Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42727
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor童慶斌
dc.contributor.authorChueh-Hao Chouen
dc.contributor.author周珏澔zh_TW
dc.date.accessioned2021-06-15T01:21:04Z-
dc.date.available2010-07-30
dc.date.copyright2009-07-30
dc.date.issued2009
dc.date.submitted2009-07-24
dc.identifier.citationAmerican Public Health Association, Inc., 1985, “Standard methods for the examination of water and wastewater”, American Public Health Association (16th edition).
Azzellino, A., R., Salvetti, R., Vismara, and L., Bonomo, 2006, “Combined use of the EPA-QUAL2E simulation model and factor analysis to assess the source apportionment of point loads of nutrients to surface waters”, Science of the Total Environment, v 371, n 1-3, p 214-222.
Bard, Y., 1974, “Nonlinear parameter estimation”, Academics, New York.
Beck, M. B., 1987, “Water quality modeling: A review of the analysis of uncertainty”, Water Resources Research, v 23, n 8, p 1393-1442.
Brown, J. D., G. B. M., Heuvelink, and J. C., Refsgaard, 2005, “An integrated framework for assessing and recording uncertainties about environmental data”, Water Science and Technology, v 52, p 153-160.
Churchill, M. A., H. L., Elmore, and R. A., Buckingham, 1962, “The prediction of stream reaeration rates”, International Journal of air and water pollution, v 6, p 467-504.
Dubus, I. G., C. D., Brown, and S., Beulke, 2003, “Sources of uncertainty in pesticide fate modelling”, Science of the Total Environment, v 317, n 1-3, p 53-72.
Fair, G. M., E. W., Moore, and H. A., Thomas, 1941, “The natural purification of river Muds and pollutional sediments”, Sewage Works Journal.
Francos, A., F. J., Elorza, F., Bouraoui, G., Bidoglio, and L., Galbiati, 2003, “Sensitivity analysis of distributed environmental simulation models: understanding the model behavior in hydrological studies at the catchment scale”, Reliability Engineering and System Safety, v 79, n 2, p 205-218.
Gallagher, M., and J., Doherty, 2007, “Parameter estimation and uncertainty analysis for a watershed model”, Environmental Modelling and Software, v 22, n 7, p 1000-1020.
Holland, J. H., 1975, “Adaptation in Natural and Artificial Systems”, University of Michigan Press, Ann Arbor, MI.
Højberg, A. L., and J. C., Refsgaard, 2005, “Model uncertainty - Parameter uncertainty versus conceptual models”, Water Science and Techonology, v 52, n 6, p 177-186.
Jha, R., C. S. P., Ojha, and K. K. S., Bhatia, 2007, “Development of refined BOD and DO models for highly polluted Kali river in India”, Journal of Environmental Engineering, v 133, n 8, p 839-852.
Kirkpatrick, S., C. D., Gelatt, and M. P., Vecchi, 1983, “Optimization by simulated annealing”, Science, v 220, p 671-680.
Leopold, L. B., and T. Jr., Maddock, 1953, “The hydraulic geometry of stream channels and some physiographic implications”, U. S. Geological Survey Professional Paper 252, Washinton, D. C..
Lindenschmidt, K. E., K., Fleischbein, and M., Baborowski, 2007, “Structural uncertainty in a river water quality modelling system”, Ecological Modeling, v 204, n 3-4, p 289-300.
Malek, M., M., Guruswamy, and M., Pandya, 1989, “Serial and parallel simulated annealing and tabu search algorithms for the traveling salesman problem”, Annals of Operations Research, v 21, p 59-84.
McAvoy, D. C., P., Masscheleyn, C., Peng, S. W., Morrall, A. B., Casilla, J. M. U., Lim, and E. G., Gregorio, 2003, “Risk assessment approach for untreated wastewater using the QUAL2E water quality model”, Chemosphere, v 52, n 1, p 55-66.
Meadows, D. H., D. L. Meadows, J. Randers, and W. W. Behrens, 1972, “The Limits to Growth”, Universe Books, New York.
Metropolis, N., A. W., Rosenbluth, M. N., Rosenbluth, and A. H., Teller, 1953, “Equation of state calculations by fast computing machine”, The Journal of Chemical Physics, v 21, n 6, p 1087-1092.
Montesinos, P., E., Camacho, and S., Alvarez, 2001, “Seasonal furrow irrigation model with genetic algorithms (OPTIMEC)”, Agriculture Water Management, v 52, p 1-16.
Mun, S., and Y. H., Cho, 2009, “Noise barrier optimization using a simulated annealing algorithm”, Applied Acoustics, v 70, n 8, p 1094-1098.
Ning, S. K., N. B., Chang, L., Yang, H. W., Chen, and H. Y., Hsu, 2001, “Assessing pollution prevention program by QUAL2E simulation analysis for the Kao-Ping River Basin, Taiwan”, Journal of Environmental Management, v 61, p 61-76.
O’Connor, D. J., 1967, “The temporal and spatial distribution of dissolved oxygen in streams”, Water Resources Research, v 3, p 65-79.
Palmieri, V., and R. J., de Carvalho, 2006, “Qual2e model for the Corumbataí River”, Ecological Modelling, v 198, n 1-2, p 269-275.
Rachel Carson, 1962, “Silent Spring”, Houghton Mifflin, New York.
Radwan, M., P., Willems, and J., Berlamont, 2004, “Sensitivity and uncertainty analysis for river quality modelling”, Journal of Hydroinformatics, v 6, p 83-99.
Refsgaard, J. C., H. J., Henriksen, W. G., Harrar, H., Scholten, and A., Kassahun, 2005, “Quality assurance in model based water management - Review of existing practice and outline of new approaches”, Environmental Modelling, v 20, n 10, p 1201-1215.
Refsgaard, J. C., J. P., van der Sluijs, A. L., Højberg, and P. A., Vanrolleghem, 2007, “Uncertainty in the environmental modeling process - A framework and guidance”, Environmental Modelling and Software, v 22, n 11, p 1543-1556.
Shen, Z., Q., Hong, H., Yu, and R., Liu, 2008, “Parameter uncertainty analysis of the non-point source pollution in the Daning River watershed of the Three Gorges Reservoir Region, China”, Science of the Total Environment, v 405, n 1-3, p 195-205.
Somlyódy, L., 1997, “Use of optimization models in river basin water quality planning”, Water Science and Technology, v 36, n 5, p 209-218.
Streeter, H. W., and E. B., Phelps, 1925, “A study of pollution and natural purification of the Ohio”, Public Health Bulletin, n 146, p 1-75.
Sun, N. Z., 1994, “Inverse Problems in Groundwater Modeling”, Kluwer Academic Publishers.
Sun, N. Z., 2005, “Structure reduction and robust experimental design for distributed parameter identification”, Inverse Problem, v 21, n 2, p 739-758.
Sun, N. Z., and A. Y., Sun, 2002, “Parameter identification of environmental systems”, Environmental Fluid Mechanics: Theories and Applications, p 297-337.
Sun, N. Z., and W. W. G., Yeh, 2007, “Development of objective-oriented groundwater models: 1. Robust parameter identification”, Water Resources Research, v 43, n 2.
Sun, N. Z., S. L., Yang, and W. W. G., Yeh, 1998, “A proposed stepwise regression method for model structure identification”, Water Resources Research, v 34, n 10, p 2561-2572.
Theriault, E. J., 1927, “The dissolved oxygen demand of polluted waters.”, Public Health Bulletin No. 173, Public Health Service, Government Printing Office, Washington, D.C..
Thomann, R. V., 1963, “Mathematical model for dissolved oxygen”, Journal of the Sanitary Engineering Division, v 89, n SA5, p 1-30.
Thomann, R. V., and J. A., Muller, 1987, “Principles of surface water quality modeling and control”, Harper & Row Publishers, New York.
Thomas, H. A., 1948, “Pollution load capacity of streams”, Water and Sewage Works, v 95, n 11, p 2669-2689.
Tripp, D. R., and J. D., Niemann, 2008, “Evaluating the parameter identifiability and structural validity of a probability-distributed model for soil moisture”, Journal of Hydrology, v 353, n 1-2, p 93-108.
Tsai, F. T. C., N. Z., Sun, and W. W. G., Yeh, 2003, “Global-local optimization for parameter structure identification in three-dimensional groundwater modeling”, Water Resources Research, v 39, n 2, p SBH13-1-SBH13-14.
United Nations Environment Programme, 1972, ”Report of the United Nations Conference on the Human Environment”, Stockholm.
Vasan, A., and K. S., Raju, 2009, “Comparative analysis of Simulated Annealing, Simulated Quenching and Genetic Algorithms for optimal reservoir operation”, Applied Soft Computing Journal, v 9, n 1, p 274-281.
Walker, W. E., P., Harremoës, J., Rotmans, J. P., van der Sluijs, M. B. A., van Asselt, P., Janssen, and M. P., Krayer von Krauss, 2003, “Defining uncertainty: a conceptual basis for uncertainty management in model-based decision support”, Integrated Assessment, v 4, p 5-17.
Willems, P., and J., Berlamont, 2002, “Probabilistic emission and immission modeling: Case-study of the combined sewer – WWTP – Receiving water system at Dessel (Belgium)”, Water Science and Technology, v 45, n 3, p 117-124.
Wu, J., C., Zheng, C. C., Chien, and L., Zheng, 2006, “A comparative study of Monte Carlo simple genetic algorithm and noisy genetic algorithm for cost-effective sampling network design under uncertainty”, Advances in Water Resources, v 29, n 6, p 899-911.
Yeh, W. W. G., and Y. S., Yoon, 1981, “Aquifer parameter identification with optimum dimension in parameterization”, Water Resources Research, v 17, n 3, p 664-672.
Yulianti, J. S., B. J., Lence, G. V., Johnson, and A. K., Takyi, 1999, “Non-point source water quality management under input information uncertainty”, Journal of Environmental Management, v 55, p 199-217.
Zou, R., W. S., Lung, and J., Wu, 2009, “Multiple-pattern parameter identification and uncertainty analysis for water quality modeling”, Ecological Modelling, v 220, n 5, p 621-629.
行政院環境保護署,2000,「水中生化需氧量檢測方法」,環境檢驗所W510.54B。
亨利•N•波拉克,2005,「不確定的科學與不確定的世界」,上海世紀出版集團。
林亮君,2005,「不確定環境下的河川總量管制策略」,朝陽科技大學環境工程與管理系碩士論文。
周哲正,2000,「模擬退火演算法在地下水參數分區與抽水量率定之應用」,國立台灣大學農業工程學研究所碩士論文。
林嘉佑,2004,「應用模擬退火法於QUAL2E模式參數最佳化之研究」,國立台灣大學生物環境系統工程學研究所碩士論文。
陳信華,2001,「應用遺傳演算法與試驗設計原則於地下水觀測井網設計」,國立交通大學土木工程學系碩士論文。
陳起鳳,2008,「集水區總量管制之不確定性分析研究-定性與定量不確定性分析應用」,國立臺灣大學環境工程學研究所博士論文。
康晉展,1996,「新店溪水質模擬與不確定性分析」,國立台灣大學環境工程學研究所碩士論文。
陳韻如,2006,「永續性河川水質管理系統之發展」,國立台灣大學生物環境系統工程學研究所博士論文。
張秀琴,2004,「利用QUAL2E水質模式模擬淡水河系興建污水下水道之水質影響」,中原大學土木工程研究所碩士論文。
劉柏廷,2004,「牡丹水庫集水區非點源污染模擬及風險分析」,國立臺灣大學土木工程學研究所碩士論文。
譚仲哲,2008,「整合型優選演算法應用於分散式地下水模式之參數結構辨識」,國立台灣大學生物環境系統工程學系博士論文。
羅伯特•魯賓、雅各•衛斯柏格,2004,「不確定的世界」,時報出版。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42727-
dc.description.abstract不確定性的由來是因為人類對於眼前的事件所擁有的相關資訊不夠充分,因此對未知的結果感到迷惑,而不確定性的來源會根據各種領域的問題特性而有所差異,但共同點是不確定性的存在的確會對決策結果造成不可避免之影響。本研究之目的在探討模式應用於河川水質管理時所可能產生之不確定性來源與其影響機制,主要分成模擬歷程不確定性、模式參數不確定性、以及輸入資料不確定性三方面進行討論。為了在研究過程中有效結合利用之方法理論與工具,修正Streeter-Phelps方程式將會被用來進行水質模擬,並與QUAL2E模式之模擬結果進行比較,用以探討並量化不同水質模式模擬結果之差異性。模式參數方面則有別於過去不確定性分析,能在既定的模式應用精度下利用簡單的結構辨識出參數,該方法論的內容包括反向問題的分類、可辨識性之定義、最劣化參數之計算、廣義式反向問題之求解等,藉由上述理論能夠評估事前資訊是否充分,而共變異數分析則是用來協助了解參數結構複雜度、模式模擬誤差、以及參數不確定性之關係。過程中所有最佳化問題將會利用啟發式演算法進行求解,而上述方法將會藉由案例設計來驗證其可行性。zh_TW
dc.description.abstractThe origin of uncertainty comes from that people don’t have sufficient information and thus feel ambiguous about unknown future results. Sources of uncertainty would be different according to the characteristic of problems at different fields, but the common point is that the existence of uncertainty indeed would have inevitable impacts to the decision-making results. The purpose of this study is to discuss how uncertainty occurs and how uncertainty influences when water quality models are applied to river quality management. Three types of uncertainty are discussed, including process uncertainty, input data uncertainty, and parameter uncertainty. In order to effectively combine the methodologies and tools used in this study, the modified Streeter-Phelps equation would be used to simulate water quality, and the simulation results would be compared with those from QUAL2E for discussing and quantifying differences when different water quality models are used. Unlike traditional parameter uncertainty analysis, this study uses an approach that can identify parameter with a simplified structure and assure its accuracy requirement for predetermined model application. The content of this methodology includes the classification of inverse problems, the definition of identifiability, the calculation of the worst-case parameter, the solution of a generalized inverse problem and so forth. From the above theories, prior information could be assessed whether it is sufficient or not, and covariance analysis is used to help understand the relationship among parameter structure complexity, modeling error, and parameter uncertainty. In this study, all optimization problems are solved by heuristic algorithms. A case would be designed to confirm the above methodologies.en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:21:04Z (GMT). No. of bitstreams: 1
ntu-98-R96622006-1.pdf: 1199785 bytes, checksum: cffdf7b5f313b4908172cd70af760777 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VII
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 4
1.3 章節說明 5
第二章 文獻回顧 8
2.1 水質模式 8
2.2 不確定性分析 10
2.3 啟發式演算法 16
第三章 模式應用之不確定性探討 19
3.1 不確定性來源 19
3.2 河川水質污染問題探討 23
第四章 水質模式之建立與參數設定問題 26
4.1 水質模式之建立 26
4.1.1 水質模式之假設與理論 26
4.1.2 案例設計 30
4.1.3 S-P模式模擬結果與QUAL2E模式比較 35
4.2 水質模式參數設定問題 38
4.2.1 方程式參數解析解 38
4.2.2 反向問題 39
第五章 應用於水質模式參數結構辨識之方法 43
5.1 應用最劣化參數於廣義式反向問題求解 43
5.1.1 反向問題的分類與特性 43
5.1.2 結構誤差與最劣化參數 47
5.1.3 參數結構之可辨識性 50
5.1.4 參數結構辨識之觀測站網設計 52
5.1.5 廣義式反向問題的求解 54
5.2 共變異數分析 58
5.3 啟發式演算法之應用 61
5.3.1 遺傳演算法 62
5.3.2 模擬退火法 64
第六章 案例研究 67
6.1 問題設計 67
6.2 結合最劣化參數與廣義式反向問題求解 68
6-3 共變異數矩陣分析 81
第七章 結論與建議 87
7.1 結論 87
7.2 建議 88
參考文獻 91
dc.language.isozh-TW
dc.subject啟發式演算法zh_TW
dc.subject不確定性zh_TW
dc.subject最劣化參數zh_TW
dc.subject廣義式反向問題zh_TW
dc.subject共變異數分析zh_TW
dc.subjectGeneralized Inverse Problemen
dc.subjectUncertaintyen
dc.subjectHeuristic Algorithmen
dc.subjectCovariance Analysisen
dc.subjectthe Worst-Case Parameteren
dc.title結合最劣化參數、共變異數分析與啟發式演算法於參數結構辨識之研究zh_TW
dc.titleCombination of the Worst-Case Parameter, Covariance Analysis, and Heuristic Algorithms to Identify Parameter Structureen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳主惠,林裕彬,李明旭,陳彥璋
dc.subject.keyword不確定性,最劣化參數,廣義式反向問題,共變異數分析,啟發式演算法,zh_TW
dc.subject.keywordUncertainty,the Worst-Case Parameter,Generalized Inverse Problem,Covariance Analysis,Heuristic Algorithm,en
dc.relation.page98
dc.rights.note有償授權
dc.date.accepted2009-07-27
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
1.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved