Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42662
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳燕惠
dc.contributor.authorSung-Tsai Yuen
dc.contributor.author尤松材zh_TW
dc.date.accessioned2021-06-15T01:19:05Z-
dc.date.available2011-09-15
dc.date.copyright2009-09-15
dc.date.issued2009
dc.date.submitted2009-07-27
dc.identifier.citation[1] Thomas H, Coley HM. Overcoming multidrug resistance in cancer: an update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control 2003;10:159-65.
[2] Choi CH. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell Int 2005;5:30.
[3] Krishna R, Mayer LD. Multidrug resistance (MDR) in cancer: Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. European Journal of Pharmaceutical Sciences 2000;11:265-83.
[4] Gottesman MM, Ling V. The molecular basis of multidrug resistance in cancer: The early years of P-glycoprotein research. FEBS Letters 2006;580:998-1009.
[5] Luqmani YA. Mechanisms of drug resistance in cancer chemotherapy. Med Princ Pract 2005;14 Suppl 1:35-48.
[6] Gillet J-P, Efferth T, Remacle J. Chemotherapy-induced resistance by ATP-binding cassette transporter genes. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2007;1775:237-62.
[7] Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM. Targeting multidrug resistance in cancer. Nat Rev Drug Discov 2006;5:219-34.
[8] Higgins CF. Multiple molecular mechanisms for multidrug resistance transporters. Nature 2007;446:749-57.
[9] Gottesman MM, Ling V. The molecular basis of multidrug resistance in cancer: the early years of P-glycoprotein research. FEBS Lett 2006;580:998-1009.
[10] Huang Y, Sadee W. Membrane transporters and channels in chemoresistance and -sensitivity of tumor cells. Cancer Lett 2006;239:168-82.
[11] Dean M, Hamon Y, Chimini G. The human ATP-binding cassette (ABC) transporter superfamily. J Lipid Res 2001;42:1007-17.
[12] Sarkadi B, Homolya L, Szakacs G, Varadi A. Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol Rev 2006;86:1179-236.
[13] Sauna ZE, Ambudkar SV. Characterization of the catalytic cycle of ATP hydrolysis by human P-glycoprotein. The two ATP hydrolysis events in a single catalytic cycle are kinetically similar but affect different functional outcomes. J Biol Chem 2001;276:11653-61.
[14] Litman T, Druley TE, Stein WD, Bates SE. From MDR to MXR: new understanding of multidrug resistance systems, their properties and clinical significance. Cell Mol Life Sci 2001;58:931-59.
[15] Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 1976;455:152-62.
[16] Sakaeda T, Nakamura T, Okumura K. MDR1 genotype-related pharmacokinetics and pharmacodynamics. Biol Pharm Bull 2002;25:1391-400.
[17] Troost J, Lindenmaier H, Haefeli WE, Weiss J. Modulation of cellular cholesterol alters P-glycoprotein activity in multidrug-resistant cells. Mol Pharmacol 2004;66:1332-9.
[18] Molinari A, Cianfriglia M, Meschini S, Calcabrini A, Arancia G. P-glycoprotein expression in the Golgi apparatus of multidrug-resistant cells. Int J Cancer 1994;59:789-95.
[19] Duensing TD, Slate DL. Intracellular expression of P-glycoprotein in a human colon tumor cell line. Anticancer Res 1994;14:13-9.
[20] Molinari A, Calcabrini A, Meschini S, Stringaro A, Del Bufalo D, Cianfriglia M, et al. Detection of P-glycoprotein in the Golgi apparatus of drug-untreated human melanoma cells. Int J Cancer 1998;75:885-93.
[21] Scotto KW. Transcriptional regulation of ABC drug transporters. Oncogene 2003;22:7496-511.
[22] Ohga T, Uchiumi T, Makino Y, Koike K, Wada M, Kuwano M, et al. Direct involvement of the Y-box binding protein YB-1 in genotoxic stress-induced activation of the human multidrug resistance 1 gene. J Biol Chem 1998;273:5997-6000.
[23] Hu Z, Jin S, Scotto KW. Transcriptional activation of the MDR1 gene by UV irradiation. Role of NF-Y and Sp1. J Biol Chem 2000;275:2979-85.
[24] Saji H, Toi M, Saji S, Koike M, Kohno K, Kuwano M. Nuclear expression of YB-1 protein correlates with P-glycoprotein expression in human breast carcinoma. Cancer Lett 2003;190:191-7.
[25] Ogretmen B, Safa AR. Negative regulation of MDR1 promoter activity in MCF-7, but not in multidrug resistant MCF-7/Adr, cells by cross-coupled NF-kappa B/p65 and c-Fos transcription factors and their interaction with the CAAT region. Biochemistry 1999;38:2189-99.
[26] Bahr O, Wick W, Weller M. Modulation of MDR/MRP by wild-type and mutant p53. J Clin Invest 2001;107:643-6.
[27] El-Deiry WS. The role of p53 in chemosensitivity and radiosensitivity. Oncogene 2003;22:7486-95.
[28] Chen G, Jaffrezou JP, Fleming WH, Duran GE, Sikic BI. Prevalence of multidrug resistance related to activation of the mdr1 gene in human sarcoma mutants derived by single-step doxorubicin selection. Cancer Res 1994;54:4980-7.
[29] Sikic BI. Pharmacologic approaches to reversing multidrug resistance. Semin Hematol 1997;34:40-7.
[30] Fojo T, Susan B. Strategies for reversing drug resistance. Oncogene 2003;22:7512-23.
[31] Kuzmich S, Tew KD. Detoxification mechanisms and tumor cell resistance to anticancer drugs. Med Res Rev 1991;11:185-217.
[32] Board PG, Coggan M, Chelvanayagam G, Easteal S, Jermiin LS, Schulte GK, et al. Identification, characterization, and crystal structure of the Omega class glutathione transferases. J Biol Chem 2000;275:24798-806.
[33] Roxas VP, Smith RK, Jr., Allen ER, Allen RD. Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotechnol 1997;15:988-91.
[34] Black SM, Beggs JD, Hayes JD, Bartoszek A, Muramatsu M, Sakai M, et al. Expression of human glutathione S-transferases in Saccharomyces cerevisiae confers resistance to the anticancer drugs adriamycin and chlorambucil. Biochem J 1990;268:309-15.
[35] Nakagawa K, Saijo N, Tsuchida S, Sakai M, Tsunokawa Y, Yokota J, et al. Glutathione-S-transferase pi as a determinant of drug resistance in transfectant cell lines. J Biol Chem 1990;265:4296-301.
[36] Batist G, Tulpule A, Sinha BK, Katki AG, Myers CE, Cowan KH. Overexpression of a novel anionic glutathione transferase in multidrug-resistant human breast cancer cells. J Biol Chem 1986;261:15544-9.
[37] Lai GM, Moscow JA, Alvarez MG, Fojo AT, Bates SE. Contribution of glutathione and glutathione-dependent enzymes in the reversal of adriamycin resistance in colon carcinoma cell lines. Int J Cancer 1991;49:688-95.
[38] Adler V. Regulation of JNK signaling by GSTp. EMBO Journal 1999;18:1321.
[39] Wang T, Arifoglu P, Ronai Z, Tew KD. Glutathione S-transferase P1-1 (GSTP1-1) inhibits c-Jun N-terminal kinase (JNK1) signaling through interaction with the C terminus. J Biol Chem 2001;276:20999-1003.
[40] Asakura T, Ohkawa K. Chemotherapeutic agents that induce mitochondrial apoptosis. Curr Cancer Drug Targets 2004;4:577-90.
[41] Asakura T, Sasagawa A, Takeuchi H, Shibata S, Marushima H, Mamori S, et al. Conformational change in the active center region of GST P1-1, due to binding of a synthetic conjugate of DXR with GSH, enhanced JNK-mediated apoptosis. Apoptosis 2007;12:1269-80.
[42] Ploemen JH, van Ommen B, van Bladeren PJ. Inhibition of rat and human glutathione S-transferase isoenzymes by ethacrynic acid and its glutathione conjugate. Biochem Pharmacol 1990;40:1631-5.
[43] Flatgaard JE, Bauer KE, Kauvar LM. Isozyme specificity of novel glutathione-S-transferase inhibitors. Cancer Chemother Pharmacol 1993;33:63-70.
[44] Beck WT, Danks MK, Wolverton JS, Kim R, Chen M. Drug resistance associated with altered DNA topoisomerase II. Adv Enzyme Regul 1993;33:113-27.
[45] Drake FH, Hofmann GA, Bartus HF, Mattern MR, Crooke ST, Mirabelli CK. Biochemical and pharmacological properties of p170 and p180 forms of topoisomerase II. Biochemistry 1989;28:8154-60.
[46] Woessner RD, Mattern MR, Mirabelli CK, Johnson RK, Drake FH. Proliferation- and cell cycle-dependent differences in expression of the 170 kilodalton and 180 kilodalton forms of topoisomerase II in NIH-3T3 cells. Cell Growth Differ 1991;2:209-14.
[47] Nitiss JL. Investigating the biological functions of DNA topoisomerases in eukaryotic cells. Biochim Biophys Acta 1998;1400:63-81.
[48] Isaacs RJ, Davies SL, Sandri MI, Redwood C, Wells NJ, Hickson ID. Physiological regulation of eukaryotic topoisomerase II. Biochim Biophys Acta 1998;1400:121-37.
[49] Yang X, Li W, Prescott ED, Burden SJ, Wang JC. DNA topoisomerase IIbeta and neural development. Science 2000;287:131-4.
[50] Drake FH, Zimmerman JP, McCabe FL, Bartus HF, Per SR, Sullivan DM, et al. Purification of topoisomerase II from amsacrine-resistant P388 leukemia cells. Evidence for two forms of the enzyme. J Biol Chem 1987;262:16739-47.
[51] Kamath N, Grabowski D, Ford J, Kerrigan D, Pommier Y, Ganapathi R. Overexpression of P-glycoprotein and alterations in topoisomerase II in P388 mouse leukemia cells selected in vivo for resistance to mitoxantrone. Biochemical Pharmacology 1992;44:937-45.
[52] O'Driscoll L, Clynes M. Biomarkers and multiple drug resistance in breast cancer. Curr Cancer Drug Targets 2006;6:365-84.
[53] Kruh GD, Belinsky MG. The MRP family of drug efflux pumps. Oncogene 2003;22:7537-52.
[54] Loe DW, Deeley RG, Cole SP. Characterization of vincristine transport by the M(r) 190,000 multidrug resistance protein (MRP): evidence for cotransport with reduced glutathione. Cancer Res 1998;58:5130-6.
[55] Mehta K, Fok J, Miller FR, Koul D, Sahin AA. Prognostic significance of tissue transglutaminase in drug resistant and metastatic breast cancer. Clin Cancer Res 2004;10:8068-76.
[56] Gouaze V, Yu JY, Bleicher RJ, Han TY, Liu YY, Wang H, et al. Overexpression of glucosylceramide synthase and P-glycoprotein in cancer cells selected for resistance to natural product chemotherapy. Mol Cancer Ther 2004;3:633-9.
[57] Wang Y, Serfass L, Roy MO, Wong J, Bonneau AM, Georges E. Annexin-I expression modulates drug resistance in tumor cells. Biochem Biophys Res Commun 2004;314:565-70.
[58] Brown I, Shalli K, McDonald SL, Moir SE, Hutcheon AW, Heys SD, et al. Reduced expression of p27 is a novel mechanism of docetaxel resistance in breast cancer cells. Breast Cancer Res 2004;6:R601-7.
[59] Pandolfi PP. Breast cancer--loss of PTEN predicts resistance to treatment. N Engl J Med 2004;351:2337-8.
[60] Zhou Y, Eppenberger-Castori S, Marx C, Yau C, Scott GK, Eppenberger U, et al. Activation of nuclear factor-kappaB (NFkappaB) identifies a high-risk subset of hormone-dependent breast cancers. Int J Biochem Cell Biol 2005;37:1130-44.
[61] Fairchild CR, Ivy SP, Kao-Shan CS, Whang-Peng J, Rosen N, Israel MA, et al. Isolation of amplified and overexpressed DNA sequences from adriamycin-resistant human breast cancer cells. Cancer Res 1987;47:5141-8.
[62] Fairchild CR, Moscow JA, O'Brien EE, Cowan KH. Multidrug resistance in cells transfected with human genes encoding a variant P-glycoprotein and glutathione S-transferase-pi. Mol Pharmacol 1990;37:801-9.
[63] Wells WW, Rocque PA, Xu DP, Meyer EB, Charamella LJ, Dimitrov NV. Ascorbic acid and cell survival of adriamycin resistant and sensitive MCF-7 breast tumor cells. Free Radic Biol Med 1995;18:699-708.
[64] Honda G, Tabata M. Isolation of antifungal principle tryptanthrin, from Strobilanthes cusia O. Kuntze. Planta Med 1979;36:85-90.
[65] Honda G, Tabata M, Tsuda M. The antimicrobial specificity of tryptanthrin. Planta Med 1979;37:172-4.
[66] Schrenk D, Riebniger D, Till M, Vetter S, Fiedler H-P. Tryptanthrins: A novel class of agonists of the aryl hydrocarbon receptor. Biochemical Pharmacology 1997;54:165-71.
[67] Ishihara T, Kohno K, Ushio S, Iwaki K, Ikeda M, Kurimoto M. Tryptanthrin inhibits nitric oxide and prostaglandin E2 synthesis by murine macrophages. European Journal of Pharmacology 2000;407:197-204.
[68] Kimoto T, Hino K, Koya-Miyata S, Yamamoto Y, Takeuchi M, Nishizaki Y, et al. Cell differentiation and apoptosis of monocytic and promyelocytic leukemia cells (U-937 and HL-60) by tryptanthrin, an active ingredient of Polygonum tinctorium Lour. Pathol Int 2001;51:315-25.
[69] Sharma VM, Prasanna P, Seshu KV, Renuka B, Rao CV, Kumar GS, et al. Novel indolo[2,1-b]quinazoline analogues as cytostatic agents: synthesis, biological evaluation and structure-activity relationship. Bioorg Med Chem Lett 2002;12:2303-7.
[70] Danz H, Stoyanova S, Wippich P, Brattstrom A, Hamburger M. Identification and isolation of the cyclooxygenase-2 inhibitory principle in Isatis tinctoria. Planta Med 2001;67:411-6.
[71] Kataoka M, Hirata K, Kunikata T, Ushio S, Iwaki K, Ohashi K. Antibacterial action of tryptanthrin and kaempferol, isolated from the indigo plant (Polygonum tinctorium Lour.), against Helicobacter pylori-infected Mongolian gerbils. Journal of Gastroenterology 2001;36:5-9.
[72] Koya-Miyata S, Kimoto T, Micallef MJ, Hino K, Taniguchi M, Ushio S, et al. Prevention of azoxymethane-induced intestinal tumors by a crude ethyl acetate-extract and tryptanthrin extracted from Polygonum tinctorium Lour. Anticancer Res 2001;21:3295-300.
[73] Chen GS, Bhagwat BV, Liao PY, Chen HT, Lin SB, Chern JW. Specific stabilization of DNA triple helices by indolo[2,1-b]quinazolin-6,12-dione derivatives. Bioorg Med Chem Lett 2007;17:1769-72.
[74] 陳惠亭. Indolo[2,1-b]quinazolin-6,12-dione衍生物作為抗癌藥物之設計與合成, 2000.
[75] Lacave R, Coulet F, Ricci S, Touboul E, Flahault A, Rateau JG, et al. Comparative evaluation by semiquantitative reverse transcriptase polymerase chain reaction of MDR1, MRP and GSTp gene expression in breast carcinomas. Br J Cancer 1998;77:694-702.
[76] Beck J, Niethammer D, Gekeler V. High mdr1- and mrp-, but low topoisomerase II alpha-gene expression in B-cell chronic lymphocytic leukaemias. Cancer Lett 1994;86:135-42.
[77] Ogretmen B, Safa AR. Expression of the mutated p53 tumor suppressor protein and its molecular and biochemical characterization in multidrug resistant MCF-7/Adr human breast cancer cells. Oncogene 1997;14:499-506.
[78] Habig WH, Pabst MJ, Jakoby WB. Glutathione S-Transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 1974;249:7130-9.
[79] Deryckere F, Gannon F. A one-hour minipreparation technique for extraction of DNA-binding proteins from animal tissues. Biotechniques 1994;16:405.
[80] 林俊宏. Quinazolinone衍生物加強抗癌藥物活性之研究: 碩士論文, 1998.
[81] 曾詩韻. Tryptanthrin衍生物DQ150及EY083抑制多重抗藥性的機制探討. 碩士論文, 1999.
[82] 尤松材. Tryotanthrin衍生物DQ150及EY083抑制MDR1和MRP1相關的多重抗藥性機制的探討: 碩士論文, 2000.
[83] Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002;2:48-58.
[84] Tew KD, Dutta S, Schultz M. Inhibitors of glutathione S-transferases as therapeutic agents. Adv Drug Deliv Rev 1997;26:91-104.
[85] Wang YC, Juric D, Francisco B, Yu RX, Duran GE, Chen GK, et al. Regional activation of chromosomal arm 7q with and without gene amplification in taxane-selected human ovarian cancer cell lines. Genes Chromosomes Cancer 2006;45:365-74.
[86] Martinez R, Chacon-Garcia L. The search of DNA-intercalators as antitumoral drugs: what it worked and what did not work. Curr Med Chem 2005;12:127-51.
[87] Goni JR, de la Cruz X, Orozco M. Triplex-forming oligonucleotide target sequences in the human genome. Nucleic Acids Res 2004;32:354-60.
[88] Daschner PJ, Ciolino HP, Plouzek CA, Yeh GC. Increased AP-1 activity in drug resistant human breast cancer MCF-7 cells. Breast Cancer Res Treat 1999;53:229-40.
[89] Gariboldi MB, Terni F, Ravizza R, Meschini S, Marra M, Condello M, et al. The nitroxide Tempol modulates anthracycline resistance in breast cancer cells. Free Radic Biol Med 2006;40:1409-18.
[90] Ogretmen B, Safa AR. Down-regulation of apoptosis-related bcl-2 but not bcl-xL or bax proteins in multidrug-resistant MCF-7/Adr human breast cancer cells. Int J Cancer 1996;67:608-14.
[91] Kim J, Freeman MR. JNK/SAPK mediates doxorubicin-induced differentiation and apoptosis in MCF-7 breast cancer cells. Breast Cancer Res Treat 2003;79:321-8.
[92] Townsend DM, Tew KD. The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 2003;22:7369-75.
[93] Mealey KL. Therapeutic implications of the MDR-1 gene. Journal of Veterinary Pharmacology and Therapeutics 2004;27:257-64.
[94] Sonneveld P, Wiemer E. Inhibitors of multidrug resistance. Curr Opin Oncol 1997;9:543-8.
[95] Li J, Xu LZ, He KL, Guo WJ, Zheng YH, Xia P, et al. Reversal effects of nomegestrol acetate on multidrug resistance in adriamycin-resistant MCF7 breast cancer cell line. Breast Cancer Res 2001;3:253-63.
[96] Kang H. Inhibition of MDR1 gene expression by chimeric HNA antisense oligonucleotides. Nucleic Acids Research 2004;32:4411.
[97] Nagata J, Kijima H, Hatanaka H, Asai S, Miyachi H, Abe Y, et al. Reversal of drug resistance using hammerhead ribozymes against multidrug resistance-associated protein and multidrug resistance 1 gene. Int J Oncol 2002;21:1021-6.
[98] Xu D, Hyunmin K, Michael F, Juliano RL. Strategies for inhibition of MDR1 gene expression. Molecular Pharmacology 2004;66:268-75.
[99] Tew KD, Bomber AM, Hoffman SJ. Ethacrynic acid and piriprost as enhancers of cytotoxicity in drug resistant and sensitive cell lines. Cancer Research 1988;48:3622-5.
[100] Clapper ML, Hoffman SJ, Tew KD. Sensitization of human colon tumor xenografts to L-phenylalanine mustard using ethacrynic acid. . J Cell Pharmacol 1990;1:71-8.
[101] Asakura T, Hashizume Y, Tashiro K, Searashi Y, Ohkawa K, Nishihira J, et al. Suppression of GST-P by treatment with glutathione-doxorubicin conjugate induces potent apoptosis in rat hepatoma cells. Int J Cancer 2001;94:171-7.
[102] Narang VS, Pauletti GM, Gout PW, Buckley DJ, Buckley AR. Sulfasalazine-induced reduction of glutathione levels in breast cancer cells: enhancement of growth-inhibitory activity of Doxorubicin. Chemotherapy 2007;53:210-7.
[103] Takada E, Hata K, Mizuguchi J. c-Jun-NH2-terminal kinase potentiates apoptotic cell death in response to carboplatin in B lymphoma cells. Cancer Chemother Pharmacol 2008;62:569-76.
[104] Bugg BY, Danks MK, Beck WT, Suttle DP. Expression of a mutant DNA topoisomerase II in CCRF-CEM human leukemic cells selected for resistance to teniposide. Proc Natl Acad Sci U S A 1991;88:7654-8.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42662-
dc.description.abstract化學治療是治療癌症常用且有效的療法,但是腫瘤細胞對抗癌藥物產生抗藥性是化學治療失敗的主要原因。而造成癌細胞多重抗藥性(multidrug resistance;MDR)的主因是細胞內某些酵素和蛋白質在量或功能上的改變,基本上可以分為輸送子(transporter)和非輸送子(non-transporter)路徑。輸送子產生的多重抗藥性主要是藉由ATP-binding cassette (ABC)蛋白的大量表現,改變藥物在細胞內的濃度;而穀胱甘肽硫轉移酶π (glutathione S-transferase π ; GSTπ)的過度表現而增加藥物代謝和藉由第二型拓樸異構酶(Topoisomerase II; Topo II)突變或降低表現量使藥物失去作用目標等二者,則是屬於非輸送子的路徑。
色胺酮(tryptanthrin)為一種indoloquinazoline類衍生物,根據以往的研究顯示對腫瘤細胞及多種真菌、細菌具有殺傷和抑制作用,抗發炎和調節免疫功能等藥用價值。我們利用兩種乳癌細胞株MCF-7/wt及對艾黴素(doxorubicin)有抗藥性的細胞MCF-7/adr,來研究色胺酮對癌細胞多重抗藥性的影響。由逆轉抗藥性的活性測試顯示,色胺酮具有明顯加強doxorubicin 細胞毒性的能力。利用羅丹明123(rhodamine 123)螢光染劑來測試色胺酮是否直接影響 P-gp的功能表現,發現羅丹明123在細胞內的累積量增加將近二倍。藉由定量聚合酵素鏈鎖反應(real-time PCR)實驗,我們證明10-6M色胺酮能降低MCF-7/adr細胞多重抗藥性基因1(MDR1,轉錄P-gp) mRNA的表現。觀察色胺酮對MDR1基因啟動子與轉錄因子結合能力的影響,發現色胺酮能藉由增加NF-κB/p65和c-Fos複合物與MDR1基因啟動子上CAAT區域結合能力,而負向控制MDR1基因的表現。此外,我們也發現色胺酮可縮短MCF-7/adr細胞內突變型p53蛋白的半衰期,增加細胞內野生型p53蛋白的比例,而抑制MDR1基因的表現。
在非transporter路徑方面,我們發現色胺酮也可以抑制穀胱甘肽硫轉移酶π基因的表現。藉由穀胱甘肽硫轉移酶活性分析,發現穀胱甘肽硫轉移酶活性的降低;但是色胺酮對第二型拓樸異構酶基因的表現並沒有看到明顯的影響。有研究報導穀胱甘肽硫轉移酶π蛋白能與c-Jun氨基末端激酶(JNK)結合而抑制c-Jun氨基末端激酶活性,從而影響細胞凋亡、增殖。經共同免疫沈澱法實驗進一步證實由於穀胱甘肽硫轉移酶π蛋白的減少,GSTπ-JNK結合的情形也降低,表示加入色胺酮後MCF-7/adr細胞中未結合的c-Jun氨基末端激酶比率增加。我們也發現當細胞加入艾黴素後此較高比率未結合的c-Jun氨基末端激酶蛋白容易被磷酸化,進而啟動JNK/SAPK (stress-activated protein kinase)路徑導致細胞凋亡。
由以上的結果發現色胺酮可以藉由增加NF-κB/p65和c-Fos複合物與MDR1基因啟動子上CAAT區域結合能力以及影響突變型p53蛋白的穩定,而抑制P-gp的表現。此外,在非輸送子機制方面,可以抑制穀胱甘肽硫轉移酶π蛋白的表現,釋放c-Jun氨基末端激酶使得此抗藥性細胞容易受抗癌藥物刺激而凋亡。目前臨床上使用的多重抗藥性抑制劑多為P-gp的受質,與抗癌藥物競爭P-gp的結合位,但色胺酮作用機制與傳統機制明顯不同,為逆轉癌細胞多重抗藥性的研究提供的新的方向。
zh_TW
dc.description.abstractDevelopment of agents to overcome multidrug resistance (MDR) is important in cancer chemotherapy. MDR arises from transporter and non-transporter based mechanisms during cancer chemotherapy. Transporter-based MDR mechanisms are mainly caused by the transport proteins of ATP-binding cassette (ABC) family. Overexpression of glutathione S-transferase π (GSTπ) and underexpression of Topoisomerase II (Topo II) are associated with multidrug resistance (MDR) phenotype through non-transporter pathway.
Up to date, few chemicals have been reported to down-regulate MDR1 gene expression. I evaluated the effect of tryptanthrin on P-glycoprotein (P-gp) mediated MDR in a breast cancer cell line MCF-7. When treated with doxorubicin, tryptanthrin at 10-6M could enhance cytotoxicity of doxorubicin leading to a 6.2-fold decrease in IC50, in MCF-7/adr cells. Tryptanthrin at 10-6M increased intracellular rhodamine 123 accumulation by 2 folds in MCF-7/adr cells, compared with the control. Using real-time PCR assay, tryptanthrin could depress overexpression of MDR1 gene. I observed reduction of P-gp protein in parallel with decreases in mRNA in MCF-7/adr cells treated with tryptanthrin. Tryptanthrin suppressed the activity of MDR1 gene promoter. Tryptanthrin also enhanced interaction of the nuclear proteins with the negatively regulatory CAAT region of MDR1 gene promoter in MCF-7/adr. It might result in suppression of MDR1 gene. In addition, tryptanthrin decreased the amount of mutant p53 protein with decreasing mutant p53 protein stability. It might contribute to negative regulation of MDR1 gene.
In terms of non-transporter pathway, tryptanthrin down-regulated GSTπ expression and reduced GSTπ protein and glutathione-S transferase activity, but had no effect on Topo II expression. Less production of GSTπ decomposed the protein-protein interactions of GSTπ and c-jun NH2-terminal kinase (JNK). The resulting free form JNK underwent phosphorylation upon elevated intracellular doxorubicin accumulation and subsequently activated JNK-mediated apoptosis. Tryptanthrin reverses MDR partly via modulating GSTπ-related pathway, a non-transporter pathway, in MCF-7/adr cells.
In conclusion, tryptanthrin exhibits MDR reversing effect by down-regulation of MDR1 gene and inhibition of GSTπ expression in conjuction with release of free JNK for activation of JNK/c-jun pathway. Results implicate that tryptanthrin may be a potential chemo-adjuvant agent, exhibiting MDR-reversing activity via transporter and non-transporter pathways.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:19:05Z (GMT). No. of bitstreams: 1
ntu-98-D91423002-1.pdf: 6157266 bytes, checksum: bbb3a379456abe1ac4abe3c4305ad98e (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents中文摘要……………………………………………………….......…...…….… I
Abstract……………………………………………………...……….....…..…. III
Table of Contents……………………….…………………..…....………….…. V
List of Figures……………………………………..…………..…………..… VIII
List of Tables…………………………………….……………….……...….…. X
Abbreviations…………………………………..…………………….…….….. XI

Chapter 1 Introduction……………….…….….….……………………........... 1
1.1 Transporter-based MDR……………….……………………..……....… 3
ATP-binding cassette (ABC) transporters………………..…….......... 3
P-glycoprotein (ABCB1, MDR1)………………………….……...…. 5
1.2 Non transporter-based MDR...…………………………………..........… 8
Glutathione S-transferases (GSTs)………………………….....…..… 8
Topoisomerases II………………………………………………….. 10
1.3 Molecular markers of multidrug resistance in breast cancer…….…… 12
1.4 Tryptanthrin……………………………………..……………….…… 14
1.5 Specific aims of the study………………………………………….… 16
Chapter 2 Materials and Methods……………………………………….….. 17
2.1 Chemicals…………..……………………………………………….… 18
2.2 Cell lines and cell culture………………..………………………….… 19
2.3 Cell survivability assay………………..…………………...…….…… 20
2.4 Rhodamine 123 (Rh-123) accumulation assay………..………….…... 21
2.5 Determination of gene expression by real-time quantitative RT-PCR.. 22
2.6 GST activity assay………..…………………………………………… 24
2.7 Determination of MDR1 copy number…………………..…………..... 26
2.8 Fluorescence melting curve analysis…………………..……………… 27
2.9 Electrophoretic mobility shift assay (EMSA)…………..………….…. 28
2.10 Construction of plasmids containing wild type MDR1 promoter..….. 30
2.11 Transient transfection and luciferase assay………………...……...… 31
2.12 Sequencing of full-length p53 cDNA…………………….……….…. 32
2.13 Pulse-chase labeling with [35S]-methionine and immunoprecipitation 33
2.14 Detection of apoptotic cells by flow cytometry using propidium iodide (PI) staining……………………………………..……………………….... 35
2.15 Detection of apoptosis by caspase 3/7 assay…………………..……... 36
2.16 Determination of apoptosis-related proteins………………….……… 37
2.17 Co-immunoprecipitation…..……………………………………...….. 38
2.18 Statistical analysis……………………………………………………. 39
Chapter 3 Results……………………………..……………………………... 40
3.1 Drug sensitivity and reversing effects of tryptanthrin…………........… 41
3.2 Trypyanthrin enhances intracellular Rhodmine-123 accumulation in MCF-7/adr cells……………………………………………….………. 42
3.3 Tryptanthrin down-regulates expression of MDR-related mRNAs and their proteins……………………………………………………………...… 44
3.4 Decreases in GST activity by tryptanthrin in MCF-7/adr cells…..….... 45
3.5 Tryptanthrin does not alter amplification state of MDR1 gene….….… 46
3.6 Tryptanthrin has the ability of DNA intercalation………………..…… 47
3.7 Tryptanthrin down-regulates MDR1 expression by interfering binding of CAAT motif with transcription factors……………………..………..... 48
3.8 Analysis of MDR1 promoter activity in MCF-7/adr cells……..………. 49
3.9 The effect of tryptanthrin on the expression of mutant or wild type p53 in MCF-7/wt and MCF-7/adr cells…………………………..…………… 50
3.10 Apoptosis enhanced upon tryptanthrin and doxorubicin co-treatment in MCF-7/adr cells………………………………………………..……… 52
3.11 Tryptanthrin does not affect expression of apoptosis-related proteins in MCF-7/adr cells…………………………………………..…………… 53
3.12 Tryptanthrin treatment decomposes GSTπ-JNK complex……...……. 54
Chapter 4 Discussion………………..…………………………..…..………. 55
4.1 Tryptanthrin inhibits MDR1 expression and alters intracellular distribution of anticancer agents…………………………………………….……... 56
4.2 Downregulation of GSTπ expression by tryptanthrin contributing to sensitization of MCF-7/adr cells………………….……………...……. 60
4.3 Conclusion………………...……………………………………...…… 63
References…………………………………………………………………..…. 64
Appendices………………………………………………………… 100
dc.language.isoen
dc.subjectc-Jun氨基末端激&#37238zh_TW
dc.subject穀胱甘&#32957zh_TW
dc.subject細胞凋亡zh_TW
dc.subject多重抗藥性基因1zh_TW
dc.subject逆轉多重抗藥性zh_TW
dc.subject色胺酮zh_TW
dc.subject硫轉移&#37238zh_TW
dc.subject艾黴素zh_TW
dc.subject多重抗藥性zh_TW
dc.subject乳癌zh_TW
dc.subjectπzh_TW
dc.subjectapoptosisen
dc.subjectbreast canceren
dc.subjectdoxorubicinen
dc.subjectGSTπen
dc.subjectJNKen
dc.subjectMCF-7en
dc.subjectMDR reversalen
dc.subjectMDR1en
dc.subjectmultidrug resistanceen
dc.subjectp53en
dc.subjecttryptanthrinen
dc.title色胺酮在抗藥性乳癌細胞株MCF-7/adr抑制多重抗藥性之機制zh_TW
dc.titleThe Mechanisms of Tryptanthrin Reversing Multidrug Resistance in a Breast Cancer Cell Line MCF-7/adren
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳擇銘,嚴仲陽,駱雨利,許麗卿
dc.subject.keyword乳癌,多重抗藥性,艾黴素,色胺酮,逆轉多重抗藥性,多重抗藥性基因1,穀胱甘&#32957,硫轉移&#37238,π,c-Jun氨基末端激&#37238,細胞凋亡,zh_TW
dc.subject.keywordapoptosis,breast cancer,doxorubicin,GSTπ,JNK,MCF-7,MDR reversal,MDR1,multidrug resistance,p53,tryptanthrin,en
dc.relation.page113
dc.rights.note有償授權
dc.date.accepted2009-07-27
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
6.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved