請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42670完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葉炳強(Ping-Keung Yip),鄭建興(Jiann-Shing Jeng) | |
| dc.contributor.author | Shin-Joe Yeh | en |
| dc.contributor.author | 葉馨喬 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:19:18Z | - |
| dc.date.available | 2011-09-15 | |
| dc.date.copyright | 2009-09-15 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-27 | |
| dc.identifier.citation | Agrawal, S. and Kandimalla, E. (2007). Synthetic agonists of Toll-like receptors 7, 8 and 9. Biochem Soc Trans, 35: 1461-1467.
Akira, S. and Takeda, K. (2004). Toll-like receptor signaling. Nat Rev Immunol, 4: 499-511. Andreakos, E., Foxwell, B. and Feldmann, M. (2004). Is targeting Toll-like receptors and their signaling pathway a useful therapeutic approach to modulating cytokine-driven inflammation? Immunol Rev, 202: 250-265. Arslan, F., De Kleijn, D. P. V., Timmers, L., Doevendans, P. A. and Pasterkamp, G. (2008). Bridging innate immunity and myocardial ischemia/reperfusion injury: the search for therapeutic targets. Curr Pharm Des, 14: 1205-1216. Atochin, D., Murciano, J., Gürsoy-Ozdemir, Y., Krasik, T., Noda, F., Ayata, C., Dunn, A., Moskowitz, M., Huang, P. and Muzykantov, V. (2004). Mouse model of microembolic stroke and reperfusion. Stroke, 35: 2177-2182. Barber, P. A., Hoyte, L., Colbourne, F. and Buchan, A. M. (2004). Temperature-regulated model of focal ischemia in the mouse: a study with histopathological and behavioral outcomes. Stroke, 35: 1720-1725. Barone, F. C. (2009). Ischemic stroke intervention requires mixed cellular protection of the penumbra. Curr Opin Investig Drugs, 10: 220-223. Barton, G. M. (2007). Viral recognition by Toll-like receptors. Semin Immunol, 19: 33-40. Belvin, M. P. and Anderson, K. V. (1996). A conserved signaling pathway: the Drosophila toll-dorsal pathway. Annu Rev Cell Dev Biol, 12: 393-416. Burk, J., Burggraf, D., Vosko, M., Dichgans, M. and Hamann, G. F. (2008). Protection of cerebral microvasculature after moderate hypothermia following experimental focal cerebral ischemia in mice. Brain Res, 1226: 248-255. Butchi, N. B., Pourciau, S., Du, M., Morgan, T. W. and Peterson, K. E. (2008). Analysis of the neuroinflammatory response to TLR7 stimulation in the brain: comparison of multiple TLR7 and/or TLR8 agonists. J Immunol, 180: 7604-7612. Cao, C. X., Yang, Q. W., Lv, F. L., Cui, J., Fu, H. B. and Wang, J. Z. (2007). Reduced cerebral ischemia-reperfusion injury in Toll-like receptor 4 deficient mice. Biochem Biophys Res Commun, 353: 509-514. Caso, J. R., Pradillo, J. M., Hurtado, O., Lorenzo, P., Moro, M. A. and Lizasoain, I. (2007). Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation, 115: 1599-1608. Chao, W. (2009). Toll-like receptor signaling: a critical modulator of cell survival and ischemic injury in the heart. Am J Physiol Heart Circ Physiol, 296: 1-12. Clark, W., Lessov, N., Dixon, M. and Eckenstein, F. (1997). Monofilament intraluminal middle cerebral artery occlusion in the mouse. Neurol Res, 19: 641-648. Connolly, E. S. J., Winfree, C. J., Stern, D. M., Solomon, R. A. and Pinsky, D. J. (1996). Procedural and strain-related variables significantly affect outcome in a murine model of focal cerebral ischemia. Neurosurgery, 38: 523-532. Costa, C., Zhao, L., Shen, Y., Su, X., Hao, L., Colgan, S., Stahl, G., Zhou, T. and Wang, Y. (2006). Role of complement component C5 in cerebral ischemia/reperfusion injury. Brain Res, 1100: 142-151. Demaerschalk, B. and Yip, T. (2005). Economic benefit of increasing utilization of intravenous tissue plasminogen activator for acute ischemic stroke in the United States. Stroke, 36: 2500-2503. England, T., Martin, P. and Bath, P. M. W. (2009). Stem cells for enhancing recovery after stroke: a review. Int J Stroke, 4: 101-110. Faraco, G., Fossati, S., Bianchi, M., Patrone, M., Pedrazzi, M., Sparatore, B., Moroni, F. and Chiarugi, A. (2007). High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo. J Neurochem, 103: 590-603. Feng, Z., Davis, D., Sásik, R., Patel, H., Drummond, J. and Patel, P. (2007). Pathway and gene ontology based analysis of gene expression in a rat model of cerebral ischemic tolerance. Brain Res, 1177: 103-123. Fitzgerald, K., Palsson-McDermott, E., Bowie, A., Jefferies, C., Mansell, A., Brady, G., Brint, E., Dunne, A., Gray, P., Harte, M., McMurray, D., Smith, D., Sims, J., Bird, T. and O'Neill, L. (2001). Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature, 413: 78-83. Frangogiannis, N. G. (2007). Chemokines in ischemia and reperfusion. Thromb Haemost, 97: 738-747. Freret, T., Bouet, V., Leconte, C., Roussel, S., Chazalviel, L., Divoux, D., Schumann-Bard, P. and Boulouard, M. (2009). Behavioral deficits after distal focal cerebral ischemia in mice: Usefulness of adhesive removal test. Behav Neurosci, 123: 224-230. Fujii, M., Hara, H., Meng, W., Vonsattel, J., Huang, Z. and Moskowitz, M. (1997). Strain-related differences in susceptibility to transient forebrain ischemia in SV-129 and C57black/6 mice. Stroke, 28: 1805-1810. Gelderblom, M., Leypoldt, F., Steinbach, K., Behrens, D., Choe, C. U., Siler, D. A., Arumugam, T. V., Orthey, E., Gerloff, C., Tolosa, E. and Magnus, T. (2009). Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke, 40: Epub ahead of print. Gorden, K., Gorski, K., Gibson, S., Kedl, R., Kieper, W., Qiu, X., Tomai, M., Alkan, S. and Vasilakos, J. (2005). Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8. J Immunol, 174: 1259-1268. Gravanis, I. and Tsirka, S. E. (2008). Tissue-type plasminogen activator as a therapeutic target in stroke. Expert Opin Ther Targets, 12: 159-170. Hertzog, P. J. and O'Neill, L. A. (2003). The interferon in TLR signaling: more than just antiviral. Trends Immunol, 24: 534-539. Hoffmann, J. A. (2003). The immune response of Drosophila. Nature, 426: 33-38. Horie, N., Maag, A., Hamilton, S., Shichinohe, H., Bliss, T. and Steinberg, G. (2008). Mouse model of focal cerebral ischemia using endothelin-1. J Neurosci Methods, 173: 286-290. Hua, F., Ma, J., Ha, T., Kelley, J., Williams, D. L., Kao, R. L., Kalbfleisch, J. H., Browder, I. W. and Li, C. (2008). Preconditioning with a TLR2 specific ligand increases resistance to cerebral ischemia/reperfusion injury. J Neuroimmunol, 199: 75-82. Hudgins, W. and Garcia, J. (1970). Transorbital approach to the middle cerebral artery of the squirrel monkey: a technique for experimental cerebral infarction applicable to ultrastructural studies. Stroke, 1: 107-111. Isayama, K., Pitts, L. and Nishimura, M. (1991). Evaluation of 2,3,5-triphenyltetrazolium chloride staining to delineate rat brain infarcts. Stroke, 22: 1394-1398. Jack, C., Arbour, N., Manusow, J., Montgrain, V., Blain, M., McCrea, E., Shapiro, A. and Antel, J. (2005). TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol, 175: 4320-4330. Jeng, J., Tang, S., Deng, I., Tsai, L., Yeh, S. and Yip, P. (2009). Stroke center characteristics which influence the administration of thrombolytic therapy for acute ischemic stroke: a national survey of stroke centers in Taiwan. J Neurol Sci., 281: 24-27. Jordán, J., Segura, T., Brea, D., Galindo, M. and Castillo, J. (2008). Inflammation as therapeutic objective in stroke. Curr Pharm Des, 14: 3549-3564. Kadam, S., Mulholland, J., Smith, D., Johnston, M. and Comi, A. (2009). Chronic brain injury and behavioral impairments in a mouse model of term neonatal strokes. Behav Brain Res, 197: 77-83. Kaisho, T. and Akira, S. (2006). Toll-like receptor function and signaling. J Allergy Clin Immunol, 117: 979-987. Kerr, J., Wyllie, A. and Currie, A. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 26: 239-257. Kilic, U., Kilic, E., Matter, C. M., Bassetti, C. L. and Hermann, D. M. (2008). TLR-4 deficiency protects against focal cerebral ischemia and axotomy-induced neurodegeneration. Neurobiol Dis, 31: 33-40. Kitagawa, K., Matsumoto, M., Yang, G., Mabuchi, T., Yagita, Y., Hori, M. and Yanagihara, T. (1998). Cerebral ischemia after bilateral carotid artery occlusion and intraluminal suture occlusion in mice: evaluation of the patency of the posterior communicating artery. J Cereb Blood Flow Metab, 18: 570-579. Komotar, R., Kim, G., Otten, M., Hassid, B., Mocco, J., Sughrue, M., Starke, R., Mack, W., Ducruet, A., Merkow, M., Garrett, M. and Connolly, E. (2008). The role of complement in stroke therapy. Adv Exp Med Biol, 632: 23-33. Kuraoka, M., Furata, T., Matsuwaki, T., Omatsu, T., Ishii, Y., Kyuwa, S. and Yoshikawa, Y. (2009). Direct experimental occlusion of the distal middle cerebral artery induces high reproducibility of brain ischemia in mice. Exp. Anim, 58: 19-29. Lehnardt, S., Lehmann, S., Kaul, D., Tschimmel, K., Hoffmann, O., Cho, S., Krueger, C., Nitsch, R., Meisel, A. and Weber, J. R. (2007). Toll-like receptor 2 mediates CNS injury in focal cerebral ischemia. J Neuroimmunol, 190: 28-33. Lehnardt, S., Massillon, L., Follett, P., Jensen, F. E., Ratan, R., Rosenberg, P. A., Volpe, J. J. and Vartanian, T. (2003). Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci U S A, 100: 8514-8519. Lehnardt, S., Schott, E., Trimbuch, T., Laubisch, D., Krueger, C., Wulczyn, G., Nitsch, R. and Weber, J. (2008). A vicious cycle involving release of heat shock protein 60 from injured cells and activation of toll-like receptor 4 mediates neurodegeneration in the CNS. J Neurosci, 28: 2320-2331. Longa, E., Weinstein, P., Carlson, S. and Cummins, R. (1989). Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke, 20: 84-91. Ma, Y., Haynes, R. L., Sidman, R. L. and Vartanian, T. (2007). TLR8: an innate immune receptor in brain, neurons and axons. Cell Cycle, 6: 2859-2868. Ma, Y., Li, J., Chiu, I., Wang, Y., Sloane, J., Lü, J., Kosaras, B., Sidman, R., Volpe, J. and Vartanian, T. (2006). Toll-like receptor 8 functions as a negative regulator of neurite outgrowth and inducer of neuronal apoptosis. J Cell Biol, 175: 209-215. Majid, A., He, Y., Gidday, J., Kaplan, S., Gonzales, E., Park, T., Fenstermacher, J., Wei, L., Choi, D. and Hsu, C. (2000). Differences in vulnerability to permanent focal cerebral ischemia among 3 common mouse strains. Stroke, 31: 2707-2714. Marsh, B. J., Stevens, S. L., Hunter, B. and Stenzel-Poore, M. P. (2009). Inflammation and the emerging role of the Toll-like receptor system in acute brain ischemia. Stroke, 40: S34-S37. Marsh, B. J., Williams-Karnesky, R. L. and Stenzel-Poore, M. P. (2009). Toll-like receptor signaling in endogenous neuroprotection and stroke. Neuroscience, 158: 1007-1020. McColl, B. W., Carswell, H. V., McCulloch, J. and Horsburgh, K. (2004). Extension of cerebral hypoperfusion and ischaemic pathology beyond MCA territory after intraluminal filament occlusion in C57Bl/6J mice. Brain Res, 997: 15-23. McCombe, P. A. and Read, S. J. (2008). Immune and inflammatory responses to stroke: good or bad? Int J Stroke, 3: 254-265. Miles, A. N. and Knuckey, N. W. (1998). Apoptotic neuronal death following cerebral ischaemia. J Clin Neurosci, 5: 125-145. Mocco, J., Mack, W., Ducruet, A., Sosunov, S., Sughrue, M., Hassid, B., Nair, M., Laufer, I., Komotar, R., Claire, M., Holland, H., Pinsky, D. and Connolly, E. J. (2006). Complement component C3 mediates inflammatory injury following focal cerebral ischemia. Circ Res, 99: 209-217. Molina, C. A. and Alvarez-Sabín, J. (2009). Recanalization and reperfusion therapies for acute ischemic stroke. Cerebrovasc Dis, 27: 162-167. National Institute of Neurological Disorders and Stroke. rt-PA stroke study group (1995). Tissue plasminogen activator for acute ischemic stroke. N Eng J Med, 333: 1581-1587. Olson, E. E. and McKeon, R. J. (2004). Characterization of cellular and neurological damage following unilateral hypoxia/ischemia. J Neurol Sci, 227: 7-19. Olson, J. K. and Miller, S. D. (2004). Microglia initiate central nervous system innate and adaptive immune response through multiple TLRs. J Immunol, 173: 3916-3924. Orset, C., Macrez, R., Young, A., Panthou, D., Angles-Cano, E., Maubert, E., Agin, V. and Vivien, D. (2007). Mouse model of in situ thromboembolic stroke and reperfusion. Stroke, 38: 2771-2778. Phillis, J. W. and O’Regan, M. H. (2003). Characterization of modes of release of amino acids in the ischemic/reperfused rat cerebral cortex. Neurochem Int, 43: 461-467. Popp, A., Jaenisch, N., Witte, O. and Frahm, C. (2009). Identification of ischemic regions in a rat model of stroke. PLoS ONE, 4: e4764. Pradillo, J., Fernández-López, D., García-Yébenes, I., Sobrado, M., Hurtado, O., Moro, M. and Lizasoain, I. (2009). Toll-like receptor 4 is involved in neuroprotection afforded by ischemic preconditioning. J Neurochem, 109: 287-294. Repici, M., Mariani, J. and Borsello, T. (2007). Neuronal death and neuroprotection: a review. Methods Mol Biol, 399: 1-14. Rodríguez-Yáñez, M. and Castillo, J. (2008). Role of inflammatory markers in brain ischemia. Curr Opin Neurol, 21: 353-357. Rose, D., Zhu, X., Kose, H., Hoang, B., Cho, J. and Chiba, A. (1997). Toll, a muscle cell surface molecule, locally inhibits synaptic initiation of the RP3 motoneuron growth cone in Drosophila. Development, 124: 1561-1571. Sharp, F., Kinouchi, H., Koistinaho, J., Chan, P. and Sagar, S. (1993). HSP70 heat shock gene regulation during ischemia. Stroke, 24: 172-175. Stevens, S., Bao, J., Hollis, J., Lessov, N., Clark, W. and Stenzel-Poore, M. (2002). The use of flow cytometry to evaluate temporal changes in inflammatory cells following focal cerebral ischemia in mice. Brain Res, 932: 110-119. Stevens, S. L., Ciesielski, T. M. P., Marsh, B. J., Yang, T., Homen, D. S., Boule, J. L., Lessov, N. S., Simon, R. P. and Stenzel-Poore, M. P. (2008). Toll-like receptor 9: a new target of ischemic preconditioning in the brain. J Cereb Blood Flow Metab, 28: 1040-1047. Stevens, S. L. and Stenzel-Poore, M. P. (2006). Toll-like receptors and tolerance to ischaemic injury in the brain. Biochem Soc Trans, 34: 1352-1355. Sugimori, H., Yao, H., Ooboshi, H., Ibayashi, S. and Iida, M. (2004). Krypton laser-induced photothrombotic distal middle cerebral artery occlusion without craniectomy in mice. Brain Res Brain Res Protoc, 13: 189-196. Sundt, T. J. and Waltz, A. (1966). Experimental cerebral infarction: retro-orbital, extradural approach for occluding the middle cerebral artery. Mayo Clin Proc, 41: 159-168. Suzuki, J., Yoshimoto, T., Tnanka, S. and Sakamoto, T. (1980). Production of various models of cerebral infarction in the dog by means of occlusion of intracranial trunk arteries. Stroke, 11: 337-341. Széplaki, G., Szegedi, R., Hirschberg, K., Gombos, T., Varga, L., Karádi, I., Entz, L., Széplaki, Z., Garred, P., Prohászka, Z. and Füst, G. (2008). Strong complement activation after acute ischemic stroke is associated with unfavorable outcomes. Atherosclerosis, [Epub ahead of print]. Türeyen, K., Vemuganti, R., Sailor, K. and Dempsey, R. (2004). Infarct volume quantification in mouse focal cerebral ischemia: a comparison of triphenyltetrazolium chloride and cresyl violet staining techniques. J Neurosci Methods, 139: 203-207. Tamura, A., Graham, D., McCulloch, J. and Teasdale, G. (1981). Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab, 1: 53-60. Tanahashi, N. (2009). Thrombolysis by intravenous tissue plasminogen activator (t-PA)--current status and future direction. Brain Nerve., 61: 41-52. Tang, S. C., Arumugam, T. V., Xu, X., Cheng, A., Mughal, M. R., Jo, D. G., Lathia, J. D., Siler, D. A., Chigurupati, S., Ouyang, X., Magnus, T., Camandola, S. and Mattson, M. P. (2007). Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci U S A, 104: 13798-13803. Tang, S. C., Lathia, J. D., Selvaraj, P. K., Jo, D. G., Mughal, M. R., Cheng, A., Siler, D. A., Markesbery, W. R., Arumugam, T. V. and Mattson, M. P. (2008). Toll-like receptor-4 mediates neuronal apoptosis induced by amyloid beta-peptide and the membrane lipid peroxidation product 4-hydroxynonenal. Exp Neurol, 213: 114-121. Tuttolomondo, A., Di Raimondo, D., Di Sciacca, R., Pinto, A. and Licata, G. (2008). Inflammatory cytokines in acute ischemic stroke. Curr Pharm Des, 14: 3574-3589. Wang, X., Tsuji, K., Lee, S.-R., Ning, M. and Furie, K. L. (2004). Mechanisms of hemorrhagic transformation after tissue plasminogen activator reperfusion therapy for ischemic stroke. Stroke, 35: 2726-2730. Widmayer, M., Turner, T., Browning, J. and Baskin, D. (1994). U50488 reduces the severity of tissue damage in a rabbit model of focal cerebral ischemia. Mol Chem Neuropathol, 22: 211-223. Wiens, M., Korzhev, M., Perovic-Ottstadt, S., Luthringer, B., Brandt, D., Klein, S. and Müller, W. (2007). Toll-like receptors are part of the innate immune defense system of sponges. Mol Biol Evol, 24: 792-804. Witte, O., Bidmon, H., Schiene, K., Redecker, C. and Hagemann, G. (2000). Functional differentiation of multiple perilesional zones after focal cerebral ischemia. J Cereb Blood Flow Metab, 20: 1149-1165. Yamashita, T., Deguchi, K., Sehara, Y., Lukic-Panin, V., Zhang, H., Kamiya, T. and Abe, K. (2009). Therapeutic strategy for ischemic stroke. Neurochem Res, 34: 707-710. Yang, G., Kitagawa, K., Matsushita, K., Mabuchi, T., Yagita, Y., Yanagihara, T. and Matsumoto, M. (1997). C57BL/6 strain is most susceptible to cerebral ischemia following bilateral common carotid occlusion among seven mouse strains: selective neuronal death in the murine transient forebrain ischemia. Brain Res, 752: 209-218. Yip, P. K., Koh, A. T., Kao, C. H., Lin, C. T. and Chen, R. C. (1992). The effect of pentobarbital, ketamine and ketamine-xylazine in a rat focal stroke model. Acta Neurol Sin, 1: 355-360. Yip, P. K., Koh, A. T., Lin, C. T. and Chen, R. C. (1998). Effects of mild whole body hyperthermia on graded focal ischaemia-reperfusion in a rat stroke model. J Clin Neurosci, 5: 428-431. Yip, T. and Demaerschalk, B. (2007). Estimated cost savings of increased use of intravenous tissue plasminogen activator for acute ischemic stroke in Canada. Stroke, 38: 1952-1955. Zhang, J., Yang, Z., Klaus, J., Koehler, R. and Huang, J. (2008). Delayed tolerance with repetitive transient focal ischemic preconditioning in the mouse. Stroke, 39: 967-974. Zheng, Z., Lee, J. E. and Yenari, M. A. (2003). Stroke: molecular mechanisms and potential targets for treatment. Curr Mol Med, 3: 361-372. Ziegler, G., Harhausen, D., Schepers, C., Hoffmann, O., Rohr, C., Prinz, V., Konig, J., Lehrach, H., Nietfeld, W. and Trendelenburg, G. (2007). TLR2 has a detrimental role in mouse transient focal cerebral ischemia. Biochem Biophys Res Commun, 359: 574-579. Zoppo, G. d. (2008). Virchow's triad: the vascular basis of cerebral injury. Rev Neurol Dis, 5: S12-S21. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42670 | - |
| dc.description.abstract | 背景:目前認為Toll-like receptors(TLRs)可能在缺血性中風的局部發炎反應之源頭扮演一個決定性的角色。TLRs不僅與先天免疫(innate immunity)及後天免疫(adaptive immunity)有關,體內細胞的傷害也會引發其作用。在腦部,神經膠細胞與神經元細胞皆會表現數種TLRs,目前已知TLR2和TLR4會加重缺血性中風時的腦細胞傷害。至於TLR8,除了在對抗病毒上有其角色之外,也會促使神經細胞走向apoptosis。然而,TLR8在缺血性腦中風時是否增強表現、並且影響神經元細胞的apoptosis則是未知。
目的:在於確認TLR8在缺血性中風時是否有基因表現量的上升,以及TLR8之蛋白質含量是否也會有局部增加之現象。 方法:以「單側中大腦動脈及雙側總頸動脈暫時阻斷法」作為改良之腦中風小鼠模式,先以TTC染色證實此中風模式之中風位置。再以RT-PCR與real-time quantitative PCR的方式,分析單側中風小鼠之兩側大腦皮質組織的TLR8 mRNA含量,並探討缺血後不同的再灌流時間是否會有不同的基因表現量。此外,以免疫組織化學染色法(immunohistochemistry)確認中風時腦部是否有表現TLR8之蛋白質,以及會表現TLR8的細胞種類。並以Western blot定量TLR8蛋白質之表現量,比較中風側大腦之表現量是否比對側以及對照組小鼠來得高。 結果:我們完成了改良的小鼠缺血性腦中風模式,此模式所造成之缺血性中風是位於右側中大腦動脈灌流範圍之大腦皮質區。與只夾右側中大腦動脈之中風模式比較起來,其所造成之梗塞體積大,死亡率較高。在中風小鼠之神經學障礙方面,我們選用Longa 評分法來評估,發現在同樣的缺血時間之下,再灌流時間越長,則神經學症狀越輕微。在TLR8 mRNA 的表現量方面,缺血90分鐘後再灌流(reperfusion) 1小時及6小時者,皆在中風側之大腦皮質有表現量上升之趨勢,且缺血後再灌流6小時者之中風側與sham對照組之差別已達統計顯著意義(p = 0.021)。在免疫組織化學染色法的結果部分,發現再灌流6小時者,腦部缺血性中風區中有許多細胞具有細胞核皺縮之現象,暗示其正在進行細胞凋亡(apoptosis),且在其細胞質呈現很強的陽性TLR8染色反應;相對的,對側腦部相對應之部位並無類似之TLR8染色反應。而再灌流18小時的腦部,缺血區的細胞數量已經大量減少,殘存的少數細胞大多有細胞核皺縮之現象,且也有陽性TLR8染色反應。此外,也證實了缺血性中風時會表現TLR8之細胞種類包括了 神經元細胞與神經膠細胞。在Western blot的結果中,於再灌流6小時之後,雙側皆會增加表現TLR8,但雙側沒有明顯差別。 結論:本研究以小鼠中風模式,發現缺血性中風時,局部腦組織之細胞會增加表現TLR8之mRNA及蛋白質;而且進一步確認中風時會表現TLR8蛋白質之細胞包括了神經元細胞及神經膠細胞。至於TLR8增加表現所代表之意義對神經細胞而言是保護性或是傷害性,則有待更進一步的研究證實。 | zh_TW |
| dc.description.abstract | Background: Toll-like receptors (TLRs) had been regard to play an important role in inducing stroke-related focal inflammatory reaction. TLRs are not only related to innate immunity and adaptive immunity, but also activated by damaged cells. In brain, glia cells and neurons can express several types of TLRs, and it has been proved that TLR2 and TLR4 can worsen the ischemic damage during ischemic stroke. As for TLR8, besides its role in defending virus, it can also induce apoptosis as well. However, it is unknown whether TLR8 is upregulated during ischemic stroke and affecting apoptosis of neuron.
Aim: The purpose of this study is to evaluate whether TLR8 gene is upregulated during ischemic stroke, and whether the protein level of TLR8 is increased. Methods: In this study, the modified stroke mouse model was created by “transient unilateral middle cerebral artery and bilateral common carotid arteries occlusion method”, and the stroke area was confirmed by TTC stain. The neurological deficit of stroke mice was evaluated by Longa 5 grading method. We analyzed the level of TLR8 mRNA of bilateral cerebral cortex by RT-PCR and real-time quantitative PCR, and compared the genetic expression at different time points of reperfusion. Besides, we used immunohistochemistry to verify whether ischemic stroke increases local expression of TLR8 protein, and to clarify the cell types with increased TLR8 expression. Besides, Western blot was used to evaluate the expression level of TLR8 protein, and to compare whether the expression level at stroke lesion side would be higher than contralateral side and sham-control mice. Results: The modified mouse stroke model was successfully created, which had an infarction at the cerebral cortex of the right middle cerebral artery territory. As compared with the model made by occlusion of the right middle cerebral artery, this modified model had larger infarct volume and higher mortality rate. Longer reperfusion time was associated with fewer neurological deficits. In the analysis of mRNA expression level, there were trends of increased expression in the ipsilateral cerebral cortex of stroke after ischemia for 90 min followed by reperfusion for 1 hour and 6 hours, and the differences between the group with reperfusion for 6 hours and sham-operated group had statistical significance (p = 0.021). In the immunohistochemistry, there were many cells in the ischemic region after reperfusion for 6 hours, which was characterized with condensed nuclei indicating apoptosis. These cells also had strong positive TLR8 stain in their cytoplasm. On the contrary, there was no TLR8 stain in the contralateral hemisphere. In the mouse brain with reperfusion for 18 hours, the cellularity in ischemic region reduced markedly, and these residual cells were also characterized by condensed nuclei and positive TLR8 stain. Besides, we also revealed that neurons and glia cell could express TLR8 during ischemic stroke. In the result of Western blot, the brain of mice underwent ischemia and reperfusion for 6 hours had increased expression of TLR8 in bilateral hemispheres, but there was no obvious side-to-side difference. Conclusion: This study revealed that, in the mouse stroke model, the cells in ischemic region had upregulation of mRNA and protein level of TLR8 during ischemic stroke. Furthermore, the study demonstrated that the cell types expressing TLR8 in ischemic stroke were neurons and glia cells. Further study is needed to clarify the function of TLR8 upregulation is protective or damage for neurons. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:19:18Z (GMT). No. of bitstreams: 1 ntu-98-P96421013-1.pdf: 1739564 bytes, checksum: 04988e80387bf5eafa3637780f2c94f3 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 v 圖目錄 ix 表目錄 x 第一章 緒論 1 1.1 研究背景 1 1.1.1腦中風之臨床治療現況與策略 1 1.1.2 腦中風之病態生理學 2 1.1.3 腦中風的缺血-再灌流傷害 3 1.1.4 Toll-like receptors是細胞受傷與發炎反應之間的橋樑 4 1.1.5 Toll-like receptors與腦中風之關係 5 1.1.6 TLR8與神經細胞凋亡相關 7 1.1.7 TLR8訊息傳遞路徑之研究 7 1.1.8 TLR8在免疫的角色 9 1.1.9 小鼠中風模式 9 1.2 研究目的與假說 11 第二章 研究方法及步驟 12 2.1 小鼠腦中風模式 (Mouse stroke model):單側中大腦動脈及雙側總頸動脈暫時阻斷法 (Transient unilateral MCA and bilateral CCA occlusion method) 12 2.2 評估小鼠神經學障礙之程度 13 2.3 評估小鼠缺血性腦中風之範圍 13 2.4 TLR8 mRNA表現量的測量 13 2.5 免疫組織化學染色(Immunohistochemistry) 15 2.6以西方點墨法(Western blot)測量TLR8蛋白質含量 15 2.7 統計分析 16 第三章 研究結果 17 3.1 小鼠腦中風模式之建立 17 3.2 TLR8基因表現量的測量 19 3.3 免疫組織化學染色 20 3.4 以西方點墨法分析蛋白質表現量 21 第四章 討論 22 4.1 討論小鼠缺血性腦中風模式 22 4.2 討論 TLR8 與其他 TLRs 於缺血性腦中風時之表現 23 4.3 討論缺血性腦中風時 TLR8 mRNA 表現量之改變情形 24 4.4 討論TLR8 免疫化學染色之結果 25 4.5 討論西方點墨法之結果 26 4.6討論缺血性中風時TLR8增加表現所代表之意義 27 4.7 本研究之限制 27 第五章 展望 30 英文論述 31 參考文獻 53 | |
| dc.language.iso | zh-TW | |
| dc.subject | 缺血性腦中風 | zh_TW |
| dc.subject | 神經保護 | zh_TW |
| dc.subject | 細胞凋亡 | zh_TW |
| dc.subject | 小鼠動物模式 | zh_TW |
| dc.subject | 類鐸受體8 | zh_TW |
| dc.subject | mouse animal model | en |
| dc.subject | apoptosis | en |
| dc.subject | Toll-like receptor 8 | en |
| dc.subject | neuroprotection | en |
| dc.subject | ischemic stroke | en |
| dc.title | 類鐸受體8在缺血性腦中風的角色:以改良之小鼠缺血性腦中風模式探討 | zh_TW |
| dc.title | The Role of Toll-like Receptor 8 in Ischemic Stroke: Based on a Modified Mouse Stroke Model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.advisor-orcid | ,鄭建興(jsjeng@ntu.edu.tw) | |
| dc.contributor.oralexamcommittee | 符文美(Wen-Mei Fu),吳瑞美(Ruey-Meei Wu),何奕倫(Yi-Lwun Ho) | |
| dc.subject.keyword | 缺血性腦中風,小鼠動物模式,類鐸受體8,細胞凋亡,神經保護, | zh_TW |
| dc.subject.keyword | ischemic stroke,mouse animal model,Toll-like receptor 8,apoptosis,neuroprotection, | en |
| dc.relation.page | 70 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-27 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.7 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
