請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42743
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 連豊力(Feng-Li Lian) | |
dc.contributor.author | Kuan-Chieh Tseng | en |
dc.contributor.author | 曾冠傑 | zh_TW |
dc.date.accessioned | 2021-06-15T01:21:38Z | - |
dc.date.available | 2009-07-29 | |
dc.date.copyright | 2009-07-29 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-24 | |
dc.identifier.citation | Books:
[1: Siegwart & Nourbakhsh 2004] R. Siegwart and I. R. Nourbakhsh, “Introduction to Autonomous Mobile Robots,” The MIT Press, London, England, 2004. [2: Ioannou & Sun 1996] P. A. Ioannou and J. Sun, “Robust Adaptive Control,” Prentice-Hall, Upper Saddle River, NJ, 1996. [3: Gelb 2000] A. Gelb, “Applied Optimal Estimation,” The MIT Press, London, England, 2001. [4: Aarts & Lenstra 1997] E. Aarts and J. K. Lenstra, “Local Search in Combinatorial Optimization,” Wiley, New York, 1997. Papers: [5: Wang & Chang 2008] D. Wang, and C. B. Low, “Modeling and Analysis of Skidding and Slipping in Wheeled Mobile Robots: Control Design Perspective,” IEEE Transactions on Robotics, Vol. 24, No. 3, pp. 676-687, Jun. 2008. [6: Martinelli 2002] A. Martinelli, “The Odometry Error of a Mobile Robot with a Synchronous Drive System,” IEEE Transactions on Robotics and Automation, Vol. 18, No. 3, pp. 399-405, Jun. 2002. [7: Besl and Mckay 1992] P. J. Besl and N. D. Mckay, “A Method for Registration of 3-D Shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 2, pp. 239-256, Feb. 1992. [8: Borenstein 1998] J. Borenstein, “Experimental Results from Internal Odometry Error Correction with the OmniMate Mobile Robot,” IEEE Transactions on Robotics and Automation, Vol. 14, No. 6, pp. 963-969, Dec. 1998. [9: Borenstein & Koren 1991] J. Borenstein and Y. Koren, “Histogramic In-Motion Mapping for Mobile Robot Obstacle Avoidance,” IEEE Transactions on Robotics and Automation, Vol. 7, No. 4, pp. 535-539, Aug. 1991. [10: Freire et al. 2004] E. O. Freire, T. Bastos-Filho, M. Sarcinelli-Filho, and R. Carelli, “A New Mobile Robot Control Approach via Fusion of Control Signals,” IEEE Transactions on System, Men and Cybernetics-Part B: Cybernetics, Vol. 34, No. 1, pp. 419-429, Feb. 2004. [11: Gu & Hu 2006] D. Gu and H. Hu, “Receding Horizon Tracking Control of Wheeled Mobile Robots,” IEEE Transactions on Control Systems Technology, Vol. 14, No. 4, pp. 743-749, July 2006. [12: Oriolo et al. 2002] G. Oriolo, A. De Luca and M. Vendittelli, “WMR Control Via Dynamic Feedback Linearization Design, Implementation, and Experimental Validation,” IEEE Transactions on Control Systems Technology, Vol. 10, No. 6, pp. 835-852, Nov. 2002. [13: Sundvall & Jensfelt 2006] P. Sundvall and P. Jensfelt, “Fault Detection for Mobile Robots Using Redundant Positioning Systems,” in Proceedings of IEEE International Conference on Robotics and Automation, Orlando, Florida, USA, pp. 3781-3786, May 15-19, 2006. [14: Nagatani et al. 2007] K. Nagatani, D. Endo and K. Yoshida, “Improvement of the Odometry Accuracy of a Crawler Vehicle with Consideration of Slippage,” in Proceedings of IEEE International Conference on Robotics and Automation, Roma, Italy, pp. 2752-2757, Apr. 10-14, 2007. [15: Manes et al. 2007] C. Manes, A. Martinelli, F. Martinelli and P. Palumbo, “Mobile Robot Localization based on a Polynomial Approach,” in Proceedings of IEEE International Conference on Robotics and Automation, Roma, Italy, pp. 3539-3544, Apr. 10-14, 2007. [16: Yap, Jr. & Shelton 2008] T. N. Yap, Jr. and C. R. Shelton, “Simultaneous Learning of Motion and Sensor Model Parameters for Mobile Robots,” in Proceedings of IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, pp. 2092-2097, May 19-23, 2008. [17: Yun et al. 2008] Y. Yun, B. Park and W. K. Chung, “Odometry Calibration using Home Positioning Function for Mobile Robot,” in Proceedings of IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, pp. 2116-2121, May 19-23, 2008. [18: Lee & Chung 2008] K. Lee and W. Chung, “Calibration of Kinematic Parameters of a Car-Like Mobile Robot to Improve Odometry Accuracy,” in Proceedings of IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, pp. 2546-2551, May 19-23, 2008. [19: Jungel 2007] M. Jungel, “Self-Localization based on a Short-Term Memory of Bearings and Odometry,” in Proceedings of IEEE International Conference on Intelligent Robots and Systems, San Diego, CA, USA, pp. 2494-2499, Oct. 29-Nov. 2, 2007. [20: Moreno et al. 2007] L. Moreno, S. Garrido, F. Martin and M. L. Munoz, “Differential Evolution Approach to the Grid-Based Localization and Mapping Problem,” in Proceedings of IEEE International Conference on Intelligent Robots and Systems, San Diego, CA, USA, pp. 3479-3484, Oct. 29-Nov. 2, 2007. [21: Lee et al. 2008] H. K. Lee, K. Choi, J. Park, Y. H. Kim and Seokwon Bang, “Improvement of Dead Reckoning Accuracy of a Mobile Robot by Slip Detection and Compensation using Multiple Model Approach,” in Proceedings of IEEE International Conference on Intelligent Robots and Systems, Acropolis Convention Center, Nice, France, pp. 1140-1147, Sep. 22-26, 2008. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42743 | - |
dc.description.abstract | 在機器人自動導航中,含測距器的輪型行動機器人是相常泛用的平台之一。常見的使用方式,是利用一些理論或演算法來給予輪型行動機器人速度的指令,並接受其感測器回傳的資訊,以做為下一刻速度控制的參考值。而實際操作上,關於輪型行動機器人的感測層及致動層,都存在一些偏移誤差,以導致實驗時出現非預計的結果。
現今有許多研究,利用機率的模型或是強健演算法,以減少機器人的非偏移誤差,或是增加機器人對誤差的容忍度。然而,卻很少針對消除平均值不為零之偏移誤差的研究。 本篇論文採用雙輪式的行動機器人做為理論平台,並探討和機器人姿態相關的偏移誤差,也就是橫向打滑和縱向打滑。而為了修正機器人的姿態資訊,必須採用由外在感測器所建構成的里程計來量測橫向及縱向打滑。因為此兩種打滑的誤差,都屬於機器人與外界環境交互作用而來的誤差,是無法被傳統的車輪里程計所測得。 隨後,「里程計整合」和「誤差消除架構」這兩個重要的概念將被深入探討。前者是取得所有里程計的資訊之後,參考所處的環境狀況以及各類不同原理的里程計在不同環境的優缺點後,決定出一個最值得信賴的機器人姿態。後者除了包含了前者的概念,使機器人姿態能更為準確外,還會修正傳統車輪里程計的參數,使其之後測量到的結果,能直接屏除兩種打滑造成的誤差。 | zh_TW |
dc.description.abstract | Wheeled Mobile Robots (WMRs) with range sensors are very popular platforms in robot navigation. Velocities of WMRs are controlled by some theories or algorithms, and sensor information of WMRs is received to decide new control commands. In real situation, some biased errors in actuating part and sensing part of WMRs will cause unexpected experimental results.
Many studies have been introduced to correct unbiased errors by probability model and some robust algorithms are mentioned to let WMRs tolerate errors. However, few researches are mentioned about the bias error correction. In this thesis, a two-wheeled mobile robot (TWMR) is the platform and the bias errors about postures of TWMR, i.e., effects of skidding and slipping, are classified and modeling. In order to correct the posture information, the data of range sensors are processed as localization methods to eliminate the external error which encoder odometry cannot detected. After that, two concepts about localization method fusion and error elimination architecture are mentioned. The former combines the results of localization methods and determines the best results based on the performance of localization methods in different scenarios. The latter contains the former and makes the posture information more reliable. Besides, it corrects the encoder odometry with the knowledge of skidding and slipping. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T01:21:38Z (GMT). No. of bitstreams: 1 ntu-98-R96921002-1.pdf: 3927043 bytes, checksum: ec51886a69a68afa4dff35b28099cb91 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | Contents
摘要 I ABSTRACT III CONTENTS V LIST OF FIGURES VII LIST OF TABLES XI CHAPTER 1 INTRODUCTION 1 1.1 Motivation 1 1.2 Problem Formulation and Contribution of the Thesis 2 1.3 Organization of the Thesis 4 CHAPTER 2 PRELIMINARY AND RELATED WORKS 7 2.1 Kinematic Model of Two-Wheeled Mobile Robot 8 2.2 Skidding and Slipping 9 2.2.1 Skidding 10 2.2.2 Slipping 11 2.2.3 Kinematic Model of Two-Wheeled Mobile Robot with Skidding and Slipping 12 2.3 Odometry 14 2.3.1 Encoder and Posture Translation 14 2.3.2 Error Analysis 16 2.4 Range Sensor 18 2.4.1 Ultrasonic Sensor 18 2.4.2 Laser Rangefinder 20 2.4.3 Iterative Closest Point (ICP) Algorithm and Geometric Posture Detecting Localization (GPDL) 21 2.5 Discussion 25 CHAPTER 3 ERROR MODELING OF SENSORY DATA 27 3.1 Error Analysis of a Wheeled Mobile Robot 29 3.2 Kinematic Model of TWMR with Slipping and Encoder Error 32 3.3 Heading Angle Shift When Skidding Effect Happens 35 3.4 Discussion 36 CHAPTER 4 ERROR ELIMINATION APPROACH 39 4.1 Dynamic Velocity Detecting Localization (DVDL) 40 4.2 DVDL with Receding Horizon 47 4.3 Localization Method Fusion 49 4.4 Conclusion 53 CHAPTER 5 EXPERIMENTAL RESULTS 55 5.1 Experimental Platform 56 5.2 Experimental Results 57 5.2.1 Encoder Odometry Results without Correction 57 5.2.2 DVDL at a Corridor 60 5.2.3 GPDL at a Corner 70 5.2.4 Correction by Localization Method Fusion 74 CHAPTER 6 CONCLUSION AND FUTURE WORK 81 6.1 Conclusion 81 6.2 Future Work 82 REFERENCES 85 | |
dc.language.iso | zh-TW | |
dc.title | 雙輪式行動機器人之測距與定位特性分析及誤差消除 | zh_TW |
dc.title | Range Sensing, Localization, and Error Elimination of Two-Wheeled Mobile Robots | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 簡忠漢,李後燦 | |
dc.subject.keyword | 行動機器人,誤差消除,里程計,橫向打滑與縱向打滑,感測器整合, | zh_TW |
dc.subject.keyword | Mobile robot,error elimination,odometry,localization,skidding and slipping,sensor fusion, | en |
dc.relation.page | 90 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-24 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
顯示於系所單位: | 電機工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 3.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。