請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42576完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王自存 | |
| dc.contributor.author | Ying-Chin Liu | en |
| dc.contributor.author | 劉盈勤 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:16:43Z | - |
| dc.date.available | 2016-08-22 | |
| dc.date.copyright | 2011-08-22 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-15 | |
| dc.identifier.citation | 1. 王自存. 2008. 園產品處理學與實習講義. 國立台灣大學園藝系. 台北.
2. 李嘉慧、李哖. 1991. 臺灣蝴蝶蘭根和葉的形態與解剖的特性.中國園藝. 37(4):237-248. 3. 李哖、林雨森. 1992. 蝴蝶蘭花朵之呼吸作用. 中國園藝. 38:228-240. 4. 沈再木、徐善德. 2007. 蝴蝶蘭栽培. 國立嘉義大學編印. 127pp. 5. 林雨森. 1988. 蝴蝶蘭切花採後生理與老化. 國立台灣大學園藝系碩士論文. 109pp. 6. 林鄉薰. 2001. 1-MCP與乙烯前處理對盆花及切花壽命及品質之影響. 國立臺灣大學園藝系碩士論文. 101pp. 7. 洪睿焄. 2010. 保鮮處理與貯運方式對火鶴花切花品質之影響. 國立臺灣大學園藝學研究所碩士論文. 133pp. 8. 高景輝. 2006. 植物賀爾蒙生理. 華香園出版社. 556pp. 9. 連程翔. 1995. 唐菖蒲與蝴蝶蘭採收後生理之研究. 國立台灣大學園藝系碩士論文. 台北. 10. 陳加忠. 2002. 蝴蝶蘭切花生產之技術與市場. 國立中興大學網站 < http://amebse.nchu.edu.tw/new_page_347.htm > 11. 曹又銘. 1982. 氨基醋酸及硫代硫酸銀對康乃馨切花品質及壽命之影響. 國立台灣大學園藝系碩士論文. 12. 黃敏展. 1992. 亞熱帶花卉學總論. 國立中興大學園藝系發行. 369pp. 13. 黃肇家. 1995. 蝴蝶蘭切花低溫生理障礙之研究. 國立台灣大學園藝系博士論文. 170pp. 14. 黃肇家. 1998. 文心蘭切花之乙烯生成以及外加乙烯與去除花要蓋對花朵品質之影響. 中華農業研究. 47(2):125-134. 15. 楊玉婷. 2010. 全球蘭花發展現況與未來展望兼論我國蝴蝶蘭與文心蘭發展策略. 台灣經濟研究月刊. 33(3):33-41. 16. 蔡佳容. 2003. 乙烯及乙烯抑制劑對洋桔梗切花瓶插壽命之影響. 國立台灣大學園藝系碩士論文. 98pp. 17. 蔡智賢、郭銀港、鄭仔秀、李堂察. 1999. 洋桔梗花瓣老化過程中微細構造之變化. 中國園藝. 45:305-316. 18. Adams, D. O. and S. F. Yang. 1979. Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in coversion of methionine to ethylene. Proc. Natl. Acad. Sci. USA. 76:170-174. 19. Akamine, E. K., 1963. Ethylene production in fading Vanda orchid blossoms. Sci. 140:1217-1218. 20. Arditti, J., 1979. Aspects of the physiology of orchids. p422-656. In: H. W. Woolhouse ( ed ). Advances in botanical research, vol 7 Academic Press. London. 21. Baker, J. E., C. Y. Wang, M. Lieberman and R. Hardenburg. 1977. Delay of senescence in carnations by a rhizobitoxine analog and sodium benzoate. Hort. Sci. 12(1):38-39. 22. Barden, L. E. and J. J. Hanan. 1972. Effects of ethylene on carnation keeping life. J. Amer. Soc. Hort. Sci. 97(6):785-788. 23. Borochov, A. and W. R. Woodson. 1989. Physiology and biochemistry of flower petal senescence. Hort. Rev. 11:12-47. 24. Borochov, A., T. Tirosh and S. Mayak. 1986. The fate of membrane proteins during flower senescence. Acta Hort. 181:75-80. 25. Burg, S. P. and M. J. Dijkman. 1967. Ethylene and auxin participation in pollen induced fading of vanda orchid blossoms. Plant Physiol. 42:1648-1650. 26. Burdett, A. N. 1970. The cause of bent neck in cut roses. J. Amer. Soc. HortScience. 95(4):427-431. 27. Cameron, A. C. and A. S. Reid, 1981. The use of silver thiosulfate complex as foliar spray to prevent flower abscission in zygocactus. Hort. Sci. 16:761-762. 28. Cameron, A. C. and M. S. Reid, 1983. Use of silver thiosulfate to prevent flower abscission from potted plants. Hort. Sci. 19:373-378. 29. Camprubi, P. and R. Nichols. 1978. Effects of ethylene on carnation flowers ( Dianthus caryophyllus ) cut at different stages of development. Hort. Sci. 53:17-22. 30. Carpenter, W. J. and H. P. Rasmussen. 1973. Water uptake rates by cut rose ( Rosa hybrid ) in light and dark. J. Amer. Soc. Hort. Sci. 98:309-313. 31. Chandran, S., C.L. Toh, Y.K. Yip, H. Nair, and A.N. Boyce. 2006. Effect of sugars and Aminooxyacetic acid on longevity of pollinated Dendrobium (Heang Beauty) flowers. Journal of Applied Horticulture. 8(2): 117-120. 32. Davidson, O. W., 1949. Effects of ethylene on orchid flowers. Proc. Amer. Soc. Hort. Sci. 53:440-446. 33. De Stigter, H. C. M. and A. G. M. Broekhuysen. 1989. Seconary gas embolism as an effect of disturbed water balance in cut rose. Acta Hort. 261:12-26. 34. Durkin, D. and R. Kuc. 1966. Vascular blockage and senescence of cut rose flower. Pro. Amer. Soc. Hort. Sci. 105(6):865-869. 35. Elgar, H. J., A. B. Woolf, and R. L. Bieleski. 1999. Ethylene production by three lily species and their response to ethylene exposure. Postharvest Biol. Technol. 16: 257-267. 36. Faragher, J. D., E. Wachtel and S. Mayak. 1987. Change in the physical state of membrane lipids during senescence of rose petals. Plant Physiol. 83:1037-1042. 37. Fujino D. W., M.S. Reid and S. F. Yang. 1980. Effects of aminooxyacetic acid on postharvest characteristics of carnation. Acta Hort. 113:59-64. 38. Goh, C. J., A. H. Halevy, R. Engel and A. M. Kofranek. 1985. Ethylene evolution and sensitivity in cut orchids flowers. Hort. Sci. 26:57-67. 39. Goszczynska, D. M. and M. S. Reid. 1985. Studies on the development of tight cut rose buds. Acta Hort. 167:101-108. 40. Halevy A.H. 1976. Treatments to improve water balance of cut flowers. Acta Hort. 64:223-230. 41. Halevy, A. H. 1986. Flower senescence. P. 142-161. In: Y. Y. Lesham, A. H. Halevy and C. Frenkle, ( eds ). Process and control of plant senescence. Elsevier Science Pub. 42. Halevy, A. H. and S. Mayak. 1979. Senescence and postharvest physiology of cut flowers part 1. Hort. Rev. 1:204-236. 43. Halevy, A. H. and S. Mayak. 1981. Senescence and postharvest physiology of cut flowers, part 2. Hort. Rev. 3: 59-143. 44. Halevy, A. H., S. Mayak, T. Tirosh, H. Shiegelstein, and A. M. Kofranek. 1974. Opposing effects of abscisic acid on senescence of rose flowers. Plant Cell Physiol. 15: 813-821. 45. Hew, C. S. and J. W. H. Yong. 1997. Chapter 8. Flower senescence and postharvest physiology. p. 245-287. The physiology of tropical orchids in relation to the industry. 2nd ed. World Scientific. Singapore. 46. Ichimura, K. and K. Suto. 1999. Effect of the time of sucrose treatment on vase life, soluble carbohydrate concentrations and ethylene production in cut sweet pea flowers. Plant Growth Regul. 28:117-122. 47. Ichimura, K. and M. Korenaga. 1998. Improvement of vase life and petal color expression in several cultivars of cut Eustoma flower using sucrose with 8-hydroxyquinoline sulfate. Bull. Natl. Res. Veg. Ornam. Plant Tea. Jpn. 13:31-39. 48. Ichimura, K., M. Shimamura and T. Hisamatsu. 1998. Role of ethylene in senescence of cut Eustoma flowers. Post. Biol. and Tech. 14:193-198. 49. Ichimura, K. and T. Hiraya. 1999. Effect of silver thiosulfate complex (STS) in combination with sucrose on the vase life of cut sweet pea flowers. J. Japan. Soc. Hort. Sci. 68:23-27. 50. Ichimura, K. and T. Hisamatsu. 1999. Effects of continuous treatment with sucrose on the vase life, soluble carbohydrate concentrations, and ethylene production of cut snapdragon flowers. J. Japan. Soc. Hort. Sci. 68:61-66. 51. Kende, H. and B. Baumgartner. 1974. Regulation of aging in flowers of Ipomoea tricolor by ethylene. Planta. 116:279-289. 52. Kende, H. and A. D. Hanson. 1976. Relationship between ethylene evolution and senescence in morning glory flower tissue. Plant Physiol. 57:523-527. 53. Ketsa, S. and A. Rugkong. 2000. Ethylene production, senescence and ethylene sensitivity of Dendrobium ‘Pompadour’ flowers following pollination. Journal of Horticultural Science & Biotechnology. 75(2): 149-153. 54. Ketsa, S. and A. Rugkong. 2000. The role of ethylene in enhancing the initial ovary growth of Dendrobium ‘Pompadour’ following pollination. Journal of Horticultural Science & Biotechnology. 75(4): 451-454. 55. Ketsa, S. and K. Luangsuwalai. 1996. The relationship between 1-aminocyclopropane-1-carboxylic acid content in pollnia, ethylene production and senescence of pollinated Dendrobium orchid flowers. Postharvest Biology and Technology. 8: 57-64. 56. Kirchner J., O. Schmidt, J. Jung and W. Rademacher. 1993. Effects of novel oxime ether derivate of aminooxyacetic acid on ethylene formation in leaves of oilseed rape and barley and on carnation senescence. Plant Growth Regul. 13:41-46. 57. Kiyoshi, O.,Y. Kasahara and J. N. Suh. 1999. Mobility and effects on vase life of silver-cintaining compounds in cut rose flowers. Hort. Sci. 34(1):112-113. 58. Kluge, M. I and P. Ting. 1978. Crassulacean acid metabolism: an ecological analysis. Ecological studies series, vol. 30. Springer-Verlag, Berlin, Germany. 59. Koike, Y. and H. Imanishi. 2009. Effects of silver thiosulfate complex (STS), sucrose, surfactant and their combination on the vase life of cut flower of Lathyrus latifolius L. Acta Hort. 813:679-684. 60. Kohl, H. C. and D. L. Rundle. 1972. Decreasing water loss of cut rose with abscise acid. HortScience. 7:249. 61. Lau, O. L. and S. F. Yang. 1976. Inhibition of ethylene production by cobaltous ion. Plant Physiol. 58:114-117. 62. Lineberger, R. D. and P. L. Steponkus. 1976. Identification and localization of vascular occlusion in cut roses. J. Amer. Sco. Hort. Sci. 101:246-250. 63. Lukaszewska, A. J., J. Tonecki, E. J. Woltering and N. Gorin. 1990. Effect of ethylene and silver thiosulfate on vase life of ‘sonia’rose. Gartenbauwissenschaft. 55(3):118-121. 64. Marousky, F. J. 1977. Control of bacteria in cut flower vase water. Proc. Hort. Sci. 90:294-296. 65. Marousky, F. J. and B. K. Harbaugh. 1979. Ethylene-induced floret sleepiness in Kalanchoe blossfeldiana Poellen. Hort. Sci. 14:505-507. 66. Matil, P. and F. Winkenbach. 1971. Function of lysosomes and lysosomal enzymes in the senescing corolla of the mornig glory ( Ipomoea purpurea ). J. Exp. Bot. 22:759-771. 67. Maurali, T. P. and T. V. Reddy. 1993. Postharvest life of gladiolus as influence by sucrose and metal salts. Acta Hort. 92:313-320. 68. Mayak, S., A. Borochov, and T. Tirosh. 1985. Transient water stress in carnation flowers: effect of aminooxyacetic acid. J. Expt. Bot. 36(166):800-806. 69. Mayak, S. and A. M. Kofranek, and T. Tirosh. 1976. Altering the sensitivity of carnation flowers ( Dianthus caryophyllus L. ) to ethylene. J. Amer. Soc. Hort. Sci. 101(5):503-506. 70. Mayak, S., A. H. Halevy, S. Sagie, A. Bar-Yoseph, and B. Bravado. 1974. The water balance of cut rose flowers. Physiol. Plant. 31:15-22. 71. Mayak, S., B. Bravdo , A. Gvilli and A. H. Halevy. 1973. Improvement of opening of cut gladiol flowers by pretreatment with high sugar concentrations. Hort. Sci. 1:357-365. 72. Mayak, S. and A. H. Halevy. 1974. The action of kinetin in improving the water balance and delaying senescence processes of cut rose flower. Physiol. Plant. 32:330-336. 73. McWilliams, E. L. 1970. Comparativerates of dark CO2 uptake and acidification in the Bromeloaceae, Orchidaceae, and Euphorbiaceae. Bot. Gaz. 131:285-290. 74. Mensuali-Sodi, A. and A. Ferrante. 2005. Physiological change during postharvest life of cut sunflowers. Acta Hort. 669:219-224. 75. Moalem-Beno, D., G. Tamari, Y. Leitner-Dagan, A. Borochov and D. Weiss. 1997. Sugar-dependent gibberellin-induced chalcone synthase gene expression in petunia corollas. Plant Physiol. 113:419-424. 76. Mor, Y., R. E. Hardenburg, A. M. Kofranek, and M. S. Reid. 1981. Effect of silver-thiosufate pretreatment on vase life cut standard carnation, spray carnation, and gladiolus, after a transcontinental truck shipment. HortScience. 16:766-768. 77. Muller, R., E. C. Sisler and M. Serek. 2000. Stress induced ethylene production, ethylene binding, and the response to ethylene action inhibitor 1-MCP in miniature roses. Hort. Sci. 83:51-59. 78. Newman, J. P., L. L. Dodges and M.S. Reid. 1998. Evaluation of ethylene inhibitors for postharvest treatment of Gypsophila paniculata L. Hort. Technol. 8(1):58-63. 79. Nichols, R. 1968. The response of carnations ( Dianthus caryophyllus ) to ethylene. J. Hort. Sci. 43:335-349. 80. Nichols, R. 1977. Sites of ethylene production in pollinated and unpollinated senescing carnation (Dianthus caryophyllus) inflorescence. Planta. 135:155-159. 81. Nichols, R., G. Bufler, Y. Nor, D. W. Fujino and M. S. Reid. 1983. Changes in ethylene production and 1-aminocyclopropane-1-carboxylic acid content of pollinated carnation flowers. J. Plant Growth Regul. 2:1-8. 82. Nowak, J. 1979. Transport and distribution of silver ions in cut gerbera in inflorescences. Acta. Hortic. 91:105-110. 83. Nowak, J. and K. Mynett. 1985. The effect of sucrose, silver thiosulphate and 8-hydroxyquinoline citrate on quality of Lilium inflorescences cut at bud stage and stored at low temperature. Sci. Hortic. 25:299-302. 84. O’Neill S. D., J. A. Nadeau, X. S. Zhang, A.Q. Bui and A. H. Halevy. 1993. Interorgan regulation of ethylene biosynthetic genes by pollination. Plant Cell. 5:419-432. 85. Owens L. D., M. Lieberman, A. Kunishi. 1971. Plant Physiol. 48:1. 86. Parups E. V., P. W. Voisey. 1976. Lignin content and resistance to bending of the pedicel in greenhouse-grown roses. J. Hort. Sci. 51:253-9. 87. Paulin, A. and C. Jamain. 1982. Development of flowers and changes in various sugars during opening of cut carnations. J. Am. Soc. Hortic. Sci. 107:258-261. 88. Paull, R. E. and T. T. C. Goo. 1985. Ethylene and water stress in the senescence of cut anthurium flowers. J. Am. Soc. Hortic. Sci. 110:84-88. 89. Porat R., A. Borochov, A.H. Halevy and S. D. O’Neill. 1994. Pollination-induced senescence of Phalaenopsis petals. Plant Growth Reg. 15:129-136. 90. Put, H. M. C. 1990. Micro-organisms from freshly harvested cut flower stems and developing during the vase life of chrysanthemum, gerbera and rose cultivars. Sci. Hort. 43:129-144. 91. Rajapakse, N. C., D. W. Reed and J. W. Kelly. 1989. Effect of preatment on transpiration of Chrysanthemum moriforium in dark. Hort. Sci. 24:998-1000. 92. Reddy, T. V., 1988. Mode of action of cobalt extending the vase life of cut roses. Scientia Horticulturae. 36:303-313 93. Reid, M. S., 1989. The role of ethylene in flower senescence. Acta Hort. 261:157-169. 94. Reid, M. S., L. L. Dodge, Y. Mor. and R. Y. Evans 1989. Effects of ethylene on rose opening. Acta Hort. 261:215-220. 95. Reid, M. S., R. Y. Evans, L. L. Dodge and Y. Mor. 1989. Ethylene and silver thiosulfate influence opening of cut rose flower. J. Amer. Soc. Hort. Sci. 144(3):436-440. 96. Sankat , C. K. and S. Mujaffar. 1994. Water balance in cut anthurium flowers in storage and its effect on quality. Acta Hort. 368:723-732. 97. Satoh, S. and Y. Esashi. 1980. α-amimoisibutyric acid: a probable competitive inhibitor of conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene. Plant Cell Physiol. 21:939-949. 98. Serek, M., 1993. Ethephon and silver thiosulfate affect postharvest characteristics of Rosa hybrid ‘Victory Parade’. Hort. Sci. 28(3):199-200. 99. Serek, M., E. C. Sisler and M. S. Reid. 1993. Anti-ethylene treatments for potted christmas cactus-efficacy of inhibitors of ethylene action and biosynthesis. Postharvest Technol. 28(12):1180-1181. 100. Serek, M., E. C. Sisler and M. S. Reid. 1994. Novel gaseous ethylene binding inhibitor prevents ethylene effects in potted flowering plants. J. Amer. Soc. Hort. Sci. 119(6):1230-1233. 101. Serek, M., E. C. Sisler and M. S. Reid. 1994. Effects of 1-MCP on vase life and ethylene response of cut flowers. Plant Growth Regul. 16:93-97. 102. Serek, M., E. C. Sisler and M. S. Reid. 1995. Effets of 1-MCP on vase life and ethylene response of cut flower. Plant Growth Regul. 16-93-97. 103. Serek, M., E. C. Sisler and M. S. Reid. 1995. 1-methylcyclopropene, a novel gaseous inhibitor of ethylene action, improves the life of fruit, cut flowers and potted plants. Acta. Hortic. 394:337-345. 104. Shimamura, M., A. Ito, K. Suto, H. Okabayashi, and K. Ichimura. 1997. Effect of α-aminoisobutyric acid and sucrose on the case life of hybrid Limonium. Postharvest Biol. Technol. 12:247-253. 105. Sisler, E. C. and M. Serek. 1997. Inhibitors of ethylene responses in plants at the receptor level: Recent developments. Physio. Plant. 100:577-582. 106. Sisler, E. C. and M. Serek. 1999. Compound controlling the ethylene receptor. Bot. Bull. Acad. Sin. 40:1-7. 107. Sisler, E. C. and S. M. Blankenship. 1993. Diazocyclopentadiene ( DACP ), a light sensitive regent for the ethylene receptor in plants. Plant Groeth Regul. 18:79-86. 108. Sisler, E. C., E. Dupille and M. Serek. 1996. Effects of 1-methylcyclopropene and methylcyclopropane on ethylene binding and ethylene action in cut carnation. Plant Growth Regul. 18:79-86. 109. Smith, M. T., Y. Saks and J. Vanstaden. 1992. Ultrastructural changes in the petal of seneseing flowers of Dianthus caryophyllus L. Ann. Bot. 69:277-285. 110. Spikman, G. 1989. Development and ethylene production of buds and florets of cut freesia inflorescence as influenced by silver thiosulfate aminoethoxyvinylglycine and sucrose. Sci. Hort. 39:73-82. 111. Staby, G. L. and B. Naegele. 1984. The effects of STS on vase-life of flowers. Florists Review. 25:17-20. 112. Takashi, O., I. Hirishi, and T. Yamaguchi. 1998. Effect of calcium nitrate addition to alpha-aminoisobutyric acid (AIB) on the prolongation of vase life of cut carnation flowers. J. Japan. Soc. Hort. Sci. 67:198-203. 113. Thompson, J. E., S. Mayak, M. Shinitzky and A.H. Halevy. 1982. Acceleration of membrane senescence in cut carnation flowers by treatment with ethylene. Plant Physiol. 69:859-863. 114. Tsukaya, H., T. Ohshima, S. Naito, M. Chino and Y. Komeda. 1991. Sugar-dependent expression of CHS-A gene for chalcone synthase from petunia in transgenic Arabidopsis. Plant Physiol. 97:1414-1421. 115. Van Doorn, W. G. 1985. Vascular occlusion in cut rose flowers: a survey. Acta Hort. 405:58-66. 116. Van Doorn, W. G. 1997. Water relation of cut flower. Hort. Rev. 18:1-85. 117. Van Doorn, W. G., H. Harkema and E. Otma. 1991. Is vascular blockage in stems of cut lilac flowers mediated by ethylene. Acta Hort. 298:177-181. 118. Van Doorn, W. G., D. Zagory and Y. De Witte. 1991. Effects of vase-water bacteria on the senescence of cut carnation flowers. Hort. Sci. 45:616-619. 119. Van Doorn, W. G. and R. R. J. Perik, 1990. Hydroxyquinoline citrate and low pH prevent vascular blockage in stems of cut rose flowers by reducing the number of bacteria. J. Amer. Soc. Hort. Sci. 115(6):979-981. 120. Van Meeteren, U. 1989. Water relations and early leaf wilting of cut chrysanthemums. Acta Hort. 261:129-135. 121. Veen, H. 1983. Silver thiosulfate: an experimental tool in plant science. Hort. Sci. 20:211-224. 122. Veen, H. and S. C. van de Geijn. 1978. Mobility and ionic form of silver ad related to longevity of cut carnation. Plants. 140:93-96. 123. Voet, D., J. G. Voet. 1990. Biochemistry. New York: Wiley. 124. Wang, C. Y. and J. E. Baker. 1980. Extending vase life of carnations with aminooxyacetic acid, polyamines, EDU, and CCCP. HortScience. 15(6):805-806. 125. Wang, H. and W. R. Woodson. 1989. Reversible inhibition of ethylene action and interruption of petal senescence in carnation flowers by norbornadiene. Plant Physiol. 89:434-438. 126. Woltering, E. J. 1990. Interorgan translation of 1-aminocyclopropane-1-carboxylic acid and ethylene coordinates senescence in emasculated cymbidium flowers. Plant Physiol. 92:837-854. 127. Woltering, E. J., and F. Harren. 1989. Role of rostellum desiccation in emasculation-induced phenomena in orchid flowers. J. Exp. Bot. 40:907-912. 128. Woltering, E. J., H. Overbeesk, and F. Marren. 1991.Ethylene and ACC:Mobile wilting factors in flowers. Acta Hort. 298:47-59. 129. Woltering, E. J., and W. G. Van Doorn. 1988. Role of ethylene in senescence of petalsmorphological and taxonomical relationships. J. Exp. Bot. 39:1605-1616. 130. Woodson, W. R., and K. A. Lawton. 1988. Ethylene-induced gene expression in carnation petals. Plant Physiol. 87:498-503. 131. Yang, S. F. 1980. Regulation of ethylene biosynthesis. HortScience. 15:238-243. 132. Yang, S. F. 1985. Biosynthesis and action of ethylene. HortScience. 20(1):41-45. 133. Yang, S. F. and N. E. Hoffman. 1984. Ethylene biosynthesis and its regulation in higher plants. Ann. Rev. Plant Phsiol. 35:155-189. 134. Yu, Y. B., D. O. Adams and S. F. Yang. 1979. 1-aminocyclopropane-1-carboxylic acid synthase, a key enyme in ethylene biosynthesis. Arch. Biochem. Biochem. Biophys. 198:280-286. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42576 | - |
| dc.description.abstract | 蝴蝶蘭(Phalaenopsis spp.)為更年型花卉,在老化時期會有大量乙烯產生;蝴蝶蘭之花朵對乙烯敏感,乙烯被認為是影響朵花品質及切花瓶插壽命之主要因子。乙烯抑制物包括乙烯作用抑制劑硫代硫酸銀 (Silver thiosulfate, STS),和乙烯生合成抑制劑AOA (Aminooxyacetic acid)、AVG (Aminoethoxyvinylglycine)、鈷離子等。除雄(emasculation)是指將蘭花花朵的花粉塊和花藥蓋去除的動作;除雄會促進花朵乙烯生成,並伴隨老化發生。本試驗利用蝴蝶蘭花朵經除雄處理後會生成大量乙烯並迅速老化的特性,發展出單朵花的試驗系統,觀察不同乙烯抑制物對抑制蝴蝶蘭花朵老化之效果,並將其結果應用在蝴蝶蘭切花之貯運處理。
以0.4 mM STS、0.5 mM AOA、0.5 mM AVG和2 mM CoCl2做為瓶插液,皆可有效維持單朵 ‘Phal.Crystal Veil’ 蝴蝶蘭花朵在除雄後之花朵鮮重,延緩老化並抑制乙烯生成。在 ‘Dtps. Han Ben’s Girl’ 和 ‘Dtps. Sogo Yukidian’ 蝴蝶蘭花朵中,以0.4 mM STS、0.5 mM AOA、0.5 mM AVG和4 mM CoCl2最為有效。三種不同品種的蝴蝶蘭中,均以0.5 mM AOA處理者之瓶插壽命最長;與除雄對照組相比, ‘Phal.Crystal Veil’ 蝴蝶蘭可延長3倍,‘Dtps.Han Ben’s Girl’ 和 ‘Dtps.Sogo Yukidian’ 蝴蝶蘭可延長6至7倍。將兩種有效藥劑搭配使用的結果和單獨使用的結果相似;單獨使用0.5 mM AOA還是維持切花壽命之最佳藥劑。對於未除雄之單朵 ‘Phal.Crystal Veil’ 蝴蝶蘭,以0.4 mM STS處理的效果最好,其次為0.5 mM AOA,兩者之瓶插壽命皆為對照組的3倍以上。 在預措處理方面,以有效之瓶插液預措處理6小時,能有效延緩 ‘Dtps.Han Ben’s Girl’ 蝴蝶蘭花朵之老化。將藥劑濃度提高為兩倍更能維持花朵之鮮重並增加其瓶插壽命;其中以0.8 mM STS、1.0 mM AOA和8 mM CoCl2之效果較佳,為對照組2~3倍左右。含有二種藥劑之混合液之預措處理效果比單一藥劑為佳,單朵花朵以0.4 mM STS加0.5 mMAOA預措處理之瓶插之壽命為對照組的9~10倍。以混合藥劑預措6小時皆能有效維持未除雄之 ‘Dtps.Han Ben’s Girl’ 蝴蝶蘭花朵之鮮重,以0.4 mM STS加0.5 mM AOA和0.4 mM STS加0.5 mM AVG處理可延長花朵壽命為對照組的2~3倍。 以單朵試驗結果對蝴蝶蘭切花進行20℃3天之模擬貯運試驗,結果以0.5 mM AOA做為貯運期間瓶插液,和以0.4 mM STS加0.5 mM AOA在貯運前預措處理6小時,均可延長貯運後之切花瓶插壽命2倍以上。 | zh_TW |
| dc.description.abstract | Phalaenopsis (Phalaenopsis spp.) is a climacteric flower which produces a large amount of ethylene during aging. Phalaenopsis floret is sensitive to ethylene and ethylene is considered as the main factor affecting the quality and vase-life of the flower. Silver thiosulfate (STS), aminooxyacetic acid (AOA), aminoethoxyvinylglycine (AVG) and Co2+ are well-known ethylene inhibitors. Removal of the pollina and anther cap from an orchid flower, which is called emasculation, had been shown to hasten the upsurge of ethylene and was accompanied by flower senescence in various orchid species. By taking advantage of the rapid ethylene synthesis after emasculation, a simple evaluation system, which used single Phalaenopsis floret held in 7 cm long flasks, was developed for studying the effectiveness of ethylene inhibitors on the senescence of Phalaenopsis floret.
Continuous treatments of 0.4 mM STS, 0.5 mM AOA, 0.5 mM AVG and 2mM CoCl2 were able to maintain the fresh weight, delay the emasculation-induced senescence and inhibit the ethylene production of ‘Phal. Crystal Veil’ Phalaenopsis florets. For ‘Dtps. Han Ben’s Girl’ and ‘Dtps. Sogo Yukidian’ Phalaenopsis florets, 0.4 mM STS, 0.5 mM AOA, 0.5 mM AVG and 4 mM CoCl2 were found effective. Among these treatments, 0.5 mM AOA was the most effective one; it significantly extend the vase life of ‘ Phal. Crystal Veil’, ‘Dtps. Han Ben’s Girl’ and ‘Dtps. Sogo Yukidian’ florets 3, 6 and 7 folds as compared with the control. Mixing two effective compounds in continuous treatment, did not result in better performance than single-compound treatment, and 0.5 mM AOA remained as the most effective treatment. For normal, un-emasculated ‘Phal. Crystal Veil’ Phalaenopsis florets, 0.4 mM STS was most effective, followed by 0.5 mM AOA; both treatments extended the vase life more than three folds than control. Pulsing treatment of ‘Dtps. Han Ben’s Girl’ floret with all the previous compounds for 6 hours, effectively delayed the senescence of emasculated florets. Doubling the dosage further extended the vase life and maintained the fresh weight of ‘Dtps. Han Ben’s Girl’ floret. Among the treatments, 0.8 mM STS, 1.0 mM AOA and 8 mM CoCl2 were most effective; the vase life was extended 2 – 3 fold of the control. Mixing two effective compounds for pulsing treatment were more effective than single compounds. Pulsing with 0.4 mM STS plus 0.5 mM AOA resulted in nine to ten folds increase in vase life than the control. For un-emasculated ‘Dtps. Han Ben’s Girl’ florets, pulsing with mixed inhibitors for 6 hours also maintained the fresh weight longer than the control. Pulsing with 0.4 mM STS plus 0.5 mM AOA and 0.4 mM STS plus 0.5 mM AVG were most effective; the vase life were extended two to three folds compared to the control. The effective compounds were applied to the whole cut inflorescence of ‘Dtps. Han Ben’s Girl’ during a simulate shipment at 20℃ for 3 days, and the results showed that pulsing with of 0.4 mM STS plus 0.5 mM AOA before shipment for 6 hours, and continuous treatment of 0.5 mM AOA during shipment could extend the vase life of the cut flower more than 2 folds than the control. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:16:43Z (GMT). No. of bitstreams: 1 ntu-100-R98628207-1.pdf: 1620221 bytes, checksum: a51ce97e682e05dc7ea6c7286c106306 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii 目錄 v 圖目錄 vii 表目錄 ix 第一章 緒論 1 第二章 前人研究 3 一、蝴蝶蘭概況 3 (一) 蝴蝶蘭簡介 3 (二) 蝴蝶蘭產業概況 4 二、影響切花採後品質與生理因子 4 (一) 水分平衡和切花老化之關係 5 (二) 乙烯對切花老化之影響 7 三、保鮮劑對切花瓶插壽命及品質之影響 19 第三章 材料與方法 22 一、植物材料 22 二、試驗儀器與設備 22 三、試驗藥品 22 四、試驗系統 24 五、試驗項目 24 六、試驗方法 28 七、圖表繪製 30 八、瓶插環境 30 第四章 結果與討論 31 一、乙烯抑制物質作為瓶插保鮮液對不同品種蝴蝶蘭單朵花朵除雄後老化之影響 31 (一) 單種乙烯抑制物質對蝴蝶蘭除雄後老化生理之影響 31 (二) 多種乙烯抑制劑混合之保鮮液對蝴蝶蘭除雄後老化生理之影響 39 (三) 不同乙烯抑制物質對除雄之蝴蝶蘭花朵瓶插壽命之影響 40 (四) 不同乙烯抑制物質對蝴蝶蘭單朵花朵老化生理之影響 41 二、乙烯抑制物質預措處理對 ‘Dtps. Han Ben’s Girl’ 蝴蝶蘭單朵花朵除雄後老化之影響 42 (一) 不同預措時間對 ‘Dtps. Han Ben’s Girl’ 蝴蝶蘭除雄後老化生理之影響 42 (二) 單種和混合之乙烯抑制物質預措處理對除雄和未除雄之‘Dtps. Han Ben’s Girl’蝴蝶蘭老化生理之影響 45 三、蝴蝶蘭花朵經不同藥劑之瓶插或預措處理之瓶插壽命 48 四、乙烯抑制物質作為貯運保鮮液和預措液對蝴蝶蘭整枝切花瓶插表現之影響 48 第五章 總結 92 參考文獻 96 | |
| dc.language.iso | zh-TW | |
| dc.subject | 乙烯抑制劑 | zh_TW |
| dc.subject | 乙烯 | zh_TW |
| dc.subject | 蝴蝶蘭 | zh_TW |
| dc.subject | 除雄 | zh_TW |
| dc.subject | 老化 | zh_TW |
| dc.subject | emasculation | en |
| dc.subject | ethylene | en |
| dc.subject | senescence | en |
| dc.subject | ethylene inhibitor | en |
| dc.subject | Phalaenopsis | en |
| dc.title | 乙烯抑制物質對蝴蝶蘭花朵除雄後老化之影響 | zh_TW |
| dc.title | Effect of ethylene inhibitors on the emasculation-induced senescence of Phalaenopsis floret | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李堂察,黃肇家 | |
| dc.subject.keyword | 乙烯,乙烯抑制劑,蝴蝶蘭,除雄,老化, | zh_TW |
| dc.subject.keyword | ethylene,ethylene inhibitor,Phalaenopsis,emasculation,senescence, | en |
| dc.relation.page | 108 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-16 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝學研究所 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 1.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
