗方法 66
6-1-3 實驗結果與討論 66
6-2 復性緩衝液放置時間對復性效果之影響 69
6-2-1 實驗動機 69
6-2-2 實驗方法 69
6-2-3 實驗結果與討論 69
6-3 失活步驟中隨時間測量溶菌酶之殘餘活性 70
6-3-1 實驗動機 70
6-3-2 實驗方法 71
6-3-3 實驗結果與討論 71
6-4 還原態DTT殘留測試 74
6-4-1 實驗動機 74
6-4-2 實驗方法 75
6-4-3 氧化態DTT濃度校正曲線 75
6-4-4 變性24小時後之DTT殘留 78
6-4-4-1 大小排阻層析法測量變性溶菌酶液中氧化態DTT含量 78
6-4-4-2 氧化態DTT含量經驗式分析 81
第七章 殘留還原態DTT與尿素對溶菌酶復性之影響 85
7-1 實驗動機 85
7-2 實驗方法 85
7-3 實驗結果與討論 85
7-3-1 試劑名稱與代表符號 85
7-3-2 50倍直接稀釋法、最終尿素濃度1M時殘留還原態DTT與活性回復率之關係 86
7-3-2-1 氧化還原對控制區 88
7-3-2-2 聚集體控制區 92
7-3-2-3 殘留還原態DTT控制區 97
7-3-3 50倍、30倍、20倍、10倍直接稀釋法於最終尿素濃度1M時殘留還原態DTT與活性回復率之關係 100
7-3-4 50倍、30倍、20倍、10倍直接稀釋法於最終尿素濃度1M、2M、3M時殘留還原態DTT與活性回復率之關係比較 105
7-3-5 尿素對溶菌酶復性的影響 109
7-3-5-1 1M最終尿素對溶菌酶復性之影響 110
7-3-5-2 2M最終尿素對溶菌酶復性之影響 123
7-3-5-3 3M最終尿素對溶菌酶復性之影響 132
7-3-6 復性劑中未加入尿素 135
第八章 結論 137
第九章 參考文獻 140
dc.language.isozh-TW
dc.subject復性zh_TW
dc.subject二硫代蘇糖醇zh_TW
dc.subject溶菌&#37238zh_TW
dc.subject尿素zh_TW
dc.subject直接稀釋法zh_TW
dc.subject變性zh_TW
dc.subjectdithiothreitol(DTT)en
dc.subjectdirect dilution methoden
dc.subjectrefoldingen
dc.subjectdenaturationen
dc.subjectureaen
dc.subjectlysozymeen
dc.title殘留之二硫代蘇糖醇與尿素對溶菌酶復性之影響zh_TW
dc.titleThe Effect of Dithiothreitol Carry-over and Urea on Renaturation Procedure of Lysozymeen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee阮若屈(Ruoh-Chyu Ruaan),吳和生(Ho-Shing Wu),王勝仕(Sheng-Shih Wang),王孟菊(Meng-Jiy Wang)
dc.subject.keyword二硫代蘇糖醇,溶菌&#37238,尿素,變性,復性,直接稀釋法,zh_TW
dc.subject.keyworddithiothreitol(DTT),lysozyme,urea,denaturation,refolding,direct dilution method,en
dc.relation.page146
dc.rights.note有償授權
dc.date.accepted2009-07-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
4.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved