Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42702
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王惠鈞(Andrew H.-J. Wang)
dc.contributor.authorChien-Yu Chouen
dc.contributor.author周倩玉zh_TW
dc.date.accessioned2021-06-15T01:20:13Z-
dc.date.available2011-07-29
dc.date.copyright2009-07-29
dc.date.issued2009
dc.date.submitted2009-07-26
dc.identifier.citation1. Gantt, R., Millner, S., and Binkley, S. B. (1964) Inhibition of N-Acetylneuraminic Acid Aldolase by 3-Fluorosialic Acid, Biochemistry 3, 1952-1960.
2. Sears, P., and Wong, C. H. (1999) Carbohydrate mimetics: A new strategy for tackling the problem of carbohydrate-mediated biological recognition, Angew. Chem. Int. Ed. 38, 2301-2324.
3. Barnett, J. E., Corina, D. L., and Rasool, G. (1971) Studies on N-acetylneuraminic acid aldolase, Biochem. J. 125, 275-284.
4. Varki, A. (1992) Diversity in the Sialic Acids, Glycobiology 2, 25-40.
5. Kelm, S., and Schauer, R. (1997) Sialic acids in molecular and cellular interactions, Int. Rev. Cytol. 175, 137-240.
6. Koketsu, M., Nitoda, T., Sugino, H., Juneja, L. R., Kim, M., Yamamoto, T., Abe, N., Kajimoto, T., and Wong, C. H. (1997) Synthesis of a novel sialic acid derivative
(sialylphospholipid) as an antirotaviral agent, J. Med. Chem. 40, 3332-3335.
7. York W. S., Darvill A. G., McNeil M., Albersheim P. (1985) Desoxy-D-manno-2-octulosonic acid (KDO) is a component of rhamnogalacturonan II, a pectic
polysaccharide in the primary cell walls of plants, Carbohydr. Res. 138, 109-126.
8. Ray, P. H. (1982) 3-Deoxy-D-Manno-Octulosonate-8-Phosphate (Kdo-8-P) Synthase, Methods Enzymol. 83, 525-530.
9. Rietschel E.T., Brade H., Brade L., Kaca W., Kawahara K., Lindner B., Lüderitz T., Tomita T., Schade U., Seydel U. (1985) Newer aspects of the chemical structure
and biological activity of bacterial endotoxins, Prog. Clin. Biol. Res. 189, 31-51.
10. Schumacher, T. N. M., Mayr, L. M., Minor, D. L., Milhollen, M. A., Burgess, M. W., and Kim, P. S. (1996) Identification of D-peptide ligands through mirror-image
phage display, Science 271, 1854-1857.
11. Kozlov, I. A., Mao, S. L., Xu, Y., Huang, X. F., Lee, L., Sears, P. S., Gao, C. S., Coyle, A. R., Janda, K. D., and Wong, C. H. (2001) Synthesis of solid-supported
mirror-image sugars: A novel method for selecting receptors for cellular-surface carbohydrates, Chembiochem 2, 741-746.
12. Wada, M., Hsu, C. C., Franke, D., Mitchell, M., Heine, A., Wilson, I., and Wong, C. H. (2003) Directed evolution of N-acetylneuraminic acid aldolase to catalyze
enantiomeric aldol reactions, Bioorg. Med. Chem. 11, 2091-2098.
13. Joerger, A. C., Mayer, S., and Fersht, A. R. (2003) Mimicking natural evolution in vitro: an N-acetylneuraminate lyase mutant with an increased dihydrodipicolinate synthase activity, Proc. Natl. Acad. Sci. U S A 100, 5694-5699.
14. Wymer, N., Buchanan, L. V., Henderson, D., Mehta, N., Botting, C. H., Pocivavsek, L., Fierke, C. A., Toone, E. J., and Naismith, J. H. (2001) Directed evolution of a
new catalytic site in 2-keto-3-deoxy-6-phosphogluconate aldolase from Escherichia
coli, Structure 9, 1-9.
15. Izard, T., Lawrence, M. C., Malby, R. L., Lilley, G. G., and Colman, P. M. (1994) The three-dimensional structure of N-acetylneuraminate lyase from Escherichia coli, Structure 2, 361-369.
16. Hsu, C. C., Hong, Z., Wada, M., Franke, D., and Wong, C. H. (2005) Directed evolution of D-sialic acid aldolase to L-3-deoxy-manno-2-octulosonic acid (L-KDO) aldolase, Proc. Natl. Acad. Sci. U S A 102, 9122-9126.
17. DeVries, G. H., and Binkley, S. B. (1972) N-acetylneuraminic acid aldolase of Clostridium perfringens: purification, properties and mechanism of action, Arch.
Biochem. Biophys. 151, 234-242.
18. Suttajit, M., Urban, C., and McLean, R. L. (1971) N-acetylneuraminic acid analogues. II. The action of N-acetylneuraminic acid aldolase on 8-carbon and
7-carbon analogues, J. Biol. Chem. 246, 810-814.
19. Kolisis, F. N., and Hervagault, J. F. (1986) Theoretical and experimental study on the competition of NANA-aldolase and cytidine-5'-monophosphosialate-synthase
for their common substrate N-acetylneuraminic acid, Biochem. Int. 13, 493-500.
20. Mahmoudian, M., Noble, D., Drake, C. S., Middleton, R. F., Montgomery, D. S., Piercey, J. E., Ramlakhan, D., Todd, M., and Dawson, M. J. (1997) An efficient
process for production of N-acetylneuraminic acid using N-acetylneuraminic acid aldolase, Enzyme Microb. Technol. 20, 393-400.
21. Maru, I., Ohnishi, J., Ohta, Y., and Tsukada, Y. (1998) Simple and large-scale production of N-acetylneuraminic acid from N-acetyl-D-glucosamine and pyruvate using N-acyl-D-glucosamine 2-epimerase and N-acetylneuraminate lyase, Carbohydr. Res. 306, 575-578.
22. Kiefelt, M. J., Wilson, J. C., Bennett, S., Gredley, M., and von Itzstein, M. (2000) Synthesis and evaluation of C-9 modified N-acetylneuraminic acid derivatives as
substrates for N-acetylneuraminic acid aldolase, Bioorg. Med. Chem. 8, 657-664.
23. Barbosa, J. A., Smith, B. J., DeGori, R., Ooi, H. C., Marcuccio, S. M., Campi, E. M., Jackson, W. R., Brossmer, R., Sommer, M., and Lawrence, M. C. (2000) Active site
modulation in the N-acetylneuraminate lyase sub-family as revealed by the structure of the inhibitor-complexed Haemophilus influenzae enzyme, J. Mol. Biol. 303,
405-421.
24. Lawrence, M. C., Barbosa, J. A., Smith, B. J., Hall, N. E., Pilling, P. A., Ooi, H. C., and Marcuccio, S. M. (1997) Structure and mechanism of a sub-family of enzymes
related to N-acetylneuraminate lyase, J. Mol. Biol. 266, 381-399.
25. Smith, B. J., Lawrence, M. C., and Barbosa, J. A. (1999) Substrate-Assisted Catalysis in Sialic Acid Aldolase, J. Org. Chem. 64, 945-949.
26. Kruger, D., Schauer, R., and Traving, C. (2001) Characterization and mutagenesis of the recombinant N-acetylneuraminate lyase from Clostridium perfringens:
insights into the reaction mechanism, Eur. J. Biochem. 268, 3831-3839.
27. Otwinowski, Z., and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode, Methods Enzymol. 276, 307-326.
28. Jones, T. A., Zou, J. Y., Cowan, S. W., and Kjeldgaard, M. (1991) Improved Methods for Building Protein Models in Electron-Density Maps and the Location of
Errors in These Models, Acta Crystallogr. A 47, 110-119.
29. McRee, D. E. (1999) XtalView Xfit - A versatile program for manipulating atomic coordinates and electron density, J. Struct. Biol. 125, 156-165.
30. Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T., and Warren, G. L. (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination, Acta Crystallogr. D Biol. Crystallogr. 54, 905-921.
31. Laskowski, R. A., Macarthur, M. W., Moss, D. S., and Thornton, J. M. (1993) Procheck - a Program to Check the Stereochemical Quality of Protein Structures, J. Appl. Crystallogr. 26, 283-291.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42702-
dc.description.abstract藉由噬菌體呈現技術,與L 型糖分子專一性結合的L 型胜肽可被篩選出,其對映的D 型胜肽可利用化學方法合成,並用於標靶細胞表面的天然D 型糖分子。這些D 型胜肽或許可發展為許多疾病的候選新藥,而此策略需要非天然的鏡像L 型糖分子。近期的定向演化研究顯示,大腸桿菌D 型唾液酸醛縮酶可藉由八個點突變,而轉變成L 型KDO 醛縮酶,此酵素比D 型唾液酸醛縮酶更容易選擇L 型糖分子做為基質。在此論文研究中,為了探討基質鏡像選擇性的基礎機制,L 型KDO 醛縮酶和D 型唾液酸醛縮酶的晶體結構已解出,其解析度分別為1.98-Å 和1.47-Å。這兩種酵素皆為四聚體分子,並且每一個單體含有一個(α/β)8 桶狀結構。由結構訊息可見所有點突變皆距離催化中心很遠,除了V251I,其位置很靠近桶狀結構之開口,並且亦靠近可形成Schiff 氏鹼的離胺酸。第251 號的纈胺酸突變成
異白胺酸會造成糖分子鍵結凹槽變狹窄,並且產生更多空間障礙。除此之外,L 型KDO 醛縮酶-羥基丙酮酸(產物類似物)複合物的晶體結構也已解出,此結構有益於更精確地將基質L 型KDO 和D 型唾液酸擺放於L 型KDO 醛縮酶的催化中心。很有趣地,只有L 型KDO 才可以符合此酵素之糖分子鍵結凹槽的狹窄空間。此外,根據已解出的D 型唾液酸醛縮酶-L 型阿拉伯糖複合物之晶體結構,推測在催化L 型KDO 分解的過程中,D 型唾液酸醛縮酶之寬廣的糖分子鍵結凹槽可能會讓產物L 型阿拉伯糖滑落至鄰近的洞穴中,而導致催化活性降低。進一步的酵素活性與結構分析可見,位在第251 號的纈胺酸之單一點突變即足以影響酵素選擇L 型糖分子,此現象和之前結構所觀察到的結果一致。基於上述的實驗結果,可證實KDO 醛縮酶和唾液酸醛縮酶的基質選擇性可受到糖分子鍵結凹槽的大小不同而改變。
zh_TW
dc.description.abstractL-form peptides that bind specifically to L-sugars can be prepared by phage display. The corresponding D-form peptides which can be synthesized chemically can then be used to target natural D-form sugars on cell-surface. Such D-form peptides may be developed as drug candidates for various diseases. The strategy requires the unnatural, enantiomeric L-sugars. In a recent directed-evolution study, Escherichia coli D-sialic acid aldolase was converted by introducing eight point mutations into
L-3-deoxy-manno-2-octulosonic acid (L-KDO) aldolase which showed a preferred enantioselectivity toward L-sugars. In this study, the crystal structures of L-KDO aldolase at 1.98-Å resolution and D-sialic acid aldolase at 1.47-Å resolution have been determined in order to investigate the underlying molecular basis of substrate
enantioselectivity. Both enzymes are tetramers with each subunit consisting of a (α/β)8 barrel. The structural information indicated that all mutations are away from the
catalytic center, except for V251I which is near the opening of the (α/β)8-barrel and is proximal to the Schiff base-forming Lys165. The V→I substitution causes the
sugar-binding pocket to become relatively narrow, thus creating a large steric hindrance for the sugar binding. The crystal structure of L-KDO aldolase in complex with
hydroxypyruvate (a product analogue) has also been solved to allow the precise docking of the substrates L-KDO and D-sialic acid into the active site. It is interesting that only L-KDO can be properly accommodated in the narrow binding pocket. Moreover, the crystal structure of D-sialic acid aldolase in complex with L-arabinose was determined, which points out that the wide sugar-binding pocket may allow the product L-arabinose to slip into the neighboring cavity during catalysis of the L-KDO cleavage, resulting in a decreased cleavage activity. Further enzymatic and structural analyses indicated that single mutations on V251 are sufficient to invert the enantioselectivity toward L-sugar, in good agreement with the structural observations described above. Based on these
results, we propose that the substrate specificity of sialic acid / KDO aldolase can be regulated by changing the size of sugar-binding pocket.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:20:13Z (GMT). No. of bitstreams: 1
ntu-98-R96b46007-1.pdf: 2791650 bytes, checksum: 82ce8774c188c68f29577aef2de08eaa (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsList of Figures..........................................i
List of Tables.........................................iii
中文摘要................................................iv
Abstract.................................................v
Introduction.............................................1
Materials and Methods....................................7
2.1 Protein expression and purification..................8
2.11 N-acetyl-D-neuraminic acid aldolase (wild-type D-sialic acid aldolase)....................................8
2.12 L-3-deoxy-manno-2-octulosonic acid (L-KDO) aldolase.9
2.13 The mutants of D-sialic acid aldolase...............9
2.2 Crystallization, data collection and structure determination............................................9
2.3 Molecular Modeling and Substrate Docking............11
2.4 Enzyme activity assay...............................12
Results and Discussion..................................13
3.1 Protein expression and purification.................14
3.2 Overall structures of D-sialic acid aldolase and L-KDO aldolase................................................15
3.3 The catalytic centers of D-sialic acid aldolase and L-KDO aldolase............................................16
3.4 The sugar-binding pockets for D-sialic acid aldolase and L-KDO aldolase......................................18
3.5 Crystal structure of L-KDO aldolase in complex with a product analogue hydroxypyruvate........................19
3.6 Docking of the substrates into the active site of D-sialic acid aldolase and L-KDO aldolase.................20
3.7 Crystal structure of D-sialic acid aldolase in complex with the product L-arabinose............................23
3.8 Mutations on Val251 are sufficient to invert the enantioselectivity toward L-sugar.......................24
Conclusion..............................................28
References..............................................31
Figures.................................................36
Tables..................................................57
Poster..................................................63
dc.language.isoen
dc.subject定向演化zh_TW
dc.subjectL-KDO 醛縮&#37238zh_TW
dc.subject基質鏡像選擇性zh_TW
dc.subjectSubstrate enantioselectivityen
dc.subjectDirected evolutionen
dc.subjectL-3-deoxy-manno-2-octulosonic acid (L-KDO) aldolaseen
dc.titleL-KDO 醛縮酶之晶體結構與基質鏡像選擇性zh_TW
dc.titleCrystal Structure and Substrate Enantioselectivity of
L-3-deoxy-manno-2-octulosonic acid (L-KDO) aldolase
en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林俊宏(Chun-Hung Lin),馬徹(Che Ma)
dc.subject.keywordL-KDO 醛縮&#37238,基質鏡像選擇性,定向演化,zh_TW
dc.subject.keywordL-3-deoxy-manno-2-octulosonic acid (L-KDO) aldolase,Substrate enantioselectivity,Directed evolution,en
dc.relation.page63
dc.rights.note有償授權
dc.date.accepted2009-07-27
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved