Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42680
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張明富
dc.contributor.authorTzu-Min Hungen
dc.contributor.author洪子茗zh_TW
dc.date.accessioned2021-06-15T01:19:34Z-
dc.date.available2009-09-15
dc.date.copyright2009-09-15
dc.date.issued2009
dc.date.submitted2009-07-27
dc.identifier.citation1. 宋瑞樓、陳定信、廖運範。2006。肝炎、肝硬化與肝癌。293-319.
2. Liaw YF, Tai DI, Chu CM, Chen TJ. The development of cirrhosis in patients with chronic type B hepatitis : a prospective study. Hepatology 1988;8:493-496.
3. Kao JH, Tsai SL, Chen PJ, Yang PM, Sheu JC, Lai MY, et al. A clinicopathologic study of chronic non-A, non-B (type C) hepatitis in Taiwan: comparison between posttransfusion and sporadic patients. J Hepatol 1994;21:244-249.
4. Chiesa R, Donato F, Tagger A, Favret M, Ribero ML, Nardi G, et al. Etiology of hepatocellular carcinoma in Italian patients with and without cirrhosis. Cancer Epidemiol Biomarkers Prev 2000;9:213-216.
5. Poynard T, Bedossa P, Opolon P. Natural history of liver fibrosis progression in patients with chronic hepatitis C. Lancet 1997;349:825-832.
6. Poynard T, Ratziu V, Charlotte F, Goodman Z, Mchutchison J, Albrecht J. Rates and risk factors of liver fibrosis progression in patients with chronic hepatitis C. J Hepatol 2001;34:730-739.
7. Ghany MG, Kleiner DE, Alter HJ, Doo E, Khokhar F, Park Y, et al. Progression of fibrosis in early stages of chronic hepatitis C. Hepatology 2000;32:496A.
8. Thomas DL. Hepatitis C and human immunodeficiency virus infection. Hepatology 2002;36:S201-S209.
9. Gaeta GB, Stornaiuolo G, Precone DF, Lobello S, Chiaramonte M, Stroffolini T, et al. Epidemiological and clinical burden of chronic hepatitis B virus/hepatitis C virus infection. A multicenter Italian study. J. Hepatol 2003;39:1036-1041.
10. Seeff LB, Buskell-Bales Z, Wright EC, Durako SJ, Alter HJ, Iber FL, et al. Long-term mortality after transfusion associated non-A non-B hepatitis. The National Heart, Lung and Blood Institute Study Group. N Engl J Med 1992;327:1906-1911.
11. Alter HJ, Seeff LB. Recovery, persistence, and sequelae in hepatitis C virus infection: a perspective on long-term outcome. Semin Liver Dis 2000;20:17-35.
12. Tong MJ, El-Farra NS, Reijes AR, Co RL. Clinical outcomes after transfusion- associated hepatitis C. N Engl J Med 1995;332:1463-1466.
13. Kenny-Walsh E. Clinical outcomes after hepatitis C infection from contaminated anti-D immune globulin. N Engl J Med 1999;340:1228-1233.
14. Wiese M, Berr F, Lafrenz M, Porst H, Oesen U. Low frequency of cirrhosis in a hepatitis C (genotype 1b) single-source outbreak in Germany: a 20-year multicenter study. Hepatology 2000;32:91-96.
15. Minton EJ, Smillie D, Neal KR, Irving WL, Underwood JC, James V. Association between MHC class II alleles and clearance of circulating hepatitis C virus. Members of the Trent Hepatitis C Virus Study Group. J Infect Dis 1998;178:39-44.
16. Powell EE, Edwards-Smith CJ, Hay JL, Clouston AD, Crawford DH, Shorthouse C, et al. Host genetic factors influence disease progression in chronic hepatitis C. Hepatology 2000;31:823-833.
17. Wiley TE, McCarthy M, Breidi L, Mc Carthy M, Layden TJ. Impact of alcohol on the histological and clinical progression of hepatitis C infection. Hepatology 1998;28:805-809.
18. Pessione F, Degos F, Marcellin P, Duchatelle V, Njapoum C, Martinot-Peignoux M, et al. Effect of alcohol consumption on serum hepaitis C virus RNA and histological lesions in chronic hepatitis C. Hepatology 1998;27:1717-1722.
19. Hourigan LF, Macdonald GA, Purdie D, Whitehall VH, Shorthouse C, Clouston A, et al. Fibrosis in chronic hepatitis C correlates significantly with body mass index and steatosis. Hepatology 1999;29:1215-1219.
20. Ong JP, Younossi ZM, Speer C, Olano A, Gramlich T, Boparai N. Chronic hepatitis C and superimposed non-alcoholic fatty liver disease. Liver 2001;21:266-271.
21. Bissell DM. Hepatic fibrosis as wound repair: A progress report. J Gastroenterol 1998;33:295-302.
22. Friedman SL, Bansal MB. Reversal of hepatic fibrosis- fact or fantasy? Hepatology 2006;43:S82-88.
23. The METAVIR Cooperative Group. Inter- and intra-observer variation in the assessment of liver biopsy of chronic hepatitis C. Hepatology 1994;20:15–20.
24. Bedossa P, Poynard T, for the METAVIR Cooperative Study Group. An algorithm for the grading of activity in chronic hepatitis C. Hepatology 1996;24:289–93.
25. Afford SC, Lalor PF. 2006. Cell and molecular mechanisms in the development of chronic liver inflammation. In Liver Disease: Biochemical Mechanisms and New Therapeutic Insights, ed. Shakir Ali, Scott L Friedman and Derek A. Mann, pp143-158. Enfield, NH : Science Publishers.
26. Bataller R, Brenner DA. Liver fibrosis. J Clin Invest 2005;115:209-218.
27. Grant AJ, Lalor PF, Hubscher SG, Briskin M, Adams DH. MAdCAM-1 expressed in chronic inflammatory liver disease supports mucosal lymphocyte adhesion to hepatic endothelium (MAdCAM-1 in chronic inflammatory liver disease) Hepatology 2001;33:1065-1072.
28. Lalor PF, Shields P, Grant AJ Adams DH. Recruitment of lymphocyte to the human liver. Immun Cell Biol 2002;80:52-64.
29. Zamara E, Novo E, Parola M. 2006. Oxidative stress and liver fibrosis: from liver injury to modulation of cell signaling and response. In Liver Disease: Biochemical Mechanisms and New Therapeutic Insights, ed. Shakir Ali, Scott L Friedman and Derek A. Mann, pp93-114. Enfield, NH : Science Publishers.
30. Arteel GE. Oxidant and antioxidants in alcohol-induced liver disease. Gastroenterology 2003;124:778-790.
31. Loguercio C, Federico A. Oxidative stress in viral and alcoholis hepatitis. Free Radic Biol Med 2003;34:1-10.
32. Nieto N, Cederbaum AI. Increased Sp1-dependent transactivation of the LAMγ promoter in hepatic stellate cells co-cultured with HepG2 cells overexpressing cytochrome P450 2E1. J Biol Chem 2003;278:15360-15372.
33. Nieto N, Friedman SL, Cederbaum AI. Cytochrome P4502E1-derived reactive oxygen species mediate paracrine stimulation of collagen I protein synthesis by hepatic stellate cells. J Biol Chem 2002;277:9853-9864.
34. Novo E, Marra F, Zamara E, Valfre Di Bonzo L, Caligiuri A, Cannito S, et al. Dose dependent and divergent effects of superoxide anion on cell death, proliferation, and migration of activated human hepatic stellate cells. Gut 2006;55:90–97.
35. Canbay A, Taimr P, Torok N, Higuchi H, Friedman S, Gores GJ. Apoptotic body engulfment by a human stellate cell line is profibrogenic. Lab Invest 83;2003:655-663.
36. Friedman SL. Liver fibrosis-from bench to bedside. J Hepatol 2003;38:S38-S53.
37. Beljaars L, Meijer DKF, Poelstra K. 2006. Drug targeting to hepatic stellate cells: A new strategy to target liver fibrosis. In Liver Disease: Biochemical Mechanisms and New Therapeutic Insights, ed. Shakir Ali, Scott L Friedman and Derek A. Mann, pp459-474. Enfield, NH : Science Publishers.
38. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterolgy 2008;134:1655-1669.
39. Benyon RC, Arthur MJP. Extracellular matrix degradation and the role of hepatic stellate cells. Semin Liver Dis 2001;21:373-384.
40. Yang C, Zeisberg M, Mosterman B, Sudhakar A, Yerramalla U, Holthaus K, et al. Liver fibrosis: Insights into migration of hepatic stellate cells in response to extracellular matrix and growth factors. Gastroenterology 2003;124:147-158.
41. Zhou X, Murphy FR, Gehdu N, Zhang J, Iredale JP, Benyon RC. Engagement of alphavbeta3 integrin regulates proliferation and apoptosis of hepatic stellate cells. J Biol Chem 2004;279:23996-24006.
42. Yee HF Jr. Rho directs activation-associated changes in rat hepatic stellate cell morphology via regulation of the actin cytoskeleton. Hepatology 1998;28:843–850.
43. Choi SS, Sicklick JK, Ma Q, Yang L, Huang J, Qi Y, et al. Sustained activation of Rac1 in hepatic stellate cells promotes liver injury and fibrosis in mice. Hepatology 2006;44:1267–1277.
44. Schuppan D, Schmid M, Somasundaram R, Ackermann R, Ruehl M, Nakamura T, et al. Collagens in the liver extracellular matrix bind hepatocyte growth factor. Gastroenterology 1998;114:139-152.
45. Schuppan D, Ruehl M, Somasundaram R, Hahn EG. Matrix as a modulator of hepatic fibrogenesis. Semin Liver Dis 2001;21:351-372.
46. Wells RG. The role of matrix stiffness in regulating cell behavior. Hepatology 2008;47:1394-1400.
47. Borkham- Kamphorst E, van Roeyen CR, Ostendorf T, Floege J, Gressner AM, Weiskirchen R. Pro-fibrogenic potential of PDGF-D in liver fibrosis. J Hepatol 2007;46:1064–1074.
48. Kinnman N, Hultcrantz R, Barbu V, Rey C, Wendum D, Poupon R, et al. PDGF-mediated chemoattraction of hepatic stellate cells by bile duct segments in cholestatic liver injury. Lab Invest 2000;80:697-707.
49. Marra F, Romanelli RG, Giannini C, Failli P, Pastacaldi S, Arrighi MC, et al. Monocyte chemotactic protein-1 as a chemoattractant for human hepatic stellate cells. Hepatology 1999;29:140–148.
50. Bonacchi A, Romagnani P, Romanelli RG. Signal transduction by the chemokine receptor CXCR3: activation of Ras/ERK Src, and phosphatidylinositol 3-kinase/Akt controls cell migration and proliferation in human vascular pericytes. J Biol Chem 2001;276:9945–9954.
51. Stefanovic B, Rippe RA. 2006. Collagen gene regulation in the hepatic stellate cell. In Liver Disease: Biochemical Mechanisms and New Therapeutic Insights, ed. Shakir Ali, Scott L Friedman and Derek A. Mann, pp3-26. Enfield, NH : Science Publishers.
52. Rockey DC, Boyles JK, Gabbiani G, Friedman SL. Rat hepatic lipocytes express smooth muscle actin upon activation in vivo and in culture. J Submicrosc Cytol Pathol 1992;24:193–203.
53. Saab S, Tam SP, Tran BN, Melton AC, Tangkijvanich P, Wong H, et al. Myosin mediates contractile force generation by hepatic stellate cells in response to endothelin-1. J Biomed Sci 2002;9:607-612.
54. Iredale JP. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J Clin Invest 2007;117:539–548.
55. Murphy FR, Issa R, Zhou X, et al. Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition: implications for reversibility of liver fibrosis. J Biol Chem 2002;277:11069–11076.
56. Friedman SL, Arthur MJ. Reversal of hepatic fibrosis. Sci Med 2002; 8:194-205.
57. Gaca MD, Zhou X, Issa R, Kiriella K, Iredale JP, Benyon RC. Basement membrane-like matrix inhibits proliferation and collagen synthesis by activated rat hepatic stellate cells: evidence for matrix-dependent deactivation of stellate cells. Matrix Biol 2003; 22:229-239.
58. Issa R, Williams E, Trim N, Kendall T, Arthur MJ, Reichen J, et al. Apoptosis of hepatic stellate cells: involvement in resolution of biliary fibrosis and regulation by soluble growth factors. Gut 2001;48:548-557.
59. Elsharkawy AM, Oakley F, Mann DA. The role and regulation of hepatic stellate cell apoptosis in reversal of liver fibrosis. Apoptosis 2005;10:927-939.
60. Radaeva S, Sun R, Jaruga B, Nguyen VT, Tian Z, Gao B. Natural killer cells and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 2006;130:435-452.
61. Yang PM, Chen DS. Caput medusae. N Engl J Med 2005;353:e19.
62. Cattau E, Benjamin SB, Knuff TE, Castell DO. The accuracy of the physical exam in the diagonosis of suspected ascites. JAMA 1982;247:1164-1166.
63. Yang PJ, Yang PM, Lai MY, et al. Comparisons of ultrasonography and liver function tests in the detection of liver cirrhosis due to viral hepatitis B or C. Taiwan J Gastroenterol 1995;12:180.
64. Lee SG, Hwang S. How I do it: assessment of hepatic functional reserve for indication of hepatic resection. J Hepatobiliary Pancreat Surg 2005;12:38-43.
65. Albers I, Hartmann H, Bircher J, Creutzfeldt W. Superiority of the Child-Pugh classification to quantitative liver function tests for assessing prognosis of liver cirrhosis. Scand J Gastroenterol 1989;24:269–276.
66. Lin DY, Sheen IS, Chiu CT, et al. Ultrasonographic change of early liver cirrhosis in chronic hepatitis B: a longitudinal study. J Clin Ultrasound 1993;21:303.
67. Birkedal-Hansen H. Proteolytic remodeling of extracellular matrix. Curr Opin Cell Biol 1995;7:728-735.
68. Hu J, Van den Steen PE, Sang QX, Opdenakker G. Matrix metalloproteinase inhibitors as therapy for inflammatory and vascular diseases. Nat Rev Drug Discov 2007;6:480-98.
69. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002;2:161-74.
70. Stöcker W, Grams F, Baumann U, Reinemer P, Gomis-Ruth FX, McKay DB, et al. The metzincins--topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci 1995;4: 823-840.
71. Nagase H, Woessner JF. Matrix metalloproteinases. J Biol Chem 1999;274: 21491-21494.
72. Murphy G, Nguyen Q, Cockett MI, Atkinson SJ, Allan JA, Knight CG, et al. Assessment of the role of the fibronectin-like domain of gelatinase A by analysis of a deletion mutant. J Biol Chem 1994;269: 6632-6636.
73. Sternlicht MD, Werb Z. How matrix mtalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 2001;17:463-516.
74. Sternlicht MD, Werb Z. 1999. ECM proteinases. In Guidebook to the Extracellular Matrix, Anchor and Adhesion Proteins, ed. T Kreis, R Vale, pp. 503–62. Oxford, UK: Oxford Univ. Press.
75. Westermarck J, Kähäri VM. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J 1999;13:781-792.
76. Karin M, Liu ZG, Zandi E. AP-1 function and regulation. Curr Opin Cell Biol 1997;9:240-246.
77. Vincenti MP. 2001. The matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) genes. In Matrix Metalloproteinase Protocols, ed. IM Clark, pp. 121–48. Totowa, NJ: Humana.
78. Woessner JF, Nagase H. 2000. Matrix Metalloproteinases and TIMPs. New York: Oxford Univ. Press
79. Brooks PC, Str¨omblad S, Sanders LC, von Schalscha TL, Aimes RT, et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin avb3. Cell 1996;85:683-693.
80. Toth M, Sado Y, Ninomiya Y, Fridman R. Biosynthesis of b2(IV) and 1(IV) chains of collagen IV and interactions with matrix metalloproteinase-9. J Cell Physiol 1999;180:131-139.
81. McCawley LJ, Matrisian LM. Matrix metalloproteinases: they’re not just for matrix anymore. Curr Opin Cell Biol 2001;13:534-540.
82. Ii M, Yamamoto H, Adachi Y, Maruyama Y, Shinomura Y. Role of matrix metalloproteinase-7 (Matrilysin) in human cancer invasion, apoptosis, growth and angiogenesis. Exp Biol Med 2006;231:20-27.
83. Wilson CL, Ouellette AJ, Satchell DP, Ayabe T, López-Boado YS, Stratman JL, et al. Regulation of intestinal defensin activation by the metalloproteinase matrilysin in innate host defense. Science 1999;286:113-117.
84. Dunsmore SE, Saarialho-Kere UK, Roby JD, Wilson CL, Matrisian LM, Welgus HG, et al. Matrilysin expression and function in airway epithelium. J Clin Invest 1998;102:1321-1331.
85. Zuo F, Kaminski N, Eugui E, Allard J, Yakhini Z, Ben-Dor A, et al. Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans. Proc Natl Acad Sci USA 2002;99:6292-6297.
86. Asselah T, Bieche I, Laurendeau I, Paradis V, Vidaud D, Degott C, et al. Liver gene expression signature of mild fibrosis in patients with chronic hepatitis C. Gastroenterology 2005;129: 2064-2075.
87. Huang CC, Chuang JH, Chou MH, Wu CL, Chen CM, Wang CC, et al. Matrilysin (MMP-7) is a major matrix metalloproteinase upregulated in biliary atresia-associated liver fibrosis. Mod Pathol 2005;18:941-950.
88. McGuire JK, Li Q, Parks WC. Matrilysin (matrix metalloproteinase-7) mediates E-cadherin ectodomain shedding in injured lung epithelium. Am J Pathol 2003; 162:1831-1843.
89. Mac Donnell S, Navre M, CoffeyR J Jr, Matrisian LM. Expression and localization of the matrix metalloproteinase pump-1 (MMP-7) in human gastric and colon carcinomas. Mol Carcinog 1991;4:527-533.
90. Yu WH, Woessner JF Jr, McNeish JD, Stamenkovic I. CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling. Genes Dev 2002;16:307-323.
91. Noe V, Fingleton B, Jacobs K, Crawford HC, Vermeulen S, Steelant W, et al. Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci 2001;114:111-118.
92. Shiomi T, Inoki I, Kataoka F, Ohtsuka T, Hashimoto G, Ryoichi N, et al. Pericellular activation of proMMP-7 (promatrilysin-1) through interaction with CD151. Lab Invest 2005;85:1489-1506.
93. Yee LJ, Tang J, Herrera J, Kaslow RA, van Leeuwen DJ. Tumor necrosis factor gene polymorphisms in patients with cirrhosis from chronic hepatitis C virus infection. Genes Immun 2000;1:386-390.
94. Muhlbauer M, Bosserhoff AK, Hartmann A, Thasler WE, Weiss TS, Herfarth H, et al. A novel MCP-1 gene polymorphism is associated with hepatic MCP-1 expression and severity of HCV-related liver disease. Gastroenterology 2003;125:1085-1093.
95. Hillebrandt S, Wasmuth HE, Weiskirchen R, Hellerbrand C, Keppeler H, Werth A, et al. Complement factor 5 is a quantitative trait gene that modifies liver fibrogenesis in mice and humans. Nat Genet 2005;37:835-843.
96. Yu WH, Woessner JF Jr. Heparan sulfate proteoglycans as extracellular docking molecules for matrilysin (matrix metalloproteinase-7). J Biol Chem 2000;275:4183-4191.
97. Moscatiello S, Manini R, Marchesini G. Diabetes and liver disease: A ominous association. Nutr Metab Cardiovasc Dis 2007;17:63-70.
98. Mason A, Lau JYN, Hoang N, Qian K, Alexander GJM, et al. Association of diabetes mellitus and chronic hepatitis C virus infection. Hepatology 1999; 29;328-333.
99. Yamamoto K, Higashi S, Kioi M, Tsunezumi J, Honke K, Miyazaki K. Binding of active matrilysin to cell surface cholesterol sulfate is essential for its membrane-associated proteolytic action and induction of homotypic cell adhesion. J Biol Chem 2006;281:9170-9180.
100. Hemler ME. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol 2003;19;397-422.
101. Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 2000;1:31-41.
102. Hattersley AT, McCarthy MI. What makes a good genetic association study? Lancet 2005;366:1315-1323.
103. Ikeda K, Wakahara T, Wang YQ, Kadoya H, Kawada N, Kaneda K. In vitro migratory potential of rat quiescent hepatic stellate cells and its augmentation by cell activation. Hepatology 1999;29:1760-1767.
104. Remy L, Trespeuch C, Bachy S, Scoazec JY, Rousselle P. Matrilysin 1 influences colon carcinoma cell migration by cleavage of the laminin-5 b3 chain. Cancer Res 2006;66:11228-11237.
105. Berton A, Selvais C, Lemoine P, Henriet P, Courtoy PJ, Marbax E, et al. Binding of matrilysin-1 to human epithelial cells promotes its activity. Cell Mol Life Sci 2007;64:610-620.
106. Mazzocca A, Carloni V, Sciammetta SC, Cordella C, Pantaleo P, Caldini A, et al. Expression of transmembrane 4 superfamily (TM4SF) proteins and their role in hepatic stellate cell motility and wound healing migartion. J Hepatol 2002;37:322-330.
107. Smith BC, Grove J, Guzail MA, Day CP, Daly AK, Burt AD, et al. Heterozygosity for hereditary hemochromatosis is associated with more fibrosis in chronic hepatitis C. Hepatology 1998;27:1695-1699.
108. Sonzogni L, Silvestri L, Silvestri AD, Gritti C, Foti L, Zavaglia C, et al. Polymorphisms of microsomal epoxide hydrolase gene and severity of HCV-related liver disease. Hepatology 2002;36:195-201.
109. Fishman S, Lurie Y, Peretz H, Morad T, Grynberg E, Blendis LM, et al. Role of CYP2D6 polymorphism in predicting liver fibrosis progression rate in Caucasian patients with chronic hepatitis C. Liver Int 2006;26: 279–284.
110. Reynolds WF, Patel K, Pianko S, Blatt LM, Nicholas JJ, McHutchison JG. A genotypic association implicates myeloperoxidase in the progression of hepatic fibrosis in chronic hepatitis C virus infection. Genes Immun 2002;3:345-349.
111. Hellier S, Frodsham AJ, Henning BJW, Klenerman P, Knapp S, Ramaley P, et al. Association of genetic variants of the chemokine receptor CCR5 and its ligands, RANTES and MCP-2, with outcome of HCV infection. Hepatology 2003;38:1468-1476.
112. Sermasathanasawadi R, Kato N, Muroyama R, Dharel N, Shao RX, Chang JH, et al. Association of interferon regulatory factor-7 gene polymorphism with liver cirrhosis in chronic hepatitis C patients. Liver Int 2008;28:798-806.
113. Wozniak MA, Itzhaki RF, Faragher EB, James MW, Ryder SD, Irving WL.Apolipoprotein E-ε4 protects against severe liver disease caused by hepatitis C virus. Hepatology 2002;36:456-463.
114. Hennig BJW, Hellier S, Frodsham AJ, Zhang L, Klenerman P, Knapp S, et al. Association of low-density lipoprotein receptor polymorphisms and outcome of hepatitis C infection. Genes Immun 2002;3:359-367.
115. Huang H, Shiffman ML, Cheung RC, Layden TJ, Friedman S, Abar OT, et al. Identification of two gene variants associated with risk of advanced fibrosis in patients with chronic hepatitis C. Gastroenterology 2006;130:1679-1687.
116. Huang H, Shiffman ML, Friedman S, Venkatesh R, Bzowej N, Abar OT, et al. A 7 gene signature identifies the risk of developing cirrhosis in patients with chronic hepatitis C. Hepatology 2007;46:297-306.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42680-
dc.description.abstract肝炎、肝硬化乃至肝癌是我們常見的肝病發展三部曲,然而臨床上發現,10~30%的肝癌患者是在不經過肝硬化的病程下直接發生。研究指出,伴隨肝硬化發生的肝癌患者預後較差,復發機率較沒有硬化者來的高。許多流行病學研究在尋找決定肝硬化發生的危險因子,結果顯示肝硬化的發生與酗酒、性別是男性、C型肝炎病毒感染等危險因子有關,但是我們發現即使暴露在相同的危險因子下,個體間仍有不同的病程發展。因此,我們推測個體的遺傳背景可能也是導致疾病多樣性的原因之一。為了測試這個假設,我們選擇四個與纖維化相關的基因(MMP-7、MMP-13、PAI-1以及CFTR),針對其中十個單點核苷酸多型性 (SNP) 來進行基因型分析。一個位在MMP-7基因上,使第137胺基酸從glycine (Gly,G) 轉變成aspartic acid (Asp,D) 的SNP和肝硬化的發生有統計上的關聯性。從功能性試驗中發現,不同於MMP-7(Gly-137) 主要是分泌到細胞外,MMP-7(Asp-137) 變異體反而是座落在細胞膜上為主。分泌型的MMP-7可藉由與細胞膜上的分子結合而座落於細胞表面,此過程將有助於MMP-7的活化。因此,進一步比較Gly-137與Asp-137兩種型式的MMP-7和細胞膜上分子的結合能力,結果發現MMP-7(Asp-137) 變異體與CD151的結合能力優於MMP-7(Gly-137),這樣的特性使得Asp-137型式的MMP-7增加機會停留於細胞表面,繼而增加活化機會。
在評估細胞移動能力的試驗中,結果發現表現Asp-137型式的MMP-7會加速肝臟星狀細胞的移動。肝臟星狀細胞的移動能力越好,可加速其釋放纖維化蛋白質來修復傷口的過程。因此,對肝硬化的病程發展是一個正向調控機制。已知MMP-7的基因功能是透過破壞細胞與細胞以及細胞與間質之間的結合,來進行細胞移動的調控,在表現MMP-7(Asp-137) 變異體的細胞中,我們觀察到全長E-cadherin分子的切割,比起表現MMP-7(Gly-137)的細胞明顯,推測此為MMP-7(Asp-137)變異體加速細胞移動的部分機制。
本研究發現MMP-7(G137D) polymorphism是全新的肝硬化危險因子,並闡明此因子促進肝硬化的功能機轉。透過這個研究,除了有助於肝硬化致病機轉的了解之外,並且可作為個體預測疾病感受性的標誌,有利於預防醫學的推動。
zh_TW
dc.description.abstractHepatocellular carcinoma (HCC) usually occurs in cirrhotic liver, but 10-30% of HCC occur in non-cirrhotic liver. Several independent risk factors were associated with an increased rate of fibrosis progression: chronic hepatitis C virus infection, male gender, increased body mass index and alcohol abuse. However, these factors have not been useful in accurately predicting which patients will progress to cirrhosis. A generally held hypothesis is that host genetic factors may explain this different individual behavior. To identify genetic determinants of susceptibility to cirrhosis would assist in predicting individual risks of disease progression and would help to clarify pathophysiological mechanisms of liver cirrhosis.
Fibrosis and cirrhosis are characterized by progressive accumulation of extracellular matrix that follows chronic liver injuries. In the extracellular space, the constant turnover of liver matrix is regulated by a class of enzyme called matrix metalloproteinase (MMP). To assess whether genetic variations in matrix turnover influence the diversity of liver cirrhosis, a case-control study of 320 HCC patients with or without cirrhosis was conducted. Ten single nucleotide polymorphism (SNP) markers from 4 candidate genes were selected and genotyped by Beckman SNPstream genotyping platform. Among these genes, a nonsynonymous single nucleotide polymorphism which generates the variation of Asp-137 in MMP-7 gene was found to be strongly associated with the development of liver cirrhosis.
Hepatic stellate cell lines HSC-T6-MMP7(Gly) and HSC-T6-MMP7(Asp) that stably express MMP-7(Gly-137) and MMP-7(Asp-137), respectively, were generated. Different from MMP-7(Gly-137) that mostly secreted into cultured medium, MMP-7(Asp-137) distributed to the cell surface where it exerts its proteolytic activity on pericellular substrates. In addition, enzymatic activities and immunoreactive active forms of MMP-7 were detected in Triton-resistant fraction. Functional analysis demonstrated an increased ability of the MMP-7(Asp-137) variant to interact with cell surface molecule CD151. Furthermore, cell motility was enhanced with the expression of the MMP-7(Asp-137). Pretreatment with neutralizing antibody to MMP-7 specifically blocked the cell migration. These results suggested that not only the membrane anchorage but also its activity is important for promoting cell migration.
To investigate the molecular mechanisms by which MMP-7(Asp-137) variant enhances cell migration, substrates that involve cell-cell interaction were analyzed. Shedding of E-cadherin was increased in cells expressing MMP-7(Asp-137) variant in comparison with cells expressing MMP-7(Gly-137). These results demonstrated that the MMP-7(Asp-137) variant confers a gain-of-function phenotype for MMP-7.
The present study not only identified a genetic association between MMP-7(Asp-137) variant and liver cirrhosis but also uncovered the effects of SNP on functional phenotypes. These findings support a role for MMP-7 G137D polymorphism in the pathogenesis of liver cirrhosis, suggesting a potential marker for predicting cirrhosis progression and prognosis.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:19:34Z (GMT). No. of bitstreams: 1
ntu-98-D93442001-1.pdf: 1869423 bytes, checksum: 4294aa938f723b336d1c78fbd7b1db0e (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents中文摘要…ii
英文摘要…iv
引言…vi
背景介紹…1
研究目標…18
材料與方法…20
實驗結果…28
結論與討論…37
表格與圖…41
附錄…59
參考文獻…64
dc.language.isozh-TW
dc.subject肝硬化zh_TW
dc.subject基質金屬蛋白&#37238zh_TW
dc.subject單點核&#33527zh_TW
dc.subject酸多型性zh_TW
dc.subjectmatrix metalloproteinase-7en
dc.subjectliver cirrhosisen
dc.subjectsingle nucleotide polymorphismen
dc.title鑑定基質金屬蛋白酶-7 變異體為肝硬化之新危險因子zh_TW
dc.titleIdentification of matrix metalloproteinase-7 variant as a
novel risk factor for liver cirrhosis
en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee林榮耀,李伯皇,張美惠,張智芬,陳瑞華,施嘉和
dc.subject.keyword基質金屬蛋白&#37238,-7,單點核&#33527,酸多型性,肝硬化,zh_TW
dc.subject.keywordmatrix metalloproteinase-7,single nucleotide polymorphism,liver cirrhosis,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2009-07-27
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
1.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved