Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42567
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃建璋
dc.contributor.authorKun-Mao Panen
dc.contributor.author潘昆懋zh_TW
dc.date.accessioned2021-06-15T01:16:29Z-
dc.date.available2010-12-31
dc.date.copyright2009-07-29
dc.date.issued2009
dc.date.submitted2009-07-28
dc.identifier.citationReference
1. C.H. Liu, R.W. Chuang, S. J. Chang, Y.K. Su, L.W. Wu, and C.C. Lin, “Improved light output power of InGaN/GaN MQW LEDs by lower temperature p-GaN rough surface”, Materials Science and Engineering B, 112, issue, 10-13 (2004)
2. Wonseok Lee, Jae Limb, Jae-Hyun Ryou, Dongwon Yoo, Theodore Chung and Russell D. Dupuis, “Influence of growth temperature and growth rate of p-GaN layers n the characteristics of green light emitting diodes ”, Journal of Electronic Materials, 35, n4, 587-591 (2006).
3. T. Fujii, Y. Gao, R. Sharma, E.L. Hu, S.P. DenBaars, and S. Nakamura, “Increasing in the extraction efficiency of GaN-based light emitting diodes by microroughening of the p-GaN surface”, Appl. Phys. Lett., 84, 855-857 (2004).
4. H.W. Huang, C. H. Lin, C. C. Yu, B. D. Lee, C. H. Chiu, C. F. Lai, H.C. Kuo, K. M. Leung, T. C. Lu and S. C. Wang, “Improvement of light output in GaN-based power chip light-emitting diodes with a nano-rough surface by nanoimprint lithography”, Semicond. Sci. Technol. 23, 045022 (2008).
5. Hung-Wen Huang, J T Chu, C C Kao, T.H. Hseuh, T. C. Lu, H. C. Kuo, S. C. Wang and C C Yu, “Enhanced light output of an InGaN/GaN light emitting diode with a nano-roughened p-GaN surface”, Nanotechnology 16, 1844–1848 (2005).
6. C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light emitting diode by microroughening of the p-GaN surface”, J. Appl. Phys., 93, issue11, 9383-9385 (2003).
7. Kyoung-Kook Kim, Sam-dong Lee, Hyunsoo Kim, Jae-Chul Park , Sung-Nam Lee, Youngsoo Park , Seong-Ju Park, and Sang-Woo Kim ,”Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution”, Appl. Phys. Lett. 94, 071118, (2009).
8. Kun Ching Shen, Cheng-Yen Chen, Hung Lu Chen, Chi Feng Huang, Yean Woei Kiang, C. C. Yang, and Ying-Jay Yang, “Enhanced and partially polarized output of a light-emitting diode with its InGaN/GaN quantum well coupled with surface plasmons on a metal grating,” Appl. Phys. Lett. vol. 93, 231111 (2008)
9. Martin F. Schubert, Sameer Chhajed, Jong Kyu Kim, E. Fred Schubert and Jaehee Cho, “Linearly polarized emission from GaInN light emitting diodes with polarization-enhancing reflector,” Opt. Express, vol. 15, pp. 11213-11218 (2007)
10. Hisashi Masui, Hisashi Yamada, Kenji Iso, Shuji Nakamura and Steven P DenBaars, “Optical polarization characteristics of m-oriented InGaN/GaN light-emitting diodes with various indium compositions in single-quantum-well structure,” J. Phys. D: Appl. Phys. Vol. 41 225104 (2008)
11. Martin F. Schubert, Sameer Chhajed, Jong Kyu Kim, and E. Fred Schubert, “Polarization of light emission by 460 nm GaInN/GaN light-emitting diodes grow on (0001) oriented sapphire substrates,” Appl. Phys. Lett. vol. 91, 051117 (2007)
12. N. F. Gardner, J. C. Kim, J. J. Wierer, Y. C. Shen, and M. R. Krames, “Polarization anisotropy in the electroluminescence of m-plane InGaN–GaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. vol. 86, 111101 (2005)
13. Hisashi Masui, Troy J. Baker, Michael Iza, Hong Zhong, Shuji Nakamura, and Steven P. DenBaars, “ Light-polarization characteristics of electroluminescence from InGaN/GaN light-emitting diodes prepared on (1122)-plane GaN,” J. Appl. Phys. Vol. 100, 113109 (2006)
14. Chun-Feng Lai, Jim-Yong Chi, Hsi-Hsuan Yen, Hao-Chung Kuo, Chia-Hsin Chao, Han-Tsung Hsueh, Jih-Fu Trevor Wang, Chen-Yang Huang, and Wen-Yung Yeh, “Polarized light emission from photonic crystal light-emitting diodes,” Appl. Phys. Lett. vol. 92, 243118 (2008)
15. Hisashi Masui, Hisashi Yamada, Kenji Iso, Shuji Nakamura and Steven P DenBaars, “Optical polarization characteristics of m-oriented InGaN/GaN light-emitting diodes with various indium compositions in single-quantum-well structure”, J. Phys. D: Appl. Phys. 41, 225104, (2008).
16. Chun-Feng Lai, Jim-Yong Chi, Hsi-Hsuan Yen, Hao-Chung Kuo, Chia-Hsin Chao, Han-Tsung Hsueh, Jih-Fu Trevor Wang, Chen-Yang Huang, and Wen-Yung Yeh, “Polarized light emission from photonic crystal light-emitting diodes,” Appl. Phys. Lett. vol. 92, 243118 (2008)
17. C.C. Yu, C.F. Chu, J.Y. Tsai, H.W. Huang, T.H. Hsueh, C.F. Lin, and S.C. Wang, ”Gallium Nitride Nanorods Fabricated by Inductively Couple Plasma Reactive Ion Etching”, Jpn. J. Appl. Phys.,41, L910-L912 (2002).
18. T.H. Hsueh , H.W. Huang, C. C. Kao, Y.H. Chang, M.C. Ou-Yang, H.C. Kuo, and S. C. Wang, “Characterization of InGaN/GaN Multiple Quantum Well Nanorods Fabricated by Plasma Etching with Self-Assembled Nickle Metal Nanomasks ”, Jpn. J. Appl. Phys., 44, n 4B (2005).
19. C.H. Chiu, T.C. Lu, H.W. Huang, C.F. Lai, C.C. Kao, J.T. Chu, C.C. Yu, H.C. Kuo, S.C Wang, C.F. Lin, T.H. Hsueh, “ Fabrication of InGaN/GaN nanorod light emitting diodes with self assembled Ni metal islands”, Nanotechnology, 18, 455201 (2007).
20. C B Soh, B Wang, S J Chua, Vivian K X Lin, Rayson J N Tan and S Tripathy, “Fabrication of a nano-cone array on a p-GaN surface for enhanced light extraction efficiency from GaN-based tunable wavelength LEDs”, Nanotechnology 19, 405303 (2008).
21. Hwa-Mok Kim, Doo Soo Kim, Young Shin Park, Deuk Young Kim, Tae Won Kang, and Kwan Soo Chung, “Growth of GaN nanorods by hybride vapor phase epitaxy method” Adv. Mater. 14, No. 13-14, July, 2002.
22. M.S. Gudiksen, “Semiconductor nanowires and nanowire heterostructures: development of complex building block for nanotechnology”, thesis in Chemistry, and Chemical Biology, Harvard U, Chap.2 (2002).
23. S.R. Hejazi, H.R. Madaah Hosseini, M. Sasani Ghamsari, “The role of reactant and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vapor-liquid-solid (VLS) mechanism”, Journal of Alloys and Compounds 455,353-357 (2008).
24. Cheng-Pin Chen, Pei-Hsuan Lin, Liang-Yi Chen, Min-Yung Ke, Yun-Wei Cheng and JianJang Huang, “Nanoparticle-coated n-ZnO/p-Si photodiodes with improved photoresponsivities and acceptance angles for potential solar cell applications” , Nanotechnology 20 (2009) 245204
25. Min-Yann Hsieh, Cheng-Yin Wang, Liang-Yi Chen, Tzu-Pu Lin, Min-Yung Ke, Yun-Wei Cheng, Yi-Cheng Yu, Cheng Pin Chen, Dong-Ming Yeh, Chih-Feng Lu, Chi-Feng Huang, C. C. Yang, and Jian Jang Huang, “Improvement of External Extraction Efficiency in GaN-Based LEDs by SiO2 Nanosphere Lithography”, IEEE Electron Device Letters, Vol. 29, No. 7, July 2008.
26. Cheng-Yin Wang, Liang-Yi Chen, Cheng-Pin Chen, Yun-Wei Cheng, Min-Yung Ke, Min-Yann Hsieh, Han-Ming Wu, Lung-Han Peng and JianJang Huang, “GaN nanorod light emitting diode arrays with anearly constant electroluminescent peak wavelength,” Optic Express, Vol. 16, No. 14, July 2008.
27. C X Lian, X Y Li and J Liu, “Optical anisotropy of wurtzite GaN on sapphire characterized by spectroscopic ellipsometry,” Semicond. Sci. Technol. Vol. 19, pp. 417–420 (2004)
28. M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, and B. W. Shore, “High-efficiency multilayer dielectric diffraction gratings,” Opt. Lett. vol. 20, pp. 940-942 (1995)
29. Hung-Ying Chen, Yu-Chen Yang, Hon-Way Lin, Shih-Cheng Chang, and Shangjr Gwo, “Polarized photoluminescence from single GaN nanorods: Effects of optical confinement”, Opt. Express, vol. 16, pp. 13465-13475 (2008)
30. H. E. Ruda and A Shik, 'Polarization-sensitive optical phenomena in thick semiconducting nanowires', J. Appl. Phys., vol. 100, 024314 (2006)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42567-
dc.description.abstract自1990年後,p型氮化鎵發展完備,氮化鎵目前廣泛的被應用在發光二極體上。發光二極體具有反應時間短,可靠度高,元件壽命長,低耗電等優點。近幾年來,發光二極體廣泛地應用在液晶螢幕的背光模組。由於氮化鎵與空氣的折射係數差異,其介面處將會發生全反射,並使得光萃取效率降低。另一方面,現今業界將極化片放置於背光源以及液晶螢幕之間藉此達成極化光緣,但極化片將會使通過的光強度降低一半以上。因此,發光二極體仍有許多有趣的議題值得探討,例如,偏極化光緣的達成以及光萃取率的增加。
在本篇文章中,藉由塗佈自組排列的單層二氧化矽奈米小球做為蝕刻遮罩以製作自組性奈米柱陣列,並圍繞於發光二極體方型發光區,這種奈米小球自然微影技術不需增加額外光罩,所以製作成本低廉,為一種非常有發展潛力的奈米結構製作技術。我們證明此種自組排列的奈米柱陣列可以收集發光二極體內被量子井侷限之側向傳遞光。由光強度對電流作圖,可以得知,有20微米、密度為0.21的奈米柱陣列圍繞之氮化鎵發光二極體,其於15毫安培的電流注入下,將會有40%的光強度增加。由於隨機排列的奈米柱造成各向等性的光散射,各角度的光強度皆上升。
延續上個實驗,接下來我們提出一個新穎的低成本方法來提升發光二極體的光極化比例以及光萃取效率-將手指狀的p型發光區圍繞以自然微影製作的自組排列奈米柱陣列;由於奈米柱排列方向垂直於p型極化光的電場振動方向,所以奈米柱陣列對p型極化光的布拉格繞射效果比s型極化光大,故有奈米柱陣列圍繞的發光二極體,其極化比例高於沒有奈米柱陣列圍繞的元件。在發光二極體的正上方量測,有奈米柱陣列圍繞的元件,其p型極化光為s型極化光的1.96倍;若是將00到900的光強度積分起來,將得到p型極化光為s型極化光的1.52倍。
zh_TW
dc.description.abstractSince p-type GaN is well developed in 1990’s, GaN has been widely used in light emitting diodes. There are several advantages such as short response time, good reliability, long life time, and low power consumption for GaN light emitting diodes. In recent year, the demands of light emitting diodes such as backlight module increased dramatically. Since the refraction index is different between GaN and air, total reflection which decreases low external quantum efficiency causes at the interface. On the other hand, the commercial method to get polarized light is place polarizer between the backlight and liquid crystal. This method will leads light intensity decay at least 50% when light passes through the polarizer. Therefore, there are interesting topics of LEDs such as getting a polarized light source and improving the light extraction efficiency.
In my thesis, by spin-coating a monolayer of self-aligned SiO2 nanosphere as the etching mask, nanorods array which encompassed with square shape light emitting mesa are fabricated. Since no additional lithography-mask needs by using the nanoparticle natural lithography, it has well potential to fabricate the low-cost nanostructure. We demonstrate a method of utilizing self-assembled nanorods array to collect the laterally propagating guided modes from a light emitting diode (LED). We measure a light intensity enhancement factor of 40% from GaN-based LEDs encompassed with 20μm thick nanorods array which filling factor is 0.21. Such power enhancement is found to be omni-directional due to a broken symmetry from a randomized distribution of the nanorods array placed along the periphery of the LED’s mesa. These observations indicate that the use of nanorods array can efficiently redirect the propagation of the laterally guided modes to the surface normal direction.
Continuing from the previous experiment, we provide a noval and low-cost method by using nanorods to get polarized light source and enhance the output power of light emitting diodes-finger shape p-mase encompassed with self-aligned nanorods array by using natural lithography. Since the bragg diffraction of laterally propagated p-polarized mode by nanorods is more efficient than the s-polarized light, the p/s ratio of the device with nanorods is higher than that without rods. The polarization behavior of the light emitting diodes with and without nanorods surrounding the p-mesa is investigated. In my research, the p/s ratio of the LED with nanorods is 1.96 at 90˚, and is 1.52 when the integrating intensity between 0˚ and 90˚ is considered.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:16:29Z (GMT). No. of bitstreams: 1
ntu-98-R96941024-1.pdf: 4125823 bytes, checksum: b03a06c05dfbd528f8dfeec86353d236 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsTable of contents
論文口試委員審定書
謝誌
摘要
Abstract
Chapter.1 Introduction
1-1 Preface ……………………………………………………………………1
1-2 Motivation…………..……………….……………………………………3
Chapter.2 Historical review
2-1. Nanostructure LEDs devices ………………………………………….....5
2-2. Polarized LEDs device ……………………………………….……….....7
2-3. Nanorod fabrication process ……………………………………………10
2-4. Nanosphere self-align lithography………………………………….......12
Reference ………….………………………………………………..……….17
Chapter.3 InGaN/GaN MQW LEDs with square shape mesa encompassed with nanorods array
3-1. InGaN/GaN MQW LEDs sample structure…………………….….……23
3-2. Device fabrication process……………………………………..….……25
3-3. Characteristic discussion………………………………………………..35
Chapter.4 InGaN/GaN MQW LEDs with finger shape mesa encompassed with nanorods array
4-1. Device fabrication process……………………………………….….….43
4-2. Characteristic discussion……………………………………………….49
Reference ………….……………………………………….………………..54
Chapter.5 Conclusion
5-1 Conclusion ……………………………………………………………...55
dc.language.isoen
dc.title氮化鎵奈米柱發光二極體之光萃取效率提升及偏極化光源達成zh_TW
dc.titleOn Power Enhancement and Polarized Light GaN-based Light Emitting Diodes Encompassed with Nanorodsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊志忠,吳育任,葉秉慧,彭隆瀚
dc.subject.keyword氮化鎵,奈米柱,自然微影,極化,光萃取,zh_TW
dc.subject.keywordGaN,nanorods array,natural lithography,p/s ratio,extraction efficiency,en
dc.relation.page56
dc.rights.note有償授權
dc.date.accepted2009-07-28
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
4.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved