請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42616完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃漢邦(Han-Pang Huang) | |
| dc.contributor.author | Teng-Hu Chen | en |
| dc.contributor.author | 程登湖 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:17:48Z | - |
| dc.date.available | 2011-07-29 | |
| dc.date.copyright | 2009-07-29 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-27 | |
| dc.identifier.citation | [1] H. Aikawa, A. Morishima, H. Kondo, H.O. Lim, Y. Ogura, K. Shimomura, and A. Takanishi, “Development of a New Humanoid Robot WABIAN-2,” Proceedings of the IEEE International Conference on Robotics and Automation, Orlando, Florida, USA, pp. 76-81, May 2006.
[2] J. S. Bay and H. Hemami, “Modeling of a Neural Pattern Generator with Coupled Nonlinear Oscillators,” IEEE Transactions on Biomedical Engineering, Vol. BME-34, No. 4, pp. 279-306, April 1987. [3] H. Benbrahim, “Biped Dynamic Walking using Reinforcement Learning,” Dissertation, Department of Electrical Engineering, University of New Hampshire, 1996. [4] P. Baerlocher and R. Boulic, “Task-Priority Formulations for the Kinematic Control of Highly Redundant Articulated Structures,” Proc. of 1998 IEEE/RSJ IROS, Victoria B. C. Canada, vol.1, pp.323-329, 1998. [5] T. F. Chan and R. V. Dubey, “A Weighted Least-Norm Solution Based Scheme for Avoiding Joint Limits for Redundant Joint Manipulators,” IEEE Trans. On Robotics and Automation, vol. 11, no. 2, pp. 286-292, April 1995. [6] J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, and T. Kanade, “Footstep planning for the Honda ASIMO humanoid,” The Proceedings of IEEE International Conference on Robotics and Automation, Barcelona, Spain, April 18-22, 2005, pp629-634. [7] E.R. Dunn and R.D. Howe, “Foot Placement and Velocity Control in Smooth Bipedal Walking,” Proc. IEEE Int. Conf. on Robotics and Automation, vol. 1, pp. 578-583, April 1996. [8] Y. Fujimoto, S. Obata, and A. Kawamura, “Robust Biped Walking with Active Interaction Control between Foot and Ground,” Proc. IEEE Int. Conf. on Robotics and Automation, vol. 3, pp. 2030-2035, May 1998. [9] D. H. Gottlieb, “Robots and Topology,” Proc. IEEE Int. Conf. on Robotics and Automation, San Francisco, California, 1986, pp. 1689-1691. [10] A. Goswami, “Postural Stability of Biped Robots and the Foot-Rotation Indicator (FRI) Point,” Int. Journal of Robotics Research, vol. 18, no. 6, pp. 523-533, 1999. [11] M. Hayase and K. Ichikawa, “Optimal Servosystem Utilizing Future Value of Desired Function,” Transactions of SICE, Vol.5, No.1, pp.86-94,1969 [12] K. Hirai, M. Hirose, Y. Haikawa, and T. Takenaka, “The development of honda humanoid robot,” Proc. IEEE Int’l Conf. on Robotics and Automation (ICRA’98), May 1998, pp. 1321–1326. [13] Q. Huang and K. Yokoi, “Balance Control of a Biped Robot Combining Off-line Pattern with Real-time Modification,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 3346-3352, 2000. [14] Q. Huang and K. Yokoi, “Planning Walking Patterns for a Biped Robot,” IEEE Trans. on Robotics and Automation, vol. 17, no. 3, pp. 280-289, June 2001. [15] K. Harada, M. Morisawa, K. Miura, S. I. Nakaoka, K. Fujiwara, K. Kaneko, S. Kajita, “Kinodynamic Gait Planning for Full-Body Humanoid Robots,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, pp. 1544-1550, Sept, 22-26, 2008. [16] S. Ito, H. Kawasaki, “A Standing Posture Control Based on Ground Reaction Force,” Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, Takamatsu, Japan, vol.2, pp. 1340-1345, October, 31- November, 05, 2000. [17] T. Katayama, T. Ohki, T. Inoue and T. Kato, “Design of an Optimal Controller for a Discrete Time System Subject to Previewable Demand,” Int. J. Control, vol.41, No.3, pp.677-699, 1985. [18] S. Kagami, F. Kanehiro, Y. Tamiya, M. Inaba, and H. Inoue, “AutoBalancer: An Online Dynamic Balance Compensation Scheme for Humanoid Robots,” Proceedings of the 4th International Workshop on Algorithmic Foundation on Robotics (WAFR’00), 2000. [19] S. Kagami, K. Nishiwaki, Kitagawa, T., Sugihiara, T, Inaba, M. and Inoue, H., “A Fast Generation Method of a Dynamically Stable Humanoid Robot Trajectory with Enhanced ZMP Constraint,” Proceedings of IEEE International Conference on humanoid Robotics, 2000. [20] S. Kagami, “A Fast Dynamically Equilibrated Walking Trajectory Generation Method of Humanoid Robot,” Autonomous Robots, vol.12, no.1, pp. 71-82, 2002. [21] S. Kajita, F. Kanehiro, and K. Kaneko, “Resolved Momentum Control: Humanoid Motion Planning based on the Linear and Angular Momentum,” Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, vol. 2, pp. 1644-1650, July 1993. [22] S. Kajita and K. Tani, “Experimental Study of Biped Dynamic Walking in the Linear Inverted Pendulum Mode,” Proceedings IEEE International Conference on Robotics and Automation, Nagoya, Japan, vol. 3, pp. 2885-2819, May 21-27, 1995. [23] S. Kajita, O. Matsumoto, and M. Saigo, “Real-time 3D Walking Pattern Generation for a Biped Robot with Telescopic Legs,” Proc. IEEE Int. Conf. on Robotics and Automation, Seoul, Korea, vol. 3, pp. 2299-2306, May 2001. [24] S. Kajita, F. Kanehiro, and K. Kaneko, “A Realtime Pattern Generation for Biped Walking,” Proc. IEEE Int. Conf. on Robotics and Automation, Washington, D.C., USA, vol. 1, pp. 31-37, May 2002. [25] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa,” Biped Walking Pattern Generation by using Preview Control of Zero-Moment Point,” Proc. IEEE Int. Conf. on Robotics & Automatio,. pp 1620-1626, 2003. [26] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa, 'Resolved Momentum Control: Humanoid Motion Planning based on the Linear and Angular Momentum,' IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1644-1650, 2003. [27] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata, K. Akachi, T. Isozumi,“Humanoid robot HRP-2,” Proc. of the 2004 IEEE International Conference on Robotics & Automation, New Orleans, LA, April 2004. [28] A. Liegeois, “Automatic Supervisory Control of the Configuration and Behavior of Multibody Mechanisms,” IEEE Trans. systems, Man, and Cybernetics, vol. 7, no. 12, 1997. [29] H. O. Lim, S.A. Setlawan, A. Takanishi, “Position-based impedance control of a biped humanoid robot,” Advanced Robotics, Vol. 18, No. 4, pp. 415–435, 2004. [30] J. Y. Lee, M. S. Kim, and J. J. Lee, “Multi-Objective Walking Trajectories Generation for a Biped Robot,” Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 3853-3858, Oct. 2004. [31] H. Minakataand Y. Hori, “Realtime Speed-changeable Biped Walking by Controlling the Parameter of Virtual Inverted Pendulum,” IEEE IECON’94, Bologna, pp. 1009-1014, 1994. [32] A. Morishima, Hun-ok Lin, and A. Takanishi, “Development of a Humanoid Robot Having 2-DOF Waist and 2-DOF Trunk,” Proc. IEEE-RAS Int. Conf. on Humanoid Robots, pp. 333 – 338, Dec. 2005. [33] M. Morisawa, K. Harada, S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, S. Nakaoka and H. Hirukawa, “A Biped Pattern Generation Allowing Immediate Modifications of Foot Placement in Real-time”, Proc. IEEE-RAS Int. Conference on Humanoid Robotics, 4-6, December, 2006. [34] Y. Nakamura and H. Hanafusa, “Inverse Kinematics Solutions with Singularity Robustness for Robot Manipulator Control,” ASME Journal of Dynamic Systems, Measurement and Control, 108, pp. 163-171, 1986. [35] K. Nagasaka, H. Inoue, and M. Inaba, “Dynamic Walking Pattern Generation for a Humanoid Robot Based on Optimal Gradient Method,” Proc. IEEE Int. Conf. on System Cybern, vol. 6, pp. 908- 913, 1999. [36] K. Nishiwaki, S. Kagami, “Online Walking Control System for Humanoids with Short Cycle Pattern Generation,” The International Journal of Robotics Research 2009, pp 729-742. [37] J. Pratt and G. Pratt, “Exploiting natural dynamics in the control of a 3d bipedal walking simulation,” Proc. of Int. Conf. on Climbing and Walking Robots (CLAWAR99), Sept. 1999. [38] J. H. Park and H. C. Cho, “An On-line Trajectory Modifier for the Base Link of Biped Robots to Enhance Locomotion Stability,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 3353-3358, 2000. [39] J. H. Park, “Impedance Control for Biped Robot Locomotion,” IEEE Trans. On Robotics and Automation, vol. 17, no. 6, pp. 870-882, Dec. 2001. [40] T.B. Sheridan, “Three Models of Preview Control,” IEEE Transaction on Human Factors in Electronics, 7-2, 1966. [41] T. Sugihara, Y. Nakamura and H. Inoue, “Realtime Humanoid Motion Generation through ZMP Manipulation based on Inverted Pendulum Control,” Proc. of ICRA 2002, pp.1404-1409, 2002.,T., Nakamura,Y. and Inoue, H.: Realtime Humanoid Motion Generation through ZMP Manipulation based on Inverted Pendulum Control, Proc. of ICRA 2002, pp.1404-1409, 2002. [42] T. Sugihara, “Mobility Enhancement Control of Humanoid Robot based on Reaction Force Manipulation via Whole Body Motion,” Ph.D Dissertation, Department of Mechano-Engineering, University of Tokyo, 2003. [43] T. Sugihara, Y. Nakamura, “A Fast Online Gait Planning with Boundary Condition Relaxation for Humanoid Robot,” Proceedings. of IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 305-310, 18-22 April, 2005. [44] M. Tomizuka and D.E. Rosenthal, “On the Optimal Digital State Vector Feedback Controller with Integral and Preview Actions,” Trans. of the ASME, J. of Dyn. Sys. Meas. Contr., 101, pp.172-178, 1979. [45] A. Takanishi, Lim, H.,Tsuda, M. and Kato, I., “Realization of Dynamic Biped Walking Stabilized by Trunk Motion on a Sagittally Uneven Surface,” Proceedings of IEEE International Workshop on Intelligent Robots and Systems (IROS ’90), pp.323-330, 1990. [46] Y. Umetani and K. Yoshida, “Resolved Motion Rate Control of Space Manipulators with Generalized Jacobian Matrix,” IEEE Trans. on Robotics and Automation, Vol.5, No.3, pp.303-314, 1989. [47] M. Vukobratovic, B. Borovac, D. Surla, andD. Stokic, “Biped Locomotion,” Scientific Fundamentalsof Robotics 7, Springer-Verlag, 1989. [48] M. Vukobratovic, B. Borovac, D. Surla, and D. Stokic, “Biped Locomotion: Dynamics, Stability, Control Applications,” Berlin: Springer-Verlag, 1990. [49] M. Vukobratovic, D. Andric, and B. Borovac, “How to Archieve various Gait Patterns from Single Nominal,” Int. Journal of Advanced Robotic Systems, vol. 1, no. 2, pp. 99-108, 2004. [50] W.L. Wooten and J.K. Hodgins, “Simulating Leaping,Tumbling, Landing and Balancing Humans,” Proc. of 2000 ICRA, pp.656-662, 2000. [51] M. Xie, “Fundamentals of Robotics: Linking Perception to Action,” World Scientific, Series in Machine Perception Artificial Intelligence, vol.54, 2003. [52] J. Yamaguchi, A. Takanishi, and I. Kato, “Development of a Biped Walking Robot Compensating for Three-Axis Moment by Trunk Motion,” Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 561-566, July 1993. [53] J. Yamaguchi, S. Inoue, D. Nishino, and A. Takanishi, “Development of a bipedal humanoid robot having antagonistic driven joints and three D.O.F. trunk,” in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS’98), 1998, pp. 96–101. [54] J. Yamaguchi, E. Soga, S. Inoue, and A. Takanishi, “Development of a Bipedal Humanoid Robot- Control Method of Whole Body Cooperative Dynamic Biped Walking,” Proc. IEEE Int. Conf. on Robotics and Automation, pp. 361-367, 1999. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42616 | - |
| dc.description.abstract | 為了達成智慧型機器人的穩定行走,本論文的目的在於建立機器人全身重心軌跡規劃器、即時重心軌跡與腳步改變控制器、腳踝穩定控制器、視覺輔助腳步軌跡規劃器,由這些控制器的組合,人型機器人才能穩定地行走在崎嶇的路面上,智慧地判斷並規劃出適合自己行走的路徑。最後,為了減少移動能量與重量,我們設計出較大荷重與質量比值的腳部機構來安裝在重量被嚴格受限的人型機器人上。
在重心軌跡規劃生成方面,我們使用Preview Control 來生成重心軌跡,但有鑑於此控制方法,有著不易即時改變步態的缺點,所以我們提出了腳步即時改變控制器,結合此兩種控制器的優點,可使機器人達到步態與重心的即時規劃,以及更高的行走自由度。而腳踝穩定控制器是用來強化機器人的行走穩定性,藉由此控制器,可以穩定地行走於大部分的小崎嶇路面。視覺是機器人的智慧之窗,所以我們靠著機器人立體視覺的寶貴資訊加上視覺輔助行走軌跡規劃,賦予機器人智慧,這種智慧可以讓機器人分析自己身處的環境,並進一步分析出障礙物位置分佈與可行走的路徑,憑藉著兩者的結合,機器人能獨立地行走至目的地。最後,為了減少移動能量與重量,我們利用有限元素應力分析,來去除多餘的材料,並保持結構的強度,設計出較 大荷重與質量比值的腳部機構。 我們模擬的物理環境均建立在ADAMS上,而所有的控制程式均在MATLAB上撰寫,兩者透過MATLAB的Simulink做連結。而機構的應力分析應用SolidWorks之CosmosWorks軟體做驗證。 關鍵字: Preview Control、腳踝穩定器、軌跡規劃、回饋線性化、強韌控制、軌跡即時變化。 | zh_TW |
| dc.description.abstract | To achieve stable walking by an intelligent humanoid robot, this thesis proposes a center of gravity (COG) trajectory planner, immediate change footstep controller, ankle stabilizer, and stereo vision assisted footstep planner. After assembling these elements, the humanoid robot walked stably on rugged terrain and explored a road suitable for walking. Finally, to reduce energy and weight, we designed a leg mechanism with a larger weight to mass ratio for use on our strictly weight-limited humanoid robot.
For COG trajectory generation, we used a preview control COG generator for intelligent walking. Due to the difficulties after a sudden change of footsteps, we proposed an immediate modification of the foot placement controller. Combining the advantages of the two controllers, we planned the footsteps and COG trajectory dynamically and the robot walked more freely. The ankle stabilizer was implemented to reinforce walking stability. Utilizing the controllers, our robot walked stably on the most rugged terrain. Finally, stereo vision is the window into the core of our humanoid robot. We made our humanoid robot more intelligent by composing stereo vision data and dynamic footstep planning. With this intelligence, the robot could analyze, all by itself, its environment and find the locations of obstacles, accessible regions, and the route to its destination. Finally, in order to reduce the weight and energy consumption of the humanoid robot, we used Finite Element stress analysis to remove any unnecessary materials and, on the other hand, to keep the structure strong enough to maximize the payload. Finally, our simulation physical environment was constructed on ADAMS, and all of the control code was built in MATLAB. These two environments are connected by Simulink in MATLAB. Stress analysis was done using COSMOSWorks in SolidWorks. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:17:48Z (GMT). No. of bitstreams: 1 ntu-98-R96522815-1.pdf: 2582620 bytes, checksum: 555ca859b203d4eb9966890ac2519fd2 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iv Contents vi List of Tables viii List of Figures ix Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Related Works 3 1.2.1 Autonomous Navigation 4 1.2.2 Stable Gait Generation 5 1.2.3 Stabilization Controller 7 1.3 Thesis Organization 9 1.4 Contribution 10 Chapter 2 Kinematics of Robotics System and Preview Control 12 2.1 Forward Kinematics 12 2.2 Inverse Kinematics 13 2.2.1 Singularity Avoidance 13 2.2.2 Joint Limit Avoidance 15 2.3 Walking Pattern Generation 17 2.3.1 Preview Control Based Walking Pattern Generation 19 2.4 Immediately Change of Foot Placement 25 2.4.1 Introduction 25 2.4.2 Double Support Phase Trajectory 26 2.4.3 Single Support Phase Trajectory 28 2.4.4 Connection of Single and Double Support Phase 30 2.4.5 Simulations 32 2.5 Summary 35 Chapter 3 Controller Design 36 3.1 Introduction 36 3.2 Ankle Based Posture Controller 37 3.2.1 Dynamics Modeling 37 3.2.2 Controller Design 42 3.3 Simulations 43 3.4 Summary 49 Chapter 4 Momentum Control 51 4.1 Introduction 51 4.2 Momentum Equation 53 4.2.1 General Form 53 4.2.2 Momentum about the Foot of the Fixed Leg 54 4.3 Jacobian Matrix 56 4.3.1 Fixed Leg Jacobian 56 4.3.2 COG Jacobian 60 4.4 Jacobian for Momentum Control 64 4.5 Summary 71 Chapter 5 Vision-Guided Footstep Planning 72 5.1 Introduction 72 5.2 Environment Model 74 5.3 Planning Algorithm 77 5.3.1 Overview 77 5.3.2 A* Planner 77 5.4 Path Smoothing 82 5.5 Summary 85 Chapter 6 Mechanism Design 87 6.1 Introduction 87 6.2 Mechanical Structure Design 88 6.2.1 Arrangement of the Joints 88 6.2.2 Movable Range of Joints 89 6.2.3 Selection of Materials 91 6.2.4 Structure Stress Analysis 92 6.3 Selection of Actuators and Transmission 99 6.3.1 Actuator 99 6.3.2 Transmission 102 Chapter 7 Conclusions 106 7.1 Conclusions 106 7.2 Future Works 108 References 109 | |
| dc.language.iso | en | |
| dc.subject | 軌跡即時變化 | zh_TW |
| dc.subject | 腳踝穩定器 | zh_TW |
| dc.subject | 軌跡規劃 | zh_TW |
| dc.subject | 回饋線性化 | zh_TW |
| dc.subject | 強韌控制 | zh_TW |
| dc.subject | immediate modification of foot placemen | en |
| dc.subject | ankle stabilizer | en |
| dc.subject | trajectory planner | en |
| dc.subject | feedback linearization | en |
| dc.subject | robust control | en |
| dc.title | 人型機器人智慧行走控制 | zh_TW |
| dc.title | Humanoid Robot Intelligent Walking Control | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳介力(Chieh-Li Chen),葉廷仁(Ting-Jen Yeh) | |
| dc.subject.keyword | 腳踝穩定器,軌跡規劃,回饋線性化,強韌控制,軌跡即時變化, | zh_TW |
| dc.subject.keyword | ankle stabilizer,trajectory planner,feedback linearization,robust control,immediate modification of foot placemen, | en |
| dc.relation.page | 113 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-27 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
