Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 會計學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42573
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳國泰
dc.contributor.authorYi-Chien Chiangen
dc.contributor.author江怡蒨zh_TW
dc.date.accessioned2021-06-15T01:16:39Z-
dc.date.available2019-12-01
dc.date.copyright2009-08-06
dc.date.issued2009
dc.date.submitted2009-07-28
dc.identifier.citation一、中文文獻
王濟川、郭志剛,2003,Logistic 迴歸模型-方法及應用,初版,五南圖書出版
股份有限公司。
交通部統計處,2005,自用小客車使用狀況調查報告。
行政院金融監督管理委員會 金融統計指標(98 年1 月版)。
行政院金融監督管理委員會 信用卡業務統計(98 年1 月版)。
邱郁蓁,2005,汽車貸款之風險預測模型研究,成功大學統計學研究所。
黃琡雯,2009,汽車貸款違約決定因素之個案研究,台灣大學管理學院碩士
在職專班會計理決策組。
陳家豪,2003,存活分析方法應用於汽車貸款客戶信用風險管理之研究,成
功大學統計學研究所。
許瀞文,2006,汽車貸款 銀行:能不貸就不放,工商時報97/11/25。
林英星、黃隆憲,2006,消費者信用貸款授信模式之研究,2006 金融保險業經營
之現況與展望研討會。
鄭月婷,2003,汽車貸款客戶之風險研究,成功大學統計學研究所。
64
榮泰生,2006,SPSS 與研究方法,初版,五南圖書出版股份有限公司,頁563-570。
U-CAR,2009,2009 年3 月份臺灣汽車市場銷售報告。
二、英文文獻
Baesens, B., T. Van Gestel, S. Viaene, M. Stepanova, J. Suykens, and
J. Vanthienen. 2003. Benchmarking State-of-the-art Classification Algorithms for
Credit Scoring. Journal of the Operational Research Society 54(6): 627-635.
Bellotti, T., and J. Crook. 2009. Support Vector Machines for Credit Scoring and
Discovery of Significant Features. Expert Systems with Applications 36(2-2):
3303-3308.
Berry, M. J. A., and G. Linoff. 1997. Data Mining Techniques: for Marketing, Sales,
and Customer Support.
Brill, J. 1998. The Importance of Credit Scoring Models in Improving Cash and
Collection. Business Credit 100(1): 16-17.
Blochinger, A., and M. Leippold, 2006. Economic Benefit of Powerful Credit Scoring.
Journal of Banking and Finance 30(3): 851-873.
Chen, W., C. Ma, and L. Ma. 2009. Mining the Customer Credit Using Hybrid Support
Vector Machines Technique. Expert Systems with Applications 36(4): 7611-7616.
65
Capon, N. 1982. Credit Scoring Systems: A Critical Analysis. Journal of Marketing
43(2): 82-91.
Chen, Y. W., and C. J. Lin. 2005. Combining SVMs with Various Feature
Selection Strategies. National Taiwan University. Available from
http://www.csie.ntu.edu.tw/~cjlin/papers/features.pdf.
Davis, R. H., D. B., Edelman, and A. J. Gammerman. 1992. Machine Learning
Algorithms for Credit-Card Applications. Journal of Mathematics Applied in
Business and Industry 4: 43-51.
Desai, V. S., J. N. Crook, and G. A. Overstreet. 1996. A Comparison of Neural
Networks and Linear Scoring Models in the Credit Union Environment. European
Journal of Operational Research 95(1): 24–37.
Durand, D. 1941. Risk Elements in Consumer Installment Financing. National
Bureau of Economic Research, New York.
Fisher, R. A. 1936.The Use of Multiple Measurements in Taxonomic Problems Annals
of Eugenics. Annals of Eugenics 7: 179-188.
Frohlich, H. and O. Chapelle. 2003. Features Selection for Support Vector
Machines by Means of Genetic Algorithms. In Proceedings of the 15th IEEE
international conference on tool with artificial intelligence, Sacramento, California,
USA.
Gardner, M. J., and D. L. Mills. 1989. Evaluating the Likelihood of Default on
66
Delinquent Loans. Financial Management 18: 55-63.
George, H. J., R. Kohavi, and K. Pfleger. 1994. Irrelevant Features and Subset
Selection Problem. In Proceedings of the seventh international conference on
machine learning, San Mateo, CA, USA.
Hand, D. J., and W. E. Henley. 1997. Statistical Classification Methods in Consumer
Credit Scoring: A Review. Journal of the Royal Statistical Society, Series
A-Statistics in Society 160(3): 523-541.
Henley, W. E. 1995. Statistical Aspects of Credit Scoring. Dissertation, The Open
University, Milton Keynes, UK.
Huang, C. L., M. C. Chen, and C. J. Wang. 2007. Credit Scoring with a Data Mining
Approach Based on Support Vector Machines. Expert Systems with Applications
33(4): 847-856.
Huang, S. C. 2009.Integrating Nonlinear Graph Based Dimensionality Reduction
Schemes with SVMs for Credit Rating Forecasting. Expert Systems with
Applications 36(4): 7515-7518.
Huang Z, H. Chen, C. J. Hsu, W. H. Chen, and S. Wu. 2004. Credit Rating Analysis
with Support Vector Machines and Neural Networks: A Market Comparative
Study [Special issue: Data Mining for Financial Decision Making]. Decision
Support Systems 37(4): 543-558.
67
Johnson, R. W. 1992. Legal, Social and Economic Issues Implementing Scoring
in the US. In: Thomas, L. C. Crook, J. N., and Edelman, D. B. (Eds.), Credit
Scoring and Credit Control, Oxford University Press, Oxford.
Klayman, J.1988.Cue Discovery in Probabilistic Environments: Uncertainty and
Experimentation. Learning memory and cognition 14(2): 317-330.
Kohavi, R., and G. H. John. 1997. Wrappers for Feature Subset Selection. Artificial
Intelligence 97(1-2): 273-324.
Lee, Y. C. 2007. Application of Support Vector Machines to Corporate Credit Rating
Prediction. Expert Systems with Applications 33(1): 67-74.
Li, S. T., W. Shiue, and M. H. Huang. 2006. The Evaluation of Consumer Loans
Using Support Vector Machines. Expert Systems with Applications 30(4): 772-782.
Liu, H., and M. Hiroshi. 1998. Feature Selection for Knowledge Discovery and Data
Mining. Kluwer Academic.
Malhotra, R., and D. K. Malhotra. 2002. Differentiating between Good Credits and Bad
Credits Using Neuro-Fuzzy Systems. European Journal of Operational Research
136(1): 190–211.
Ong, C. S., J. J. Huang, and G. H. Tzeng. 2005. Building Credit Scoring Models Using
Genetic Programming. Expert Systems with Applications 29(1): 41–47.
Orgler, Y. E. 1970. A Credit Scoring Model for Commercial. Journal of Money, Credit
68
and Banking 2(4): 435-445.
Reichert, A. K., C. C. Cho, and G. M. Wagner. 1983. An Examination of the
Conceptual Issues Involved in Developing Credit-Scoring Models. Journal of
Business and Economic Statistics 1(2): 101–114.
Schumann, M. 2001. New Issues in Credit Scoring Application. Institut für
Wirtschaftsinformatik.
Salcedo-Sanz S., M. DePrado-Cumplido, M. J. Segovia-Vargas, F. Perez-Cruz, and C.
Bousono-Calzon. 2004. Feature Selection Methods Involving SVMs for Prediction
of Insolvency in Non-life Insurance Companies. Intelligent Systems in Accounting,
Finance and Management 12: 261-281.
Schebesch, K. B., and R. Stecking. 2005. Support Vector Machines for Classifying
and Describing Credit Applicants: Detecting Typical and Critical Regions. Journal
of the Operational Research Society 56(9): 1082-1088.
Schebesch, K. B., and R. Stecking. 2005. Support Vector Machines for Credit
Scoring: Extension to Non Standard Cases. In D. Baier, and K. D. Wernecke (Eds),
Innovations in Classification, Data Science and Information Systems.
Steenackers, A., and M. J. Goovaerts. 1989. A Credit Scoring Model for Personal
Loans. Insurance: Mathematics and Economics 8(1): 31-34.
Tam, K. Y., and M. Y. Kiang. 1992. Managerial Applications of the Neural Networks:
69
the Case of Bank Failure Prediction. Management Science 38(7): 926–947.
Thomas, L.C. 2000. A Survey of Credit and Behavioural Scoring: Forecasting
Financial Risk of Lending to Consumers. International Journal of Forecasting 16:
149-172.
Van Gestel, T., B. Baesens, J. A. K. Suykens, D. Van den Poel, D. Baestaens, and
M. Willekens. 2006. Bayesian Kernel Based Classification for Financial Distress
Detection. European Journal of Operational Research 172(3): 979-1003.
Vapink, V. 1998. Statistical Learning Theory. Chichester, UK:wiler.
West, D. 2000. Neural Network Credit Scoring Models. Computers and Operations
Research 27(11–12): 1131–1152.
Xu, X., C. Zhou, and Z. Wang. 2009. Credit Scoring Algorithm Based on Link
Analysis Ranking with Support Vector Machines. Expert Systems with
Applications 36(2-2): 2625-2632.
Yeh, I. C., and C. H. Lien. 2009. The Comparisons of Data Mining Techniques for the
Predictive Accuracy of Probability of Default of Credit Card Clients. Expert
Systems with Applications 36(2-1): 2473-2480.
Yukun, B., and Z. Liu. 2006. A Fast Grid Search Method in Support Vector
Regression Forecasting Time Series. Lecture Notes in Computer Science,
Intelligent Data Engineering and Automated Learning .
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42573-
dc.description.abstract近年來接連發生的金融危機迫使我們尋求更好的信用評等方式。在經濟發展
的過程中,汽車貸款扮演相當重要的信用借貸角色,對於消費者銀行與汽車車商
而言,判斷汽車貸款違約率是相當的重要。對放款者而言,一方面必須承擔經過
核准的汽車貸款違約所產生重大的損失;另一方面,若錯誤拒絕可以接受的貸款,
放款者則會喪失利益。
過去數十年間,許多研究針對信用評估議題提出新的模型,包括羅吉斯迴歸、
專家系統、資料探勘等。本研究利用某汽車貸款公司所提供的資料,應用「支援
向量機」分析資料,以建立汽車貸款違約之預測模型。
本研究藉由「格子點搜尋演算法」調整核心核數,並以「過濾法」與「包裝
法」進行特徵篩選,結果發現以五個特徵值所組成的分類器具有最高的預測分類
率,可達77.43%,並提出向後逐步選取法為主的羅吉斯迴歸模型,其預測分類率
可達75.70%。研究結果顯示:(1)就預測分類能力,支援向量機較羅吉斯迴歸佳。
(2)考量過多的資訊不一定能夠產生較佳的預測分類力。
zh_TW
dc.description.abstractThe recent financial crises have called for better credit evaluation. Traditionally,
car loans constitute an important portion of credit lending for an economy.
Determining the default probability of a car loan is a major task for consumer
banking and automobile sales companies. On the one hand, the lender will suffer a
loss if a granted car loan eventually defaults; on the other hand, the lender will lose a
potential gain if a good loan prospect is mistakenly rejected.
Previous studies have developed models for credit evaluation. These models
include regression analysis, expert systems, and data mining techniques. Using data
from an automobile company, this study applies support vector machines to build
classifiers for car loan default prediction.
By adopting the grid search approach to adjust kernel parameters and using the
filter method and wrapper method to select features, this study find that a classifier
with just 5 features possess the best classification power. The classification accuracy
rate is 77.43%. By comparison, a step-wise logistic regression model has a
classification accuracy rate of 75.70%. The results show that (1) support vector
machines have better classification power than logistic regression, and (2)
considering more factors does not necessary result in better classification.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:16:39Z (GMT). No. of bitstreams: 1
ntu-98-R96722036-1.pdf: 567599 bytes, checksum: 20363aab3f8146c7c39e03087300de27 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents謝辭…………………………………………………………………………………..…i
中文摘要……………………………………………………………………………….ii
英文摘要………………………………………………………………………………iii
第一章 緒論………………………………………………………………………… 1
第一節 研究背景與動機……………………………………………………… 1
第二節 研究架構……………………………………………………………… 3
第二章 文獻探討…………………………………………………………………… 5
第一節 汽車貸款……………………………………………………………… 5
第二節 信用評估……………………………………………………….………9
第三節 資料探勘………………………………………………………………17
第三章 研究方法……………………………………………………………………22
第一節 支援向量機……………………………………………………………22
第二節 特徵篩選………………………………………………………………26
第三節 核心參數………………………………………………………………28
第四節 交叉驗證………………………………………………………………29
第五節 變數定義………………………………………………………………31
第四章 實證結果與分析……………………………………………………………37
第一節 變數分析………………………………………………………………37
第二節 分析流程………………………………………………………………44
第三節 預測分類率分析………………………………………………………57
第五章 結論、限制與建議…………………………………………………………60
第一節 研究結論………………………………………………………………60
第二節 研究限制………………………………………………………………61
第三節 研究建議………………………………………………………………62
參考文獻………………………………………………………………………………63
圖目錄
圖 1-1:研究流程圖…………………………………………………………………… 4
圖3-1:3-1 SVM 二維分類圖…………………………………………………………23
圖3-2:SVM 特徵值篩選-過濾法…………………………………………………….27
圖3-3:SVM 特徵值篩選-包裝法…………………………………………….………27
圖3-4:SVM 交叉驗證資料切割圖……………………………………………………29
圖3-5:低度適應與過度適應…………………………………………………………30
圖4-1:商品價格長條圖…………………………………………..…………………..40
圖4-2:貸款金額長條圖………………………………………………….……………41
圖4-3:自備款長條圖…………………………………………………..……………..41
圖4-4:每期支付金額長條……………………………………………….……………42
圖4-5:分析流程圖………………………………………………………………….…46
圖4-6:Grid Search 前各組最大預測分類率折線圖………………………………….50
圖4-7:Grid Search 後最大預測分類率折線圖………………………………………..53
表目錄
表2-1:信用評等評估方式比較表……………………………………………………14
表2-2:資料探勘運用在信用等評等………………….………………………………18
表2-3:SVM 運用在信用評等………………….……………..………………………19
表2-4:SVM 運用在信用評等-續………………….…………………………………20
表3-1:變數定義表……………………………………………………………………35
表3-2:變數定義表-續………………………………………………….…………..…36
表4-1:離散型變數逾期狀況表………………………………………………………39
表4-2:連續型變數敘述統計表………………………………………………………43
表4-3:變數F-score 表………………………………………………….………..……48
表4-4:Grid Search 前最大預測分類率…………………………………………..……49
表4-5:Grid Search 前最大預測分類率-組合表……………………………………51
表4-6:表4-6:Grid Search 後最大預測分類率58……………………………………53
表4-7:Grid Search 後最大預測分類率-組合表………………………………..……54
表4-8 向後逐步選取法(Backward)最佳組合………………...………………………56
表4-9:訓練模型與測試資料預測分類率…………………………………………….57
表4-10:SVM 與Logistic 迴歸模型比較表…………………………………………..58
dc.language.isozh-TW
dc.subject機zh_TW
dc.subject吉斯迴歸zh_TW
dc.subject支援向&#63870zh_TW
dc.subject汽車zh_TW
dc.subject貸款zh_TW
dc.subject違約zh_TW
dc.subject資訊品質zh_TW
dc.subjectSVMsen
dc.subjectinformation qualityen
dc.subjectdefaulten
dc.subjectcar loanen
dc.subjectSupport Vector Machinesen
dc.subjectlogistic regressionen
dc.title應用支援向量機於汽車貸款違約之預測zh_TW
dc.titleApplying Support Vector Machines to Predict
Car Loan Defaults
en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林世銘,黃美祝
dc.subject.keyword支援向&#63870,機,&#63759,吉斯迴歸,汽車,貸款,違約,資訊品質,zh_TW
dc.subject.keywordSupport Vector Machines,SVMs,logistic regression,car loan,default,information quality,en
dc.relation.page69
dc.rights.note有償授權
dc.date.accepted2009-07-28
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept會計學研究所zh_TW
顯示於系所單位:會計學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
554.3 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved