Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42711
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李明學(Ming-Shyue Lee)
dc.contributor.authorChia-I Liaoen
dc.contributor.author廖家毅zh_TW
dc.date.accessioned2021-06-15T01:20:32Z-
dc.date.available2014-09-15
dc.date.copyright2009-09-15
dc.date.issued2009
dc.date.submitted2009-07-27
dc.identifier.citation1. De Marzo AM, Platz EA, Sutcliffe S, Xu J, Gronberg H, et al. (2007) Inflammation in prostate carcinogenesis. Nat Rev Cancer 7: 256-269.
2. 中華民國行政院衛生署 (2009) 死因統計結果分析.
3. Denmeade SR, Isaacs JT (2002) A history of prostate cancer treatment. Nat Rev Cancer 2: 389-396.
4. Feldman BJ, Feldman D (2001) The development of androgen-independent prostate cancer. Nat Rev Cancer 1: 34-45.
5. Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as 'Curecumin': from kitchen to clinic. Biochem Pharmacol 75: 787-809.
6. Uehara S, Yasuda I, Takeya K, Itokawa H (1992) [Terpenoids and curcuminoids of the rhizoma of Curcuma xanthorrhiza Roxb]. Yakugaku Zasshi 112: 817-823.
7. Kunnumakkara AB, Anand P, Aggarwal BB (2008) Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett 269: 199-225.
8. Shishodia S, Singh T, Chaturvedi MM (2007) Modulation of transcription factors by curcumin. Adv Exp Med Biol 595: 127-148.
9. Shen L, Ji HF (2007) Theoretical study on physicochemical properties of curcumin. Spectrochim Acta A Mol Biomol Spectrosc 67: 619-623.
10. Tonnesen HH, Karlsen J (1985) Studies on curcumin and curcuminoids. VI. Kinetics of curcumin degradation in aqueous solution. Z Lebensm Unters Forsch 180: 402-404.
11. Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, et al. (1997) Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal 15: 1867-1876.
12. Lin JK (2007) Molecular targets of curcumin. Adv Exp Med Biol 595: 227-243.
13. Anand P, Sundaram C, Jhurani S, Kunnumakkara AB, Aggarwal BB (2008) Curcumin and cancer: an 'old-age' disease with an 'age-old' solution. Cancer Lett 267: 133-164.
14. Brennan MJ (1975) Endocrinology in cancer of the breast. Status and prospects. Am J Clin Pathol 64: 797-809.
15. Lee JS, Surh YJ (2005) Nrf2 as a novel molecular target for chemoprevention. Cancer Lett 224: 171-184.
16. Surh YJ, Kundu JK, Na HK, Lee JS (2005) Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemicals. J Nutr 135: 2993S-3001S.
17. Pan MH, Lin-Shiau SY, Lin JK (2000) Comparative studies on the suppression of nitric oxide synthase by curcumin and its hydrogenated metabolites through down-regulation of IkappaB kinase and NFkappaB activation in macrophages. Biochem Pharmacol 60: 1665-1676.
18. Firozi PF, Aboobaker VS, Bhattacharya RK (1996) Action of curcumin on the cytochrome P450-system catalyzing the activation of aflatoxin B1. Chem Biol Interact 100: 41-51.
19. Sarkar FH, Li Y, Wang Z, Kong D (2008) NF-kappaB signaling pathway and its therapeutic implications in human diseases. Int Rev Immunol 27: 293-319.
20. Saukkonen K, Rintahaka J, Sivula A, Buskens CJ, Van Rees BP, et al. (2003) Cyclooxygenase-2 and gastric carcinogenesis. APMIS 111: 915-925.
21. Sinicrope FA, Gill S (2004) Role of cyclooxygenase-2 in colorectal cancer. Cancer Metastasis Rev 23: 63-75.
22. Fujimura T, Ohta T, Oyama K, Miyashita T, Miwa K (2006) Role of cyclooxygenase-2 in the carcinogenesis of gastrointestinal tract cancers: a review and report of personal experience. World J Gastroenterol 12: 1336-1345.
23. Goel A, Boland CR, Chauhan DP (2001) Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells. Cancer Lett 172: 111-118.
24. Atsumi T, Murakami Y, Shibuya K, Tonosaki K, Fujisawa S (2005) Induction of cytotoxicity and apoptosis and inhibition of cyclooxygenase-2 gene expression, by curcumin and its analog, alpha-diisoeugenol. Anticancer Res 25: 4029-4036.
25. Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, et al. (1980) Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284: 67-68.
26. John A, Tuszynski G (2001) The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathol Oncol Res 7: 14-23.
27. Lin LI, Ke YF, Ko YC, Lin JK (1998) Curcumin inhibits SK-Hep-1 hepatocellular carcinoma cell invasion in vitro and suppresses matrix metalloproteinase-9 secretion. Oncology 55: 349-353.
28. Yodkeeree S, Chaiwangyen W, Garbisa S, Limtrakul P (2009) Curcumin, demethoxycurcumin and bisdemethoxycurcumin differentially inhibit cancer cell invasion through the down-regulation of MMPs and uPA. J Nutr Biochem 20: 87-95.
29. Nakamura K, Yasunaga Y, Segawa T, Ko D, Moul JW, et al. (2002) Curcumin down-regulates AR gene expression and activation in prostate cancer cell lines. Int J Oncol 21: 825-830.
30. Chendil D, Ranga RS, Meigooni D, Sathishkumar S, Ahmed MM (2004) Curcumin confers radiosensitizing effect in prostate cancer cell line PC-3. Oncogene 23: 1599-1607.
31. Shankar S, Srivastava RK (2007) Involvement of Bcl-2 family members, phosphatidylinositol 3'-kinase/AKT and mitochondrial p53 in curcumin (diferulolylmethane)-induced apoptosis in prostate cancer. Int J Oncol 30: 905-918.
32. Hong JH, Ahn KS, Bae E, Jeon SS, Choi HY (2006) The effects of curcumin on the invasiveness of prostate cancer in vitro and in vivo. Prostate Cancer Prostatic Dis 9: 147-152.
33. Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF, et al. (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21: 2895-2900.
34. Sharma RA, McLelland HR, Hill KA, Ireson CR, Euden SA, et al. (2001) Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin Cancer Res 7: 1894-1900.
35. Sharma RA, Euden SA, Platton SL, Cooke DN, Shafayat A, et al. (2004) Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res 10: 6847-6854.
36. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4: 807-818.
37. Pan MH, Huang TM, Lin JK (1999) Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos 27: 486-494.
38. Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, et al. (1998) Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med 64: 353-356.
39. Shaikh J, Ankola DD, Beniwal V, Singh D, Kumar MN (2009) Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci 37: 223-230.
40. Shi YE, Torri J, Yieh L, Wellstein A, Lippman ME, et al. (1993) Identification and characterization of a novel matrix-degrading protease from hormone-dependent human breast cancer cells. Cancer Res 53: 1409-1415.
41. Lin CY, Anders J, Johnson M, Sang QA, Dickson RB (1999) Molecular cloning of cDNA for matriptase, a matrix-degrading serine protease with trypsin-like activity. J Biol Chem 274: 18231-18236.
42. Tanimoto H, Underwood LJ, Wang Y, Shigemasa K, Parmley TH, et al. (2001) Ovarian tumor cells express a transmembrane serine protease: a potential candidate for early diagnosis and therapeutic intervention. Tumour Biol 22: 104-114.
43. Kim MG, Chen C, Lyu MS, Cho EG, Park D, et al. (1999) Cloning and chromosomal mapping of a gene isolated from thymic stromal cells encoding a new mouse type II membrane serine protease, epithin, containing four LDL receptor modules and two CUB domains. Immunogenetics 49: 420-428.
44. Takeuchi T, Shuman MA, Craik CS (1999) Reverse biochemistry: use of macromolecular protease inhibitors to dissect complex biological processes and identify a membrane-type serine protease in epithelial cancer and normal tissue. Proc Natl Acad Sci U S A 96: 11054-11061.
45. Cao J, Cai X, Zheng L, Geng L, Shi Z, et al. (1997) Characterization of colorectal-cancer-related cDNA clones obtained by subtractive hybridization screening. J Cancer Res Clin Oncol 123: 447-451.
46. Lee MS (2006) Matrix-Degrading Type II Transmembrane Serine Protease Matriptase: Its Role in Cancer Development and Malignancy. J Cancer Mol 2: 183-190.
47. Benaud C, Dickson RB, Lin CY (2001) Regulation of the activity of matriptase on epithelial cell surfaces by a blood-derived factor. Eur J Biochem 268: 1439-1447.
48. Kiyomiya K, Lee MS, Tseng IC, Zuo H, Barndt RJ, et al. (2006) Matriptase activation and shedding with HAI-1 is induced by steroid sex hormones in human prostate cancer cells, but not in breast cancer cells. Am J Physiol Cell Physiol 291: C40-49.
49. Oberst MD, Singh B, Ozdemirli M, Dickson RB, Johnson MD, et al. (2003) Characterization of matriptase expression in normal human tissues. J Histochem Cytochem 51: 1017-1025.
50. List K, Szabo R, Molinolo A, Nielsen BS, Bugge TH (2006) Delineation of matriptase protein expression by enzymatic gene trapping suggests diverging roles in barrier function, hair formation, and squamous cell carcinogenesis. Am J Pathol 168: 1513-1525.
51. Lee SL, Dickson RB, Lin CY (2000) Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J Biol Chem 275: 36720-36725.
52. Satomi S, Yamasaki Y, Tsuzuki S, Hitomi Y, Iwanaga T, et al. (2001) A role for membrane-type serine protease (MT-SP1) in intestinal epithelial turnover. Biochem Biophys Res Commun 287: 995-1002.
53. Netzel-Arnett S, Currie BM, Szabo R, Lin CY, Chen LM, et al. (2006) Evidence for a matriptase-prostasin proteolytic cascade regulating terminal epidermal differentiation. J Biol Chem 281: 32941-32945.
54. List K, Szabo R, Wertz PW, Segre J, Haudenschild CC, et al. (2003) Loss of proteolytically processed filaggrin caused by epidermal deletion of Matriptase/MT-SP1. J Cell Biol 163: 901-910.
55. List K, Haudenschild CC, Szabo R, Chen W, Wahl SM, et al. (2002) Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis. Oncogene 21: 3765-3779.
56. List K, Szabo R, Molinolo A, Sriuranpong V, Redeye V, et al. (2005) Deregulated matriptase causes ras-independent multistage carcinogenesis and promotes ras-mediated malignant transformation. Genes Dev 19: 1934-1950.
57. Saleem M, Adhami VM, Zhong W, Longley BJ, Lin CY, et al. (2006) A novel biomarker for staging human prostate adenocarcinoma: overexpression of matriptase with concomitant loss of its inhibitor, hepatocyte growth factor activator inhibitor-1. Cancer Epidemiol Biomarkers Prev 15: 217-227.
58. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, et al. (2001) Delineation of prognostic biomarkers in prostate cancer. Nature 412: 822-826.
59. Riddick AC, Shukla CJ, Pennington CJ, Bass R, Nuttall RK, et al. (2005) Identification of degradome components associated with prostate cancer progression by expression analysis of human prostatic tissues. Br J Cancer 92: 2171-2180.
60. Galkin AV, Mullen L, Fox WD, Brown J, Duncan D, et al. (2004) CVS-3983, a selective matriptase inhibitor, suppresses the growth of androgen independent prostate tumor xenografts. Prostate 61: 228-235.
61. (2000) Maximum androgen blockade in advanced prostate cancer: an overview of the randomised trials. Prostate Cancer Trialists' Collaborative Group. Lancet 355: 1491-1498.
62. Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW (1979) Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol 17: 16-23.
63. Albini A, Iwamoto Y, Kleinman HK, Martin GR, Aaronson SA, et al. (1987) A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 47: 3239-3245.
64. Kuttan G, Kumar KB, Guruvayoorappan C, Kuttan R (2007) Antitumor, anti-invasion, and antimetastatic effects of curcumin. Adv Exp Med Biol 595: 173-184.
65. Bonfil RD, Chinni S, Fridman R, Kim HR, Cher ML (2007) Proteases, growth factors, chemokines, and the microenvironment in prostate cancer bone metastasis. Urol Oncol 25: 407-411.
66. Duffy MJ, McGowan PM, Gallagher WM (2008) Cancer invasion and metastasis: changing views. J Pathol 214: 283-293.
67. Holy J (2004) Curcumin inhibits cell motility and alters microfilament organization and function in prostate cancer cells. Cell Motil Cytoskeleton 58: 253-268.
68. Miyake H, Hara I, Yamanaka K, Gohji K, Arakawa S, et al. (1999) Elevation of serum levels of urokinase-type plasminogen activator and its receptor is associated with disease progression and prognosis in patients with prostate cancer. Prostate 39: 123-129.
69. Lokeshwar BL (1999) MMP inhibition in prostate cancer. Ann N Y Acad Sci 878: 271-289.
70. List K, Bugge TH, Szabo R (2006) Matriptase: potent proteolysis on the cell surface. Mol Med 12: 1-7.
71. Oberst MD, Chen LY, Kiyomiya K, Williams CA, Lee MS, et al. (2005) HAI-1 regulates activation and expression of matriptase, a membrane-bound serine protease. Am J Physiol Cell Physiol 289: C462-470.
72. Lin CY, Anders J, Johnson M, Dickson RB (1999) Purification and characterization of a complex containing matriptase and a Kunitz-type serine protease inhibitor from human milk. J Biol Chem 274: 18237-18242.
73. Takahashi S, Suzuki S, Inaguma S, Ikeda Y, Cho YM, et al. (2003) Down-regulated expression of prostasin in high-grade or hormone-refractory human prostate cancers. Prostate 54: 187-193.
74. Chen LM, Hodge GB, Guarda LA, Welch JL, Greenberg NM, et al. (2001) Down-regulation of prostasin serine protease: a potential invasion suppressor in prostate cancer. Prostate 48: 93-103.
75. Sporn MB, Suh N (2002) Chemoprevention: an essential approach to controlling cancer. Nat Rev Cancer 2: 537-543.
76. Dorai T, Cao YC, Dorai B, Buttyan R, Katz AE (2001) Therapeutic potential of curcumin in human prostate cancer. III. Curcumin inhibits proliferation, induces apoptosis, and inhibits angiogenesis of LNCaP prostate cancer cells in vivo. Prostate 47: 293-303.
77. Kasinski AL, Du Y, Thomas SL, Zhao J, Sun SY, et al. (2008) Inhibition of IkappaB kinase-nuclear factor-kappaB signaling pathway by 3,5-bis(2-flurobenzylidene)piperidin-4-one (EF24), a novel monoketone analog of curcumin. Mol Pharmacol 74: 654-661.
78. Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2: 91-100.
79. Galardy RE, Cassabonne ME, Giese C, Gilbert JH, Lapierre F, et al. (1994) Low molecular weight inhibitors in corneal ulceration. Ann N Y Acad Sci 732: 315-323.
80. Azuma H, Inamoto T, Sakamoto T, Kiyama S, Ubai T, et al. (2003) Gamma-aminobutyric acid as a promoting factor of cancer metastasis; induction of matrix metalloproteinase production is potentially its underlying mechanism. Cancer Res 63: 8090-8096.
81. Uhland K (2006) Matriptase and its putative role in cancer. Cell Mol Life Sci 63: 2968-2978.
82. Lin CY, Tseng IC, Chou FP, Su SF, Chen YW, et al. (2008) Zymogen activation, inhibition, and ectodomain shedding of matriptase. Front Biosci 13: 621-635.
83. Verghese GM, Gutknecht MF, Caughey GH (2006) Prostasin regulates epithelial monolayer function: cell-specific Gpld1-mediated secretion and functional role for GPI anchor. Am J Physiol Cell Physiol 291: C1258-1270.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42711-
dc.description.abstract在美國,攝護腺癌是男性常見癌症之一。在台灣,攝護腺癌的發生率有逐年上升現象,且在2008年行政院衛生署癌症發生統計中,排名第七。隨著攝護腺癌病期演進,癌細胞常惡性轉移至淋巴結或骨頭,造成癌症治療困難。近來研究指出鬱金粉中的主要成分薑黃素 (Curcumin),具有對抑制攝護腺癌病情演進的化學預防能力。然而薑黃素如何去抑制癌細胞侵襲的機轉目前尚未完全了解。從目前的研究中我們測試了薑黃素對人類攝護腺癌細胞株PC-3 的細胞毒性、增生、移動力,以及侵襲能力的影響。我們的結果顯示,薑黃素可以顯著地抑制細胞的增生、移動和侵襲能力。另外,薑黃素也參與了抑制第二型穿膜絲胺酸蛋白酶─間質蛋白酶 (Matriptase)的活化。在許多癌症中包括攝護腺癌,不正常活化的基質蛋白酶被認為參與促進癌症病情演進。為了更進一步探討薑黃素對於基質蛋白酶抑制的效果,從即時聚合酶連鎖反應和免疫點墨法分析的結果,得知薑黃素並不影響基質蛋白酶的基因表現量,但是會促進已活化的膜上基質蛋白酶脫落至膜外環境。此外,藉由評估基質蛋白酶的受質─Prostasin的量,發現薑黃素可以顯著地抑制基質蛋白酶的活性。綜合以上,從我們的結果得知薑黃素具有藉由壓抑基質蛋白酶活化及活性的效果,達到抑制攝護腺癌病情演進的潛力。zh_TW
dc.description.abstractProstate adenocarcinoma is one of the most common cancer among men in USA. In Taiwan, the incidence of prostate cancer is steadily rising and the seventh cancer lesion since 2008. During the prostate cancer progression, cancer cells often metastasize to lymph nodes or bone, leading to poor prognosis. Recent studies have shown that curcumin (diferuloylmethane), a major chemical component of turmeric, has been shown to possess a cancer chemopreventive potential against prostate cancer. However, the mechanism of curcumin that suppress the invasion of prostate cancer cells is not fully understood. In the current study, we examined the effect of curcumin on cell cytotoxitcy, proliferation, migration and invasion in a human prostate cancer cell line, PC-3. Our results showed that curcumin could significantly suppress prostate cancer cell proliferation, migration and invasion. Moreover, curcumin was also involved in inhibiting activation of matriptase, which is a type II transmembrane serine protease. Deregulated matriptase activation has been proposed to promote the progression of many cancers including prostate cancer. To further investigate the inhibitory effect of curcumin on matriptase activation, the results of real-time PCR and immunoblot analysis indicated that curcumin treatments did not affect gene expression of matriptase but did promote activated matriptase shedding into extracellular environment. In addition, curcumin showed a significant reduction in matriptase activity by evaluating the status of prostatsin, which is a known substrate of matriptase. In summary, our results suggested that curcumin potentiates an anti-progression effects on prostate cancer at least in part by suppressing matriptase function.en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:20:32Z (GMT). No. of bitstreams: 1
ntu-98-R96442026-1.pdf: 2271783 bytes, checksum: 7406a9caadfa9ba1055d9fdf66f74b90 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
Chapter 1. Introduction 1
Prostate cancer 2
The properties of curcumin 2
Anti-cancer potential of curcumin 4
Anti-prostate cancer of curcumin 6
Clinical studies of curcumin 6
Discovery of matriptase 7
Protein structure of matriptase 7
The processes of matriptase activation 8
Physiological functions of matriptase 10
Role of matriptase in prostate cancer progression 11
The purpose for this study 11
Chapter 2. Materials and Methods 13
Materials 14
Methods 17
Chapter 3. Results 24
The cytotoxicity of curcumin in PC-3 cells. 25
Effect of curcumin on PC-3 cell proliferation and viability. 25
Curcumin inhibited the motility and invasion of PC-3 cells. 26
Curcumin decreased PC-3 cell invasion potentially via inhibiting serine protease(s). 27
Curcumin reduced matriptase activation in PC-3 cells. 28
Inhibitory effect of curcumin was verified by the reduced activation of matriptase after acute treatment. 28
Curcumin decreased the protein level of matriptase but not its gene expression. 29
Curcumin promoted matriptase shedding in a dose-dependent manner in PC-3 cells. 30
Effect of curcumin on matriptase activity and prostasin zymogen accumulation in PC-3 cells. 30
Matriptase activation was inhibited by curcumin in various prostate cancer cell lines. 31
Chapter 4. Discussion 33
Chapter 5. Figures 39
Figure 1. Effect of curcumin on the cytotoxicity of PC-3 cells. 40
Figure 2. Effect of curcumin on PC-3 cell proliferation and viability. 41
Figure 4. Effect of curcumin on PC-3 cell invasion. 43
Figure 5. Curcumin possibly involved in serine protease activity inhibition in PC-3 cells. 44
Figure 6. Effect of curcumin on matriptase activation in PC-3 cells in long-term and short-term exposures. 45
Figure 7. Time kinetic effect of curcumin on matriptase activation of PC-3 cells. 46
Figure 8. Time-dependent effect of curcumin on matriptase activation after 1-hour acute exposure in PC-3 cells. 48
Figure 9. Effect of curcumin on the protein level of matriptase in PC-3 cells. 49
Figure 10. Effect of curcumin on matriptase gene expression in PC-3 cells. 50
Figure 11. Effect of curcumin on matriptase shedding in PC-3 cells. 52
Figure 12. Effect of curcumin on matriptase activation and prostasin in PC-3 cells. 53
Figure 13. Effect of curcumin on matriptase activation in various prostate cancer cell lines. 54
Chapter 6. References 55
dc.language.isoen
dc.title探討薑黃素在攝護腺癌細胞移動、侵襲及間質蛋白酶活化之抑制效用zh_TW
dc.titleInhibitory effect of curcumin on prostate cancer cell migration, invasion and matriptase activationen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林仁混(Jen-Kun Lin),李明亭(Ming-Ting Lee),張智芬(Zee-Fen Chang),楊家榮(Chia-Ron Yang)
dc.subject.keyword攝護腺癌,薑黃素,基質蛋白&#37238,細胞移動,細胞侵襲,zh_TW
dc.subject.keywordprostate cancer,curcumin,matriptase,cell motility,cell invasion,en
dc.relation.page63
dc.rights.note有償授權
dc.date.accepted2009-07-27
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
2.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved