Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42671
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor施文彬(Wen-Pin Shih)
dc.contributor.authorChian-Wen Leeen
dc.contributor.author李仟文zh_TW
dc.date.accessioned2021-06-15T01:19:20Z-
dc.date.available2009-07-29
dc.date.copyright2009-07-29
dc.date.issued2009
dc.date.submitted2009-07-27
dc.identifier.citation[1]P. Ajayan and O. Zhou, “Applications of carbon nanotubes,”Topics in Applied Physics, vol. 80, pp. 391-425, 2000.
[2]R. Baughman, A. Zakhidov, and W. de Heer, “Carbon nanotubes-the route toward applications,” Science, vol. 297, pp. 787-792, 2002.
[3]E. Wong, P. Sheehan, and C. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science, vol. 277, pp. 1971-1975, 1997.
[4]P. De Gennes and J. Prost, The physics of liquid crystals, Oxford University Press, 1993.
[5]G. Gray and S. Kelly, “Liquid crystals for twisted nematic display devices,” Journal of Materials Chemistry, vol. 9, pp. 2037-2050, 1999.
[6]P. Kirsch and M. Bremer, “Nematic liquid crystals for active matrix displays: molecular design and synthesis,” Angewandte Chemie, vol. 39, pp. 4216-4235, 2000.
[7]D. Fitzjarraldt and E. Owens, “Liquid crystal convection: a novel accelerometer,” Journal of Physics E, vol. 12, 1979.
[8]Y. Choi, J. Park, J. Kim, and S. Lee, “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Optical Materials, vol. 21, pp. 643-646, 2003.
[9]X. Wang, J. Engel, and C. Liu, “Liquid crystal polymer (LCP) for MEMS: processes and applications,”Journal of Micromechanics and Microengineering, vol. 13, pp. 628-633, 2003.
[10]C. M. A. Chang, C. C. Cheng, and J. A. Yeh, “Analysis and modeling of liquid-crystal tunable capacitors,” IEEE Transactions on Electron Devices, vol. 53, pp. 1675-1682, 2006.
[11]I. Dierking and S. San, “Magnetically steered liquid crystal-nanotube switch,” Applied Physics Letters, vol. 87, pp. 233507, 2005.
[12]J. Kong, N. Franklin, C. Zhou, M. Chapline, S. Peng, K. Cho, and H. Dai, “Nanotube molecular wires as chemical sensors,” Science, vol. 287, pp. 622-625, 2000.
[13]A. Modi, N. Koratkar, E. Lass, B. Wei, and P. Ajayan, “Miniaturized gas ionization sensors using carbon nanotubes,” Nature, vol. 424, pp. 171-174, 2003.
[14]J. Engel, J. Chen, N. Chen, S. Pandya, and C. Liu, “Multi-Walled Carbon Nanotube Filled Conductive Elastomers: Materials and Application to Micro Transducers,” IEEE International Conference on MEMS, pp. 246-249, 2006.
[15]T. Nakanishi, T. Takahashi, H. Mada, and S. Saito, “Transient Behavior of Voltage Holding Ratio in Nematic Liquid Crystal Cells (Optics and Quantum Electronics),” Japanese Journal of Applied Physics, vol. 41, pp. 3752-3757, 2002.
[16]N. Sasaki, “Simulation of the voltage holding ratio in liquid crystal displays with a constant charge model,” Japanese Journal of Applied Physics, vol. 37, pp. 6065-6070, 1998.
[17]M. Costa, R. Altafim, and A. Mammana, “Ionic impurities in nematic liquid crystal displays,” Liquid Crystals, vol. 28, pp. 1779-1783, 2001.
[18]H. Naito, K. Yoshida, M. Okuda, and A. Sugimura, “Transient charging current in nematic liquid crystals,” Journal of Applied Physics, vol. 73, pp. 1119-1125, 1993.
[19]W. Lee, C. Wang, and Y. Shih, “Effects of carbon nanosolids on the electro-optical properties of a twisted nematic liquid-crystal host,” Applied Physics Letters, vol. 85, pp. 513-515, 2004.
[20]I.H. Hsu, “The influence of driving waveform on the performance of LCDs,” Master thesis, National Chiao Tung University Institute of Electro-optical Engineering, 2002.
[21]L. Rakcheeva and N. Kamanina, “Prospects of the use of fullerenes for the orientation of liquid-crystalline compositions,” Technical Physics Letters, vol. 28, pp. 457-460, 2002.
[22]M. Lynch and D. Patrick, “Organizing carbon nanotubes with liquid crystals,” Nano Letters, vol. 2, pp. 1197-1202, 2002.
[23]I. Dierking, G. Scalia, P. Morales, and D. LeClere, “Aligning and reorienting carbon nanotubes with nematic liquid crystals,” Advanced Materials, vol. 16, pp. 865-869, 2004.
[24]I. Dierking, K. Casson, and R. Hampson, “Reorientation Dynamics of Liquid Crystal–Nanotube Dispersions,” Japanese Journal of Applied Physics, vol. 47, pp. 6390-6393, 2008.
[25]W. Lee, J. Gau, and H. Chen, “Electro-optical properties of planar nematic cells impregnated with carbon nanosolids,” Applied Physics B: Lasers and Optics, vol. 81, pp. 171-175, 2005.
[26]W. Lee and Y. Shih, “Effects of carbon-nanotube doping on the performance of a TN-LCD,” Journal of the Society for Information Display, vol. 13, pp. 743-747, 2005.
[27]W. Lee, H. Chen, and Y. Shih, “Reduced dc offset and faster dynamic response in a carbon-nanotube-impregnated liquid-crystal display,” Journal of the Society for Information Display, vol. 16, pp. 733-741, 2008.
[28]M. Rahman and W. Lee, “Scientific duo of carbon nanotubes and nematic liquid crystals,” Journal of Physics D:Applied Physics, vol. 42, pp. 1-12, 2009.
[29]H. Chen and W. Lee, “Suppression of field screening in nematic liquid crystals by carbon nanotubes,” Applied Physics Letters, vol. 88, pp. 222105, 2006.
[30]H. Chen and W. Lee, “Electro-optical characteristics of a twisted nematic liquid-crystal cell doped with carbon nanotubes in a DC electric field,” Optical Review, vol. 12, pp. 223-225, 2005.
[31]I. Baik, S. Jeon, S. Lee, K. Park, S. Jeong, K. An, and Y. Lee, “Electrical-field effect on carbon nanotubes in a twisted nematic liquid crystal cell,” Applied Physics Letters, vol. 87, pp. 263110, 2005.
[32]R. Basu and G. Iannacchione, “Carbon nanotube dispersed liquid crystal: A nano electromechanical system,” Applied Physics Letters, vol. 93, pp. 183105, 2008.
[33]S. Jeon, K. Park, I. Baik, S. Jeong, S. Jeong, K. An, S. Lee, and Y. Lee, “Dynamic response of carbon nanotubes dispersed in nematic liquid crystal,” NANO: Brief Review and Report, vol. 2, pp. 41-49, 2007.
[34]Y. Chen, J. Wu, and H. Ke, “The Transverse motions of charged nano-particles under an AC electric field in a nematic liquid crystal cell,” Japanese Journal of Applied Physics, vol. 47, pp. 8631-8634, 2008.
[35]I. Stewart, The static and dynamic continuum theory of liquid crystals: a mathematical introduction, Taylor & Francis, 2004.
[36]P. Collings and M. Hird, Introduction to liquid crystals, Taylor & Francis, 1997.
[37]S. Singh, Liquid crystals: fundamentals, World Scientific, 2002.
[38]I. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena, Wiley, 1994.
[39]V. Gupta and N. Abbott, “Design of surfaces for patterned alignment of liquid crystals on planar and curved substrates,” Science, vol. 276, pp. 1533-1536, 1997.
[40]S. Kitson, E. Edwards, and A. Geisow, “Designing liquid crystal alignment surfaces,” Applied Physics Letters, vol. 92, pp. 073503, 2008.
[41]J. Wang, X. Sun, L. Chen, L. Zhuang, and S. Chou, “Molecular alignment in submicron patterned polymer matrix using nanoimprint lithography,” Applied Physics Letters, vol. 77, pp. 166, 2000.
[42]H. Kroto, J. Heath, S. O'Brien, R. Curl, and R. Smalley, “C60: buckminsterfullerene,' Nature, vol. 318, pp. 162-163, 1985.
[43]S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, pp. 56-58, 1991.
[44]M. Dresselhaus, G. Dresselhaus, K. Sugihara, I. Spain, and H. Goldberg, Graphite fibers and filaments, Springer-Verlag Berlin, 1988.
[45]M. Endo, Y. Kim, T. Hayashi, K. Nishimura, T. Matusita, K. Miyashita, and M. Dresselhaus, “Vapor-grown carbon fibers (VGCFs) basic properties and their battery applications,” Carbon, vol. 39, pp. 1287-1297, 2001.
[46]M. Endo, K. Takeuchi, T. Hiraoka, T. Furuta, T. Kasai, X. Sun, C. Kiang, and M. Dresselhaus, “Stacking nature of graphene layers in carbon nanotubes and nanofibres,” Journal of Physics and Chemistry of Solids, vol. 58, pp. 1707-1712, 1997.
[47]D. Colbert, J. Zhang, S. McClure, P. Nikolaev, Z. Chen, J. Hafner, D. Owens, P. Kotula, C. Carter, and J. Weaver, “Growth and sintering of fullerene nanotubes,” Science, vol. 266, pp. 1218-1222, 1994.
[48]M. Dresselhaus, “Carbon nanotubes,” Carbon, vol. 33, pp. 871-872, 1995.
[49]M. Dresselhaus, G. Dresselhaus, and R. Saito, “Physics of carbon nanotubes,” Carbon, vol. 33, pp. 883-891, 1995.
[50]I. Khoo, “Holographic grating formation in dye-and fullerene C60-doped nematic liquid-crystal film,” Optics Letters, vol. 20, pp. 2137-2139, 1995.
[51]V. Danilov, A. Kalintsev, N. Kamanina, and S. Tul’skii, “Optical limitation effect in a cholesteric liquid crystal-fullerene system,” Technical Physics Letters, vol. 24, pp. 359-360, 1998.
[52]M. Dresselhaus, G. Dresselhaus, P. Eklund, and ScienceDirect, Science of fullerenes and carbon nanotubes, Academic Press, 1996.
[53]R. Saito, M. Fujita, G. Dresselhaus, and M. Dresselhaus, “Electronic structure of chiral graphene tubules,” Applied Physics Letters, vol. 60, pp. 2204-2206, 1992.
[54]K. Park, S. Lee, S. Lee, and Y. Lee, “Anchoring a Liquid Crystal Molecule on a Single-Walled Carbon Nanotube,” Journal of Physical Chemistry C, vol. 111, pp. 1620-1624, 2007.
[55]R. Baker and J. Chludzinski Jr, “Filamentous carbon growth on nickel-iron surfaces: the effect of various oxide additives,” Journal of Catalysis, vol. 64, pp. 464-478, 1980.
[56]X. Chen, S. Zhang, D. Dikin, W. Ding, R. Ruoff, L. Pan, and Y. Nakayama, “Mechanics of a carbon nanocoil,” Nano Letters, vol. 3, pp. 1299-1304, 2003.
[57]S. Motojima, X. Chen, S. Yang, and M. Hasegawa, “Properties and potential applications of carbon microcoils/nanocoils,” Diamond & Related Materials, vol. 13, pp. 1989-1992, 2004.
[58]S. Motojima, S. Hoshiya, and Y. Hishikawa, “Electromagnetic wave absorption properties of carbon microcoils/PMMA composite beads in W bands,” Carbon, vol. 41, pp. 2658-2660, 2003.
[59]S. Motojima, Y. Noda, S. Hoshiya, and Y. Hishikawa, “Electromagnetic wave absorption property of carbon microcoils in 12–110 GHz region,” Journal of Applied Physics, vol. 94, pp. 2325-2329, 2003.
[60]H. Mada and K. Osajima, “Time response of a nematic liquid-crystal cell in a switched dc electric field,” Journal of Applied Physics, vol. 60, pp. 3111-3113, 1986.
[61]H. Mada and H. Suzuki, “Reverse Hysteresis Loop of Nematic Liquid Crystals in CV Characteristic due to Static Electric Field,” Japanese Journal of Applied Physics, vol. 26, pp. 1092-1094, 1987.
[62]S. Lee, H. Lee, S. Lee, and Y. Lee, “Effects of carbon nanotubes on physical properties of nematic liquid crystal and liquid crystal devices,” Emerging Liquid Crystal Technologies, vol. p487, pp. 64870U 2007.
[63]N. K. Chang, B. C. Wei, and S. H. Chang, “Growth of carbon nanocoils from Fe/Sn deposited by electron beam evaporation,” Taiwan-Tohoku Joint International Symposium for Mechanical Science Based on Nanotechnology, pp. 39-40, 2007.
[64]I. Dierking, G. Scalia, and P. Morales, “Liquid crystal–carbon nanotube dispersions,” Journal of Applied Physics, vol. 97, pp. 044309, 2005.
[65]H. Duran, B. Gazdecki, A. Yamashita, and T. Kyu, “Effect of carbon nanotubes on phase transitions of nematic liquid crystals,” Liquid Crystals, vol. 32, pp. 815-821, 2005.
[66]K. Y. Lo, C. C. Shiah, and C. Y. Huang, “Actual capacitance function of nematic liquid crystal cell,” Japanese Journal of Applied Physics, vol. 45, pp. 891-895, 2006.
[67]X. Nie, H. Xianyu, and T.S. Wu, “Second and Fourth Harmonic Frequencies in Electric Field-Induced Liquid Crystal Reorientations,” Molecular Crystals and Liquid Crystals, vol. 489, pp. 194-203, 2008.
[68]H.Y. Chen, K.X. Yang and W. Lee, “Transient behavior of the polarity-reversal current in a nematic liquid-crystal device,” Optics Express, vol. 12, pp. 3806-3813, 2004.
[69]H.Y. Chen, W. Lee, and N.A. Clark, “Faster electro-optical response characteristics of a carbon-nanotube-nematic suspension,” Applied Physics Letters, vol. 90, pp. 033510, 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42671-
dc.description.abstract液晶與奈米碳材料在近幾年中吸引著許多科學家與研究人員的注意。液晶的開關特性更在應用顯示科技上扮演重要角色。然而雜質離子無可避免地存在於液晶當中,它會影響著元件特性。奈米碳材料恰可提供我們一種方式來改善液晶元件的特性。因此在本文當中,我們使用向列型液晶(E7)同時參雜幾種不同的奈米碳材料如多壁奈米碳管(管長5到15微米)、奈米碳纖維、多壁奈米碳管(管長1到2微米)、螺旋奈米碳管、單壁奈米碳管與富勒希(碳60),將其混合液注入平行排列的液晶盒中並且量測其電容值。實驗結果顯示:液晶參雜奈米碳材料確實能夠抑制雜質離子帶來的離子電荷效應,同時能夠降低臨界電壓與改善遲滯效應。從電容電壓曲線的分析中,液晶參雜多壁奈米碳管(管長5到15微米)比起未參雜液晶能夠改善磁滯寬度34.25% 並降低臨界電壓52.5%。此外,我們定義離子補捉常數來表示每一種奈米碳材料的離子捕捉能力。根據離子補捉常數的排行,多壁奈米碳管(管長5到15微米) 在本實驗的所有奈米碳材料中,有最好抑制離子效應與改善元件特性的能力。zh_TW
dc.description.abstractLiquid crystals and carbon nanomaterials have been of high interest recently. The switching behavior of liquid crystals plays an important role on the application of display technologies. However, the inevitable impurity ions exist in liquid crystals and affect the device performance. Carbon nanomaterials as dopants fortuitously supply us alternatives to improve the performances of liquid crystals. In this work, nematic liquid crystals doped with several kinds of carbon nanomaterials including multi-wall carbon nanotubes (tube length 5~15μm), carbon nanofibers, multi-wall carbon nanotubes (tube length 1~2μm), helical carbon nanotubes, single-wall carbon nanotubes and fullerenes(C60) were examined in planar-aligned liquid crystal cells by measuring their electrical properties. As indicated by the measurement results, carbon nanomaterials certainly suppress the ion-charge effect to some degree, simultaneously lowering the threshold voltage and effectively improving the hysteresis width of liquid crystals. From the analysis of capacitance-voltage curve, the liquid crystal doped with MWCNT (tube length 5~15μm) sample reduced the hysteresis width and the threshold voltage 34.25% and 52.5%, respectively lower than the undoped E7 sample. Moreover, we defined and ranked the ion trapping coefficient for each carbon nanomaterials to represent the ability of trapping ions. Based on the results, MWCNT (tube length 5~15μm) served as the best dopants in liquid crystals to suppress the ion-charge effect and improve the performance of the liquid crystal.en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:19:20Z (GMT). No. of bitstreams: 1
ntu-98-R96522514-1.pdf: 3335547 bytes, checksum: bbc9ac9c3cdb704da04be3f54c112607 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents誌謝....................................................Ⅰ
摘要....................................................Ⅱ
Abstract................................................Ⅲ
Table of contents.......................................Ⅳ
List of figures.........................................Ⅵ
List of tables........................................ⅩⅡ
Chapter 1 Introduction..................................1
1-1 Background..........................................1
1-2 Carbon nanomaterials in liquid crystals.............2
1-3 Motivations and objectives..........................6
Chapter 2 Materials.....................................7
2-1 Literature survey of liquid crystals................7
2-1-1 Definition of liquid crystals.....................9
2-1-2 Basic classification of liquid crystals...........11
2-1-3 Fundamental physics of liquid crystals............16
2-1-3 (1) Dielectric anisotropy of nematic liquid crystals................................................16
2-1-3 (2) Alignment of nematic liquid crystals..........19
2-1-3 (3) Field effects in nematic liquid crystals......21
2-1-3 (4) Capacitance function of nematic liquid crystals................................................24
2-2 Literature survey of carbon nanomaterials...........28
2-2-1Basic classification of carbon nanomaterials.......29
2-2-1 (1) Fullerenes....................................29
2-2-1 (2) Carbon nanotubes..............................31
2-2-1 (3) Carbon nanofibers and helical carbon nanotubes34
Chapter 3 Effects of carbon nanomaterials doping on liquid crystals................................................36
3-1 Ion-charge effect...................................36
3-2 Ion trapping coefficient for carbon nanomaterials...39
Chapter 4 Experiments...................................40
4-1 Guest-host materials................................40
4-2 Liquid crystal cells................................44
4-3 Liquid crystal-carbon nanomaterial dispersions......46
4-4 Measurement setup...................................48
Chapter 5 Results and discussions.......................49
Chapter 6 Conclusions and future work...................64
References..............................................66
dc.language.isoen
dc.title向列型液晶參雜奈米碳結構之特性與動態響應量測zh_TW
dc.titleNematic Liquid Crystals Doped with Carbon Nanomaterials:
Characteristics and Measurement for Dynamic Response
en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊龍杰(Lung-Jieh Yang),戴慶良(Ching-Liang Dai)
dc.subject.keyword液晶,奈米碳材料,奈米碳管,離子電荷效應,磁滯,zh_TW
dc.subject.keywordliquid crystals,carbon nanomaterials,carbon nanotube,ion-charge effect,hysteresis,en
dc.relation.page72
dc.rights.note有償授權
dc.date.accepted2009-07-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
3.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved