Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42735
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳誠亮(Cheng-Liang Chen)
dc.contributor.authorYen-Pin Huangen
dc.contributor.author黃雁彬zh_TW
dc.date.accessioned2021-06-15T01:21:20Z-
dc.date.available2010-07-08
dc.date.copyright2009-07-30
dc.date.issued2009
dc.date.submitted2009-07-24
dc.identifier.citation[1] Cheng-Liang Chen, S.-H. Hsu . Fuzzy Logic and Fuzzy
Modeling. Chemical Engineering (Taiwan) 45, 58–73
(1998).
[2] K’uan T’u. The Overview of Cogeneration (Ch’uan Hua
Technology, 1995).
[3] Yi-Liang Chan. The Saving Energy Techonology of Boiler
(ITRI, 2008).
[4] Adam, E. J. and J. L. Marchetti. Dynamic simulation of
large boilers with natural recirculation. Computers &
Chemical Engineering 23, 1031–1040 (1999).
[5] °Astrぴom, K. J. and R. D. Bell. Drum-boiler dynamics.
Automatica 36, 363–378(2000).
[6] Kim, H. & Choi, S. A model on water level dynamics in
natural circulation drum type boilers. International
Communications in Heat andMass Transfer 32, 786–796
(2005).
[7] Emara-Shabaik, H. E., M. A. Habib, et al. Prediction
of risers’ tubes temperature in water tube boilers.
Applied Mathematical Modelling 33, 1323–1336 (2009).
[8] Bhambare, K. S., S. K. Mitra, et al. Modeling of a coal-fired natural circulation boiler. Journal of Energy Resources Technology-Transactions of the Asme 129, 159–
167 (2007).
[9] Zheng, K., J. Bentsman, et al. Full operating range robust hybrid control of a coalfired boiler/turbine unit. Journal of Dynamic Systems Measurement and Control-
Transactions of the Asme 130 (2008).
[10] Abdennour, A. An intelligent supervisory systemfor drum type boilers during severe disturbances. International Journal of Electrical Power & Energy Systems 22, 381–387 (2000).
[11] Tan,W., H. J.Marquez, et al. Analysis and control of a nonlinear boiler-turbine unit.Journal of Process Control 15, 883–891 (2005).
[12] Labibi, B., H. J. Marquez, et al. Decentralized robust PI controller design for an industrial boiler. Journal of Process Control 19, 216–230 (2009).
[13] Chang, N. B. and E. Davila. Municipal solid waste characterizations and management strategies for the Lower Rio Grande valley, Texas. Waste Management 28,776–794 (2008).
[14] Haith, D. A. Materials balance for municipal solid-waste management. Journal of Environmental Engineering-Asce 124, 67–75 (1998).
[15] Khan, M. Z. A. and Z. H. Abughararah. New Approach for Estimating Energy Content of Municipal Solid-Waste. Journal of Environmental Engineering-Asce 117, 376–380 (1991).
[16] Bruce G. Miller ,David A. Tillamn. Combustion Engineering Issues for Solid Fuel Systems (Academic Press, 2008).
[17] J. M. Smith, H. C. Van Ness, M. M. Abbott. Introduction to Chemical Engineering Thermodynamics (Mc Graw Hill, 2005).
[18] Stanley I. Sandler. Chemical and Engineering Thermodynamics (WILEY, 1999), 3rd edition.
[19] Kathiravale, S., M. N. M. Yunus, et al. Modeling the heating value of Municipal Solid Waste. Fuel 82, 1119–1125 (2003).
[20] Everett B. Woodruff ,Herbert B. Lammers ,Thomas F. Lammers. Steam Plant Operation (McGraw Hill, 2005), 8 edn.
[21] Richard J. Reed. North American Combustion Handbook (North American Mfg. Co., 1983), 2 edn.
[22] Ruth, L. A. Energy from municipal solid waste: A comparison with coal combustion technology. Progress in Energy and Combustion Science 24, 545–564 (1998).
[23] Channiwala, S. A. and P. P. Parikh. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81, 1051–1063 (2002).
[24] Carlos A. Smith, Armando Corripio. Principles and Practice of Automatic Process Control (WILEY, 2006), 3 edn.
[25] Bela G. Liptak. OPTIMIZATION OF INDUSTRIAL UNIT PROCESS (CRC Press, 1998), 2 edn.
[26] Harold L. Wade. Regulatory and Advanced Regulatory Control: System Development (Instrument Society of America, 1994).
[27] Claes J. Tullin, Shakti Goel, Atsushi Morihara, Adel F. Sarofim, and Jhos M. Beer. NO and N20 Formation for Coal Combustion in a Fluidized Bed: Effect of Carbon
Conversion and Bed Temperature. Energy & Fuels 7, 796–802 (1993).
[28] L. K. CHAN, A. F. SAROFIM, and J. M. BEER. Kinetics of the NO-Carbon Reaction at Fluidized Bed Combustor Conditions. COMBUSTION AND FLAME 52, 37–45 (1983).
[29] Fredrik Normann, Klas Andersson, Bo Leckner, Flip Johnsson. High-temperature reduction of nitrogen oxides in oxy-fuel combustion. Fuel 87, 3579–3585 (2008).
[30] Cheng-Liang Chen, Sheng-Nan Wang, Chung-Tyan Hsieh, and Feng-Yuan Chang. Theoretical Analysis of Crisp-Type Fuzzy Logic Controllers Using Various t-Norm Sum-Gravity Inference Methods. IEEE TRANSACTIONS ON FUZZY SYSTEMS 6,
122 –136 (1998).
[31] Flynn, M. E. and M. J. O’Malley. A drum boiler model for long term power system dynamic simulation. IEEE Transactions on Power Systems 14, 209–217 (1999).
[32] Po-Jan Lee, Hsien-Sheng Lin. Dynamic Simulation of oil-fired Boile. Master Thesis of NTUT (2008).
[33] Mahlia, T. M. I., M. Z. Abdulmuin, et al. Dynamic modeling and simulation of a palm wastes boiler. Renewable Energy 28, 1235–1256 (2003).
[34] C. Nels. ENERGY RECOVERY BY INCINERATION OF SOLID WASTES IN THE FEDERAL REPUBLIC OF GERMANY. Waste Management & Research 37–51 (1984).
[35] Wen Tan, Horacio J.Marquez, and Tongwen Chen. Multivariable Robust Controller Design for a Boiler System. IEEE Transactions on control system technology 10,
735–742 (2002).
[36] Babcock & Wilcox. Steam Its Generation and Use (Babcock & Wilcox Company, 1972).
[37] Blokh, A.G. Heat Transfer in Steam Boiler Furnaces (Springer-Verlag, 1987).
[38] Samuel G. Dukelow. Improving Boiler Efficiency (Instrument Society of America, 1985), 2 edn.
[39] G. F. Hewitt, G. L. Shires, T. R. Bott. Process Heat Transfer (CRC Press, Inc, 1994).
[40] James M. Pruett, Helmut Schneider. Essentials of SPC in the Process Industries (Instrument Society of America, 1993).
[41] Pen-Shan Tsao. The building and operation of incineration (Chan’s bookstore, 2001).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42735-
dc.description.abstract本研究係與新鼎公司共同致力於提升焚化廠操作績效的改進工作。應用模糊集合作焚化爐操作關鍵績效指標之評估,透過模擬操作人員評估績效指標流程的方式,將操作人員的思考評估經驗予以量化,發展出了一套新的評量方式。
而在焚化廠中最容易發生工安意外的莫過於高溫高壓環境之鍋爐了,因此本研究利用文獻中提及的鍋爐模型,並在能量輸入方面加以改進,以模擬焚化廠的燃料-廢棄物的組成及熱值不穩定情況。還有也對研發出的鍋爐系統進行了各種開環的擾動,得到的結果也都合乎常理。而且於加裝各種控制策略之後,針對各種不同的案例作討論,也得到了不錯的結果。最後再與焚化爐操作之乏晰化關鍵績效指標互相結合,期待所得結果可供作監控焚化廠操作績效的重要參考。
zh_TW
dc.description.abstractThis work aims to improve the estimation of key performance indices (KPIs) in incinerator with ACS Company. The fuzzy approach is adopted to estimate KPIs on the basis of expert experiences which are difficult to quantify. The information from work field is translated into membership function with fuzzy logic in order to reflect the operating performance.
The most dangerous place in an incinerator is the boiler at high pressure and temperature. A nonlinear dynamic model for natural circulation drum-boilers which can describe the complicated shrink and swell phenomena is used. In the aspect of energy input, the simulation of Municipal solid waste (MSW) with unsteady heating value and component is performed. On the other hand, open-loop test is also carried out. Various control strategies are realized in a simple way and combined with fuzzy KPIs. The results show that the newly proposed method is superior to the existing one in estimating KPIs. To sum up, monitoring the incinerator with fuzzy KPIs can well reflect the operating condition, and, therefore, every unit can operate safely.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:21:20Z (GMT). No. of bitstreams: 1
ntu-98-R96524062-1.pdf: 4092435 bytes, checksum: c7f438ebfcac7c9a4a87f0772a5e3d89 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 iii
摘要 v
Abstract vii
附圖目錄 xiii
附表目錄 xvii
1. 序論
1.1 前言 1
1.2 焚化廠簡介 2
1.3 鍋爐簡介 5
1.4 文獻回顧 7
1.5 研究動機與目的 8
1.6 組織章節 9
2. 關鍵績效指標簡介及改良
2.1 關鍵績效指標 11
2.2 模糊(Fuzzy)理論[1 22
2.3 模糊化關鍵績效指標 27
3. 鍋爐模型
3.1 模型建立之背景說明 33
3.2 模型假設 35
3.3 全系統質量與能量平衡 36
3.4 水牆管(Water-wall)中蒸氣品質估算與上升管(Riser)質量與
能量平衡 42
3.5 降流管_ (Downcomer)質量流率估算 44
3.6 液位估算 44
3.7 蒸氣表(Steam table) 45
3.8 能量輸入方式 48
3.9 模型簡化與整理 52
4. 模型之樣本模擬暨模擬結果分析與討論(一)
4.1 模擬軟體介紹 55
4.2. 開環 (Open-loop)模擬情況 55
4.2.1. 無任何擾動 55
4.2.2. 燃料增加 57
4.2.3. 蒸氣需求增加 58
4.2.4. 蒸氣需求減少 59
4.2.5. 飼水流量增加 60
5. 模型之樣本模擬暨模擬結果分析與討論(二)
5.1 鍋爐控制策略 63
5.1.1. 液位與飼水控制 63
5.1.2. 爐膛壓力控制 66
5.1.3. 自動燃燒控制 66
5.2. 閉環(Close-loop)模擬情況 70
5.2.1. 無任何擾動 71
5.2.2. 蒸氣需求增加 72
5.2.3. 蒸氣需求減少 77
5.2.4. 以垃圾為擾動的控制結果 77
5.3.鍋爐控制策略配上關鍵績效指標 79
5.3.1 LHV 79
5.3.2. 鍋爐出口O2 82
5.3.3. 蒸氣品質 83
6. 結論與未來展望
6.1. 結論 87
6.2. 未來展望 88
參考文獻 89
作者簡歷 93
dc.language.isozh-TW
dc.subject鍋爐控制zh_TW
dc.subject焚化廠zh_TW
dc.subject自然對流型鍋爐zh_TW
dc.subject關鍵績效指標zh_TW
dc.subjectIncineratoren
dc.subjectBoiler controlen
dc.subjectKey performance indexen
dc.subjectNatural circulation boileren
dc.title以模糊化關鍵績效指標應用於監控焚化廠之操作環境zh_TW
dc.titleMonitoring & Operation of MSW Incinerator by Fuzzy Key Performance Indicesen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃孝平,王子奇
dc.subject.keyword焚化廠,自然對流型鍋爐,關鍵績效指標,鍋爐控制,zh_TW
dc.subject.keywordIncinerator,Natural circulation boiler,Key performance index,Boiler control,en
dc.relation.page93
dc.rights.note有償授權
dc.date.accepted2009-07-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved