請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42654
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 呂紹俊 | |
dc.contributor.author | Chun-Yu Ma | en |
dc.contributor.author | 馬群毓 | zh_TW |
dc.date.accessioned | 2021-06-15T01:18:52Z | - |
dc.date.available | 2010-09-15 | |
dc.date.copyright | 2009-09-15 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-27 | |
dc.identifier.citation | 1. Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P. Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 2007; 18: 581-92.
2. Pu YS, Chiang HS, Lin CC, Huang CY, Huang KH, Chen J. Changing trends of prostate cancer in Asia. Aging Male 2004; 7: 120-32. 3. Kobayashi H. [Mechanism of tumor cell-induced extracellular matrix degradation--inhibition of cell-surface proteolytic activity might have a therapeutic effect on tumor cell invasion and metastasis]. Nippon Sanka Fujinka Gakkai Zasshi 1996; 48: 623-32. 4. Takeuchi T, Shuman MA, Craik CS. Reverse biochemistry: use of macromolecular protease inhibitors to dissect complex biological processes and identify a membrane-type serine protease in epithelial cancer and normal tissue. Proc Natl Acad Sci U S A 1999; 96: 11054-61. 5. Tanimoto H, Underwood LJ, Shigemasa K, et al. The matrix metalloprotease pump-1 (MMP-7, Matrilysin): A candidate marker/target for ovarian cancer detection and treatment. Tumour Biol 1999; 20: 88-98. 6. Shi YE, Torri J, Yieh L, Wellstein A, Lippman ME, Dickson RB. Identification and characterization of a novel matrix-degrading protease from hormone-dependent human breast cancer cells. Cancer Res 1993; 53: 1409-15. 7. Lee SL, Dickson RB, Lin CY. Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J Biol Chem 2000; 275: 36720-5. 8. Jin X, Yagi M, Akiyama N, et al. Matriptase activates stromelysin (MMP-3) and promotes tumor growth and angiogenesis. Cancer Sci 2006; 97: 1327-34. 9. Benaud CM, Oberst M, Dickson RB, Lin CY. Deregulated activation of matriptase in breast cancer cells. Clin Exp Metastasis 2002; 19: 639-49. 10. Oberst M, Anders J, Xie B, et al. Matriptase and HAI-1 are expressed by normal and malignant epithelial cells in vitro and in vivo. Am J Pathol 2001; 158: 1301-11. 11. Kang JY, Dolled-Filhart M, Ocal IT, et al. Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer Res 2003; 63: 1101-5. 12. Forbs D, Thiel S, Stella MC, et al. In vitro inhibition of matriptase prevents invasive growth of cell lines of prostate and colon carcinoma. Int J Oncol 2005; 27: 1061-70. 13. Vogel LK, Saebo M, Skjelbred CF, et al. The ratio of Matriptase/HAI-1 mRNA is higher in colorectal cancer adenomas and carcinomas than corresponding tissue from control individuals. BMC Cancer 2006; 6: 176. 14. Zeng L, Cao J, Zhang X. Expression of serine protease SNC19/matriptase and its inhibitor hepatocyte growth factor activator inhibitor type 1 in normal and malignant tissues of gastrointestinal tract. World J Gastroenterol 2005; 11: 6202-7. 15. Jin JS, Chen A, Hsieh DS, Yao CW, Cheng MF, Lin YF. Expression of serine protease matriptase in renal cell carcinoma: correlation of tissue microarray immunohistochemical expression analysis results with clinicopathological parameters. Int J Surg Pathol 2006; 14: 65-72. 16. Jin JS, Hsieh DS, Loh SH, Chen A, Yao CW, Yen CY. Increasing expression of serine protease matriptase in ovarian tumors: tissue microarray analysis of immunostaining score with clinicopathological parameters. Mod Pathol 2006; 19: 447-52. 17. Johnson MD, Oberst MD, Lin CY, Dickson RB. Possible role of matriptase in the diagnosis of ovarian cancer. Expert Rev Mol Diagn 2003; 3: 331-8. 18. Santin AD, Zhan F, Bellone S, et al. Gene expression profiles in primary ovarian serous papillary tumors and normal ovarian epithelium: identification of candidate molecular markers for ovarian cancer diagnosis and therapy. Int J Cancer 2004; 112: 14-25. 19. Tanimoto H, Shigemasa K, Tian X, et al. Transmembrane serine protease TADG-15 (ST14/Matriptase/MT-SP1): expression and prognostic value in ovarian cancer. Br J Cancer 2005; 92: 278-83. 20. Oberst MD, Johnson MD, Dickson RB, et al. Expression of the serine protease matriptase and its inhibitor HAI-1 in epithelial ovarian cancer: correlation with clinical outcome and tumor clinicopathological parameters. Clin Cancer Res 2002; 8: 1101-7. 21. Santin AD, Cane S, Bellone S, et al. The novel serine protease tumor-associated differentially expressed gene-15 (matriptase/MT-SP1) is highly overexpressed in cervical carcinoma. Cancer 2003; 98: 1898-904. 22. Lee JW, Yong Song S, Choi JJ, et al. Increased expression of matriptase is associated with histopathologic grades of cervical neoplasia. Hum Pathol 2005; 36: 626-33. 23. Galkin AV, Mullen L, Fox WD, et al. CVS-3983, a selective matriptase inhibitor, suppresses the growth of androgen independent prostate tumor xenografts. Prostate 2004; 61: 228-35. 24. Riddick AC, Shukla CJ, Pennington CJ, et al. Identification of degradome components associated with prostate cancer progression by expression analysis of human prostatic tissues. Br J Cancer 2005; 92: 2171-80. 25. Saleem M, Adhami VM, Zhong W, et al. A novel biomarker for staging human prostate adenocarcinoma: overexpression of matriptase with concomitant loss of its inhibitor, hepatocyte growth factor activator inhibitor-1. Cancer Epidemiol Biomarkers Prev 2006; 15: 217-27. 26. Nakamura K, Hongo A, Kodama J, et al. Expression of matriptase and clinical outcome of human endometrial cancer. Anticancer Res 2009; 29: 1685-90. 27. List K, Bugge TH, Szabo R. Matriptase: potent proteolysis on the cell surface. Mol Med 2006; 12: 1-7. 28. Shimomura T, Denda K, Kitamura A, et al. Hepatocyte growth factor activator inhibitor, a novel Kunitz-type serine protease inhibitor. J Biol Chem 1997; 272: 6370-6. 29. Kataoka H, Miyata S, Uchinokura S, Itoh H. Roles of hepatocyte growth factor (HGF) activator and HGF activator inhibitor in the pericellular activation of HGF/scatter factor. Cancer Metastasis Rev 2003; 22: 223-36. 30. Lin CY, Tseng IC, Chou FP, et al. Zymogen activation, inhibition, and ectodomain shedding of matriptase. Front Biosci 2008; 13: 621-35. 31. Hla T, Neilson K. Human cyclooxygenase-2 cDNA. Proc Natl Acad Sci U S A 1992; 89: 7384-8. 32. Williams CS, Smalley W, DuBois RN. Aspirin use and potential mechanisms for colorectal cancer prevention. J Clin Invest 1997; 100: 1325-9. 33. Morisset S, Patry C, Lora M, de Brum-Fernandes AJ. Regulation of cyclooxygenase-2 expression in bovine chondrocytes in culture by interleukin 1alpha, tumor necrosis factor-alpha, glucocorticoids, and 17beta-estradiol. J Rheumatol 1998; 25: 1146-53. 34. Gupta S, Srivastava M, Ahmad N, Bostwick DG, Mukhtar H. Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma. Prostate 2000; 42: 73-8. 35. Madaan S, Abel PD, Chaudhary KS, et al. Cytoplasmic induction and over-expression of cyclooxygenase-2 in human prostate cancer: implications for prevention and treatment. BJU Int 2000; 86: 736-41. 36. Gately S. The contributions of cyclooxygenase-2 to tumor angiogenesis. Cancer Metastasis Rev 2000; 19: 19-27. 37. Anai S, Tanaka M, Shiverick KT, et al. Increased expression of cyclooxygenase-2 correlates with resistance to radiation in human prostate adenocarcinoma cells. J Urol 2007; 177: 1913-7. 38. Pruthi RS, Derksen E, Gaston K. Cyclooxygenase-2 as a potential target in the prevention and treatment of genitourinary tumors: a review. J Urol 2003; 169: 2352-9. 39. Levy GN. Prostaglandin H synthases, nonsteroidal anti-inflammatory drugs, and colon cancer. FASEB J 1997; 11: 234-47. 40. Harris RE, Namboodiri KK, Farrar WB. Nonsteroidal antiinflammatory drugs and breast cancer. Epidemiology 1996; 7: 203-5. 41. Funkhouser EM, Sharp GB. Aspirin and reduced risk of esophageal carcinoma. Cancer 1995; 76: 1116-9. 42. Hsu AL, Ching TT, Wang DS, Song X, Rangnekar VM, Chen CS. The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2. J Biol Chem 2000; 275: 11397-403. 43. Mazzanti R, Platini F, Bottini C, Fantappie O, Solazzo M, Tessitore L. Down-regulation of the HGF/MET autocrine loop induced by celecoxib and mediated by P-gp in MDR-positive human hepatocellular carcinoma cell line. Biochem Pharmacol 2009; 78: 21-32. 44. Kulp SK, Yang YT, Hung CC, et al. 3-phosphoinositide-dependent protein kinase-1/Akt signaling represents a major cyclooxygenase-2-independent target for celecoxib in prostate cancer cells. Cancer Res 2004; 64: 1444-51. 45. Tjandrawinata RR, Dahiya R, Hughes-Fulford M. Induction of cyclo-oxygenase-2 mRNA by prostaglandin E2 in human prostatic carcinoma cells. Br J Cancer 1997; 75: 1111-8. 46. Tjandrawinata RR, Hughes-Fulford M. Up-regulation of cyclooxygenase-2 by product-prostaglandin E2. Adv Exp Med Biol 1997; 407: 163-70. 47. Rao R, Redha R, Macias-Perez I, et al. Prostaglandin E2-EP4 receptor promotes endothelial cell migration via ERK activation and angiogenesis in vivo. J Biol Chem 2007; 282: 16959-68. 48. Chen Y, Hughes-Fulford M. Prostaglandin E2 and the protein kinase A pathway mediate arachidonic acid induction of c-fos in human prostate cancer cells. Br J Cancer 2000; 82: 2000-6. 49. Loffler I, Grun M, Bohmer FD, Rubio I. Role of cAMP in the promotion of colorectal cancer cell growth by prostaglandin E2. BMC Cancer 2008; 8: 380. 50. Wang X, Klein RD. Prostaglandin E2 induces vascular endothelial growth factor secretion in prostate cancer cells through EP2 receptor-mediated cAMP pathway. Mol Carcinog 2007; 46: 912-23. 51. Fujino H, Xu W, Regan JW. Prostaglandin E2 induced functional expression of early growth response factor-1 by EP4, but not EP2, prostanoid receptors via the phosphatidylinositol 3-kinase and extracellular signal-regulated kinases. J Biol Chem 2003; 278: 12151-6. 52. Shaw LM, Rabinovitz I, Wang HH, Toker A, Mercurio AM. Activation of phosphoinositide 3-OH kinase by the alpha6beta4 integrin promotes carcinoma invasion. Cell 1997; 91: 949-60. 53. Park BK, Zeng X, Glazer RI. Akt1 induces extracellular matrix invasion and matrix metalloproteinase-2 activity in mouse mammary epithelial cells. Cancer Res 2001; 61: 7647-53. 54. Tanno S, Mitsuuchi Y, Altomare DA, Xiao GH, Testa JR. AKT activation up-regulates insulin-like growth factor I receptor expression and promotes invasiveness of human pancreatic cancer cells. Cancer Res 2001; 61: 589-93. 55. Woodgett JR. Recent advances in the protein kinase B signaling pathway. Curr Opin Cell Biol 2005; 17: 150-7. 56. Samuels Y, Diaz LA, Jr., Schmidt-Kittler O, et al. Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 2005; 7: 561-73. 57. Altomare DA, Testa JR. Perturbations of the AKT signaling pathway in human cancer. Oncogene 2005; 24: 7455-64. 58. Kaighn ME, Narayan KS, Ohnuki Y, Lechner JF, Jones LW. Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol 1979; 17: 16-23. 59. Albini A, Iwamoto Y, Kleinman HK, et al. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res 1987; 47: 3239-45. 60. Fujita H, Koshida K, Keller ET, et al. Cyclooxygenase-2 promotes prostate cancer progression. Prostate 2002; 53: 232-40. 61. List K, Szabo R, Molinolo A, et al. Deregulated matriptase causes ras-independent multistage carcinogenesis and promotes ras-mediated malignant transformation. Genes Dev 2005; 19: 1934-50. 62. Ihara S, Miyoshi E, Ko JH, et al. Prometastatic effect of N-acetylglucosaminyltransferase V is due to modification and stabilization of active matriptase by adding beta 1-6 GlcNAc branching. J Biol Chem 2002; 277: 16960-7. 63. Serhan CN, Yacoubian S, Yang R. Anti-inflammatory and proresolving lipid mediators. Annu Rev Pathol 2008; 3: 279-312. 64. Narayanan BA, Narayanan NK, Davis L, Nargi D. RNA interference-mediated cyclooxygenase-2 inhibition prevents prostate cancer cell growth and induces differentiation: modulation of neuronal protein synaptophysin, cyclin D1, and androgen receptor. Mol Cancer Ther 2006; 5: 1117-25. 65. Schonthal AH. Direct non-cyclooxygenase-2 targets of celecoxib and their potential relevance for cancer therapy. Br J Cancer 2007; 97: 1465-8. 66. Pang RP, Zhou JG, Zeng ZR, et al. Celecoxib induces apoptosis in COX-2 deficient human gastric cancer cells through Akt/GSK3beta/NAG-1 pathway. Cancer Lett 2007; 251: 268-77. 67. Tuynman JB, Vermeulen L, Boon EM, et al. Cyclooxygenase-2 inhibition inhibits c-Met kinase activity and Wnt activity in colon cancer. Cancer Res 2008; 68: 1213-20. 68. Gupta S, Adhami VM, Subbarayan M, et al. Suppression of prostate carcinogenesis by dietary supplementation of celecoxib in transgenic adenocarcinoma of the mouse prostate model. Cancer Res 2004; 64: 3334-43. 69. Narayanan BA, Narayanan NK, Pittman B, Reddy BS. Regression of mouse prostatic intraepithelial neoplasia by nonsteroidal anti-inflammatory drugs in the transgenic adenocarcinoma mouse prostate model. Clin Cancer Res 2004; 10: 7727-37. 70. Zhao Y, Zhou S, Heng CK. Celecoxib inhibits serum amyloid a-induced matrix metalloproteinase-10 expression in human endothelial cells. J Vasc Res 2009; 46: 64-72. 71. Kwak YE, Jeon NK, Kim J, Lee EJ. The cyclooxygenase-2 selective inhibitor celecoxib suppresses proliferation and invasiveness in the human oral squamous carcinoma. Ann N Y Acad Sci 2007; 1095: 99-112. 72. Nam DH, Park K, Park C, et al. Intracranial inhibition of glioma cell growth by cyclooxygenase-2 inhibitor celecoxib. Oncol Rep 2004; 11: 263-8. 73. Dandekar DS, Lopez M, Carey RI, Lokeshwar BL. Cyclooxygenase-2 inhibitor celecoxib augments chemotherapeutic drug-induced apoptosis by enhancing activation of caspase-3 and -9 in prostate cancer cells. Int J Cancer 2005; 115: 484-92. 74. Sperandio da Silva GM, Lima LM, Fraga CA, Sant'Anna CM, Barreiro EJ. The molecular basis for coxib inhibition of p38alpha MAP kinase. Bioorg Med Chem Lett 2005; 15: 3506-9. 75. Rayet B, Gelinas C. Aberrant rel/nfkb genes and activity in human cancer. Oncogene 1999; 18: 6938-47. 76. Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 1999; 18: 6853-66. 77. Wei D, Wang L, He Y, Xiong HQ, Abbruzzese JL, Xie K. Celecoxib inhibits vascular endothelial growth factor expression in and reduces angiogenesis and metastasis of human pancreatic cancer via suppression of Sp1 transcription factor activity. Cancer Res 2004; 64: 2030-8. 78. Maier TJ, Janssen A, Schmidt R, Geisslinger G, Grosch S. Targeting the beta-catenin/APC pathway: a novel mechanism to explain the cyclooxygenase-2-independent anticarcinogenic effects of celecoxib in human colon carcinoma cells. FASEB J 2005; 19: 1353-5. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42654 | - |
dc.description.abstract | 近期研究指出異常活化的間質蛋白酶(matriptase)可促使多種人類癌瘤形成與癌症轉移。希樂葆(Celebrex)原是一種非類固醇類抗發炎藥物(NSAIDs),但被認為具有治療癌症與對抗癌細胞轉移之功效。因此於本篇研究中,吾人除了檢測希樂葆對於間質蛋白酶活化過程之抑制外,同時也探討其對攝護腺癌細胞移動與侵襲能力的影響。吾人發現在給予攝護腺癌細胞(PC3 cells)希樂葆後,可顯著壓抑癌細胞之移動以及侵襲之能力, 同時也抑制了間質蛋白酶的活化。
希樂葆具有抑制攝護腺癌細胞轉移與移動的能力,可能是透過下列兩種方式:其一為亞型環氧化酶(cyclooxygenase 2,COX2)依賴型之機制;其二為非亞型環氧化酶依賴型之機制。在亞型環氧化酶依賴型機制方面,是因為在實驗中觀察到將亞型環氧化酶以基因剔除法(gene knockdown)抑制之後,可引發癌細胞之移動與侵襲能力的衰減;而透過此種方式所造成的衰減可以藉由添加前列腺素E2 (prostaglandin E2)或其訊息傳遞下游之第二訊息者(second messenger),環狀單磷酸腺酐(cAMP)之後,而將此衰減現象回復。以上所論述之結果已明顯指出亞型環氧化酶在攝護腺癌細胞轉移過程中其實占有相當角色。另一方面,吾人也觀察到希樂葆對於B型蛋白激酶(PKB/Akt)具有抑制的現象。但把亞型環氧化酶剔除後所造成對間質蛋白酶活化之影響不大,此結果顯示應有其他非環氧化酶依賴型機制參與間質蛋白酶活性的調控。因此吾人推論希樂葆可能透過抑制B型蛋白激酶來壓抑間質蛋白酶活化,此稱為非亞型環氧化酶依賴型機制。綜合以上結果,可以發現希樂葆明顯地表現出對於攝護腺癌細胞移轉以及間質蛋白酶抑制的現象,蛋兩者不存在因果關係。基於以上論點,希樂葆在未來具有潛力發展成為治療癌症與抗癌症轉移方面的藥物。 | zh_TW |
dc.description.abstract | Recent studies show that abnormal matriptase activation can promote tumor onset and cancer metastasis in human carcinomas, including prostate cancer. Celebrex, one of the NSAIDs, has been proposed to possess anti-metastatic and chemopreventive functions. In this study, we examined the effects of Celebrex on matriptase activation, prostate cancer cell migration and invasion. We found that administration of Celebrex to prostate cancer PC3 cells dramatically suppressed the cell migration and invasion, and concomitantly inhibited matriptase activation.
The inhibition of prostate cancer cell migration and invasion by Celebrex was via COX2-dependent and COX2-independent mechanisms. This was because COX2 silence in PC3 cells downregulated prostate cancer cell migration and invasion. Additions of PGE2 and its downstream second messenger cAMP could restore the cancer cell invasion which was suppressed by COX2 knockdown. Thus, the results indicated that COX2 played a role in prostate cancer cell invasion. On the other hand, Celebrex also inhibited Akt activation and the level of activated matriptase. Since we observed that COX2 silencing only had a marginally effect on the level of activated matriptase in PC3 cells, there was a COX2-independent mechanism for Celebrex to inhibit matriptase activation. The data taken together indicated that Celebrex exhibited an inhibitory role in matriptase activation, prostate cancer cell migration and invasion. Celebrex may be a potential candidate as a potent chemopreventive or therapeutic compound for prostate cancer. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T01:18:52Z (GMT). No. of bitstreams: 1 ntu-98-R96442017-1.pdf: 2194110 bytes, checksum: 5d121a6274ec3228da5c6e47dbc4ed0b (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 摘要 i
Abstract iii Chapter 1 Introduction 1 1.1 Human prostate cancer 2 1.2 Extracelluar matrix degradation and cancer metastasis 2 1.3 Matriptase (MTX) is involved in cancer progression 3 1.4 The processes of matriptase activation 4 1.5 COX2 in prostate cancer progression 6 1.6 Nonsteroidal anti-inflammatory drugs (NSAIDs) 7 1.7 Celebrex is a potential therapeutic compound for chemoprevetion. 8 1.8 COX2-dependent mechanisms of Celebrex-mediated cancer chemoprevention: interfering the PGE2/EP signaling pathway 9 1.9 COX2-independent mechanisms of Celebrex-mediated cancer chemoprevention: interfering PI3K/Akt signaling pathway 10 Chapter 2 Methods 11 2.1 Cell culture 12 2.2 Inhibitors treatment 13 2.3 MTT assay 13 2.4 Immunoblotting 14 2.5 RNAi for silencing COX-2 expression: transient transfection assays 15 2.6 Wound-healing assay 16 2.7 Transwell invasion assay 17 2.8 Statistical analysis 18 Chapter 3 Results 19 3.1 Protein levels of COXs and matriptase in human prostate cancer LNCaP and PC3 cells 20 3.2 COX inhibitors suppressed matriptase zymogen activation of PC3 cells. 21 3.2.1 Effects of COXs inhibitors on matriptase activation in COX1- and COX2- negative LNCaP cells. 21 3.2.2 Effects of COX inhibitors on matriptase activation in COX1- negative and COX2- positive PC3 cells. 21 3.3 Metabolic functions of COX2 in the matriptase activation of PC3 cells. 22 3.3.1 Enzymatic function of COX2 and its product modulated matriptase activation level. 22 3.3.2 cAMP augmented the activation level of matriptase in PC3 cells. 24 3.4 Knock-down of COX2 downregulated PC3 cell migration and invasion with a marginal effect on matriptase activation. 24 3.5 Celebrex disrupted the canonical PI3K-Akt pathway in human prostate cancer PC3 cells. 26 Chapter 4 Discussion 27 Chapter 5 Figures 32 Fig. 1 Protein levels of MTX and COXs in PC3 and LNCaP cells. 33 Fig. 2 Effects of indomethacin and Celebrex on MTX activation in LNCaP cells. 34 Fig. 3 Effects of indomethacin and Celebrex on MTX activation in PC3 cells. 35 Fig. 4 Effects of indomethacin and Celebrex on the cytotoxicity of PC3 cells. 36 Fig. 5 Effects of INN and Celebrex on PC3 cell migration by wound-healing assays. 37 Fig. 6 Effects of indomethacin and Celebrex on the cell invasion of PC3 cells by matrigel-transwell invasion assays. 38 Fig. 7 Effects of arachidonic acid (AA) on MTX activation in PC3 cells. 39 Fig. 8 Effects of eicosapentaenoic acid (EPA) on MTX activation in PC3 cells. 40 Fig. 9 Effects of PGE2 on the activation level of MTX in Celebrex-treated PC3 cells. 41 Fig. 10 Effects of 8-bromo cAMP on MTX activation in Celebrex-treated PC3 cells. 42 Fig. 11 Effects of COX2 knockdown on morphology and matriptase activation of PC3 cells. 43 Fig. 12 Effects of COX2 knockdown, PGE2 and cAMP on the cell migration and invasion of PC3 cells. 45 Fig. 13 Effects of Celebrex, LY294002 and AKT Inhibitor® on AKT and matriptase activation in PC3 cell. 47 Fig. 14 the schematic illustration for Celebrex-mediated inhibition of matriptase activation 49 Chapter 6 Appendix 50 Appendix 1: expression level of COX2 in COX2-silencd PC3 cells with or without PGE2 treatment 51 Appendix 2: effect of INN on activation of Akt in PC3 cells 51 Chapter 7 References 52 | |
dc.language.iso | en | |
dc.title | 探討希樂葆抑制間質蛋白酶活化及攝護腺癌細胞移動及侵襲之效用 | zh_TW |
dc.title | Celebrex-mediated inhibition of matriptase activation, migration and invasion in PC3 prostate cancer cells | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 李明學 | |
dc.contributor.oralexamcommittee | 林榮耀,張博淵 | |
dc.subject.keyword | 非類固醇類抗發炎藥物,希樂葆,間質蛋白酶,第二型肝細胞生長因子活化抑制者,環氧酶,攝護腺癌,前列腺癌,侵襲,轉移, | zh_TW |
dc.subject.keyword | NSAID,Celebrex,celecoxib,matriptase,HAI-1,cyclooxygenase,COX,prostate cancer,migration,invasion,metastasis, | en |
dc.relation.page | 64 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-27 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
顯示於系所單位: | 生物化學暨分子生物學科研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 2.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。