請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42565完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張宏鈞 | |
| dc.contributor.author | Chung-Yu Huang | en |
| dc.contributor.author | 黃仲宇 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:16:25Z | - |
| dc.date.available | 2013-07-01 | |
| dc.date.copyright | 2011-08-20 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-16 | |
| dc.identifier.citation | [1] Baida, F. I., A. Belkhir, and D. V. Labeke, “Subwavelength metallic coaxial
waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B, vol. 74, 205419, 2006. [2] Benabid, F., J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogenfilled hollow-core photonic crystal fibers,” Science, vol. 298, pp. 399–402, 2002. [3] Berenger, J. P., “A Perfectly Matched Layer for the Absorption of Electromagnetic Waves.” J. Comp. Phys., vol. 114, pp. 185–200, 1994. [4] Berini, P., “Plasmon polariton modes guided by a metal film of finite width,” Opt. Lett., vol. 24, pp. 1011–1013, 1999. [5] Berini, P., “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B, vol. 61, pp. 10484–10503, 2000. [6] Berini, P., “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures,” Phys. Rev. B, vol. 63, 125417, 2001. [7] Berini, P., “Figures of merit for surface plasmon waveguides,” Opt. Express, vol. 14, pp. 13030-13042, 2006. [8] Bierwirth, K., N. Schulz, and F. Arndt, “Finite-difference analysis of rectangular dielectric waveguide structures,” IEEE. Trans. Microwave Theory Tech., vol. 34, pp. 1104–1113, 1986. [9] Boardman, A. D., G. C. Aers, and R.Teshima, “Retarded edge modes of a parabolic wedge,” Phys. Rev. B, vol. 24, pp. 5703—5712, 1981. [10] Bodewig, E., Matrix Calculus. Amsterdam: North Holland Pub. Co., 1956. [11] Boltasseva, A., V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express, vol. 16, pp. 5252–5260, 2008. [12] Bozhevolnyi, S. I., V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. B, vol. 95, 046802, 2005. [13] Bozhevolnyi, S. I., V. S. Volkov, E. Devaux, J. Y. Laluet, and T.W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature, vol. 440, pp. 508-511, 2006. [14] Brongersma, M. L., J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B, vol. 62, pp. R16356–R16359, 2000. [15] Burke, J. J., G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B, vol. 33, pp. 5186–5201, 1986. [16] Burnett, D. S., Finite Element Analysis., AT& T Bell Laboratories, 1987. [17] Cavendish, J. C., D. A. Field, and W. H. Frey, “An approach to automatic three-dimensional finite element mesh generation,” Int. J. Number. Meth. Eng., vol. 21, pp. 329–347, 1985. [18] Cendes, Z. J., and P. Silvster, “Numerical solution of dielectric loaded waveguides: Finite-element analysis,” IEEE Trans. Microwave Theory Tech., vol. MTT-18, pp. 1124–1131, 1970. [19] Charbonneau, R., P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon polariton waves supported by a thin metal film of finite width,” Opt. Letters, vol. 25, pp. 844–846, 2000. [20] Chen, H. J., Hybrid-Elements FEM Based Complex Mode Solver for Optical Waveguides with Triangular-Mesh Generator. M. S. Thesis, Graduate Institute of Electro-optical Engineering, National Taiwan University, Taipei, Taiwan, June 2003. [21] Chiang, Y. C., Y. P. CHiou, and H. C. Chang, “Improved full-vectorial finitedifference mode solver for optical waveguides with step-index profiles,” J. Light- wave Technol., vol. 20, pp. 1609–1618, 2002. [22] Chung, C. C., Analysis of Slot and Triangle-Shaped Surface Plasmonic Waveg- uides Using a Full-Vectorial Imaginary-Distance Finite-Element Beam Propa- gation Method. M. S. Thesis, Graduate Institute of Electro-optical Engineering, National Taiwan University, Taipei, Taiwan, June 2008. [23] Collin, R. E., Foundations for Microwave Engineering., 2nd edition. Wiley- IEEE Press, 2001. [24] Economou, E. N., “Surface plasmons in thin films,” Phys. Rev., vol. 182, pp. 539-554, 1969. [25] Fokine, M., L. Nilsson, E. Claesson, A. D. Berlemont, L. Kjellberg, L. Krummenacher, and W. Margulis, “Integrated fiber Mach-Zehnder interferometer for electro-optic switching,” Opt. Lett., vol. 27, pp. 1643–1645, 2002. [26] Fujisawa, T., and Koshiba, M., “Full-vector finite-element beam propagation method for three-dimensional nonlinear optical waveguides,” J. Lightwave Tech- nol., vol. 20, pp. 1876–1884, 2002. [27] Gauvreau, B., A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiberbased Surface Plasmon Resonance sensors, ” Opt. Express vol.15, pp. 11413–11426, 2007. [28] Gordon, R., and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express, vol. 13, pp. 1933–1938, 2005. [29] Gramotnev, D. K., and D. F. P. Pile, “Single-mode subwavelength waveguide with channel plasmonpolaritons in triangular grooves on a metal surface,” Appl. Phys. Lett., vol. 85, pp. 6323–6325, 2004. [30] Gramotnev, D. K., and S. I. Bozhevolnyi, “plasmonics beyond the diffraction limit,” Nature Photonics, vol. 4, pp. 83–91, 2010. [31] Grillot, F., L. Vivien, and E. Cassan, “Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides,” J. Lightwave Technol., vol. 24, pp. 891–896, 2006 [32] Harley, G. R., and R. E. Smith, “Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions,” J. Lightwave Technol., vol. 13, pp. 465–469, 1995 [33] Hou, J., D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight, “Metallic mode confinement in microstructured fibres,” Opt. Express, vol.16, pp. 5983–5990, 2008. [34] Hsu, S. M., Full-Vectorial Finite Element Beam Propagation Method Based on Curvilinear Hybrid Edge/Nodal Elements for Optical Waveguide Problems. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, June 2004. [35] Jin, J., The Finite Element Method in Electromagnetics., 2nd edition. Wiley- IEEE Press, 2002 [36] Johnson, P. B., and R. W. Christy, “Optical constants of the noble metals,” Phy. Rev, B.6, pp.4370–4378, 1972. [37] Kawata, S., Near-Field Optics and Surface Plasmon Polaritons. Berlin: Springer-Verlag Berlin Heidelberg, 2001. [38] Kekatpure, R. D., Hrylew, A. C., Barnard, E. S., and M. L. Brongesma , “Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator,” Opt. Express, vol. 17, pp. 24112–24129, 2009. [39] Kerbage, C., A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton , “Integrated all-fiber variable attenuator based on hybrid microstructure fiber,” Appl. Phys. Lett., vol. 79, pp. 3191–3193, 2001. [40] Koshiba, M., and Y. Tsuji, “Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,” J. Lightwave Technol., vol. 18, pp. 737–743, 2000 [41] Krenn, J. R. et al., “Non-diffraction-limited light transport by gold nanowires,” Europhys Lett., vol. 60, pp. 663–669, 2002. [42] Kretschmann, E., and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforschung, vol. 23A, pp. 2135–2136, 1968. [43] Kumar, A., and T. Srivastava, “Modeling of a nanoscale rectangular hole in a real metal,” Opt. Letters, vol. 33, pp. 333–335, 2008. [44] Lamprecht, B., J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Flidj, A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation in microscale metal stripes,” Appl. Phys. Lett., vol. 79, pp. 51–53, 2001. [45] Lai, C. H., and H. C. Chang, “Effect of perfectly matched layer reflection coefficient on modal analysis of leaky waveguide modes,” Opt. Express, vol. 19, pp. 562–569, 2011. [46] Lee, J.-F., D.-K. Sun, and Z. J. Cendes, “Full-wave analysis of dielectric waveguides using tangential vector finite elements,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1262–1271, 1991. [47] Lee, J. F., Finite element method with curvillinear hybrid edge/nodal triangular shape element for optical waveguide problems. M. S. Thesis, Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan, June 2002. [48] Lin, J. J., Analysis of Plasmonic Waveguides with Right-Angled Corners and Edges Using a Full-Vectorial Imaginary-Distance Finite-Element Beam Propa- gation Method. M.S. Thesis, Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan, July 2009. [49] Liu, L., Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express, vol. 13, pp. 6645–6650, 2005. [50] L‥usse, P., P. Stuwe, and J. Sch‥ule, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol, vol. 12, pp. 487–493, 1994. [51] Maier, S. A., Surface Plasmons: Fundamental and Application. Berlin: Springer, 2007. [52] Maier, S. A. et al., “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater., vol. 2, pp. 229–232, 2003. [53] Maier, S. A., and H. A.Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys., vol. 98, 011101, 2005. [54] Moreno, E., F. J. Garica-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon V-polaritons: Modal shape, dispersion, and losses,” Opt. Lett., vol. 31, pp. 3447–3449, 2006. [55] Nerkararyan, K. V., “Superfocusing of a surface polariton in a wedge-like structure,” Phys. Lett. A, vol. 237, pp. 103–105, 1997. [56] Nikolajsen, T., K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton based modulators and switches operating at telecom wavelengths,” Appl. Phys. Lett., vol. 85, pp. 5833–5835, 2004. [57] Novikov, I. V., and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B, vol. 66, pp. 035403, 2002. [58] Onuki, T. et al., “Propagation of surface plasmon polariton in nanometre-sized metal-clad optical waveguides,” J. Microsc., vol. 210, 284-287, 2003. [59] Otto, A., “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Physik, vol. 216, pp. 398–410, 1968. [60] Oulton, R. F., V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nature Photon, vol. 2, pp. 496–500, 2008. [61] Palik, E. D., and G. Ghosh, Handbook of Optical Constants of Solids. New York: Academic, 1985. [62] Peng, C. H., Analysis of Photonic Crystal Fibers Using a Full-Vectorial Imaginary-Distance Finite-Element Beam Propagation Method. M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, June 2007. [63] Pile, D. F. P., and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett., vol. 29, pp. 1069–1071, 2004. [64] Pile, T. Ogawa, and D. K. Gramotnev, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett., vol. 87, 061106, 2005. [65] Pile, D. F. P. et al., “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett., vol. 87, 261114, 2005. [66] Pile, D. F. P., D. K. Gramotnev, R. F. Oulton, and X. Zhang, “On long-range plasmonic modes in metallic gaps,” Opt. Express, vol. 15, pp. 13669-13674, 2007. [67] Peterson, A. F., “Vector finite element formulation for scattering from twodimensional heterogeneous bodies,” IEEE Trans. Antennas Propagat., vol. AP- 43, pp. 357–365, 1994. [68] Quinten, M., A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett., vol. 23, pp. 1331-1333, 1998. [69] Raether, H., Surface Plasmons. Berlin: Springer-Verlag, 1988. [70] Rebay, S., “Efficient unstructured mesh generation by means of Delaunay triangulation and Bowyer-Watson algorithm,” J. Comput. Phys., vol. 105, pp. 125–138, 1993. [71] Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee, “Perfectly matched anisotropic absorber for use as an absorbingboundary condition,” IEEE Trans. Antennas Propagat., vol. 43, pp. 1460–1463, 1995. [72] Saitoh, K., and M. Koshiba, “Approximate scalar finite-element beampropagation method with perfectly matched layers for anisotropic optical waveguides,” J. Lightwave Technol., vol. 19, pp. 786–792, 2001. [73] Saitoh, K., and M. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron., vol. 38, pp. 927–933, 2002. [74] Satuby, Y., and M. Orenstein, “Surface-plasmon-polariton modes in deep metallic trenches-measurement and analysis,” Opt. Exp., vol. 15, pp. 4247–4252, 2007. [75] Schulz, D., C. Gingener, M. Bludsuweit, and E. Voges, “Finite element beam propagation method,” J. Lightwave Technol., vol. 16, pp. 1336–1341, 1998. [76] Takahara, J., S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett., vol. 22, pp. 475–477, 1997. [77] Tanaka, K., and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett., vol. 82, pp. 1158–1160, 2003. [78] Tanaka, K., M. Tanaka, and T. Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express, vol. 13, pp. 256–266, 2005. [79] Teixeira, F. L., and W. C. Chew, “PML-FDTD in cylindrical and spherical grids,” IEEE Microwave Guided Wave Lett., vol. 7, pp. 285–287, 1997. [80] Verhagen, E., A.Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express, vol. 16, pp. 45–47, 2008. [81] Veronis, G., and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett., vol. 30, pp. 3359–3361, 2005. [82] Wang, B., and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett., vol. 29, pp. 1992–1994, 2004. [83] Weeber, J. C., A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B, vol. 60, pp. 9061–9068, 1999. [84] Yan, M., and M. Qiu, “Guided plasmon polariton at 2D metal corners,” J. Opt. Soc. Am. B, vol. 24, pp. 2333–2342, 2007. [85] Zia, R., A. Chandran, and M. L. Brongersma, “Dielectric waveguide model for guided surface polaritons,” Opt. Lett., vol. 30, pp. 1473–1475, 2005. [86] Zia, R., J. A. Schuller, and M. L. Brongersma, “Near-field characterization of guided polariton propagation and cutoff in surface plasmon waveguides,” Phys. Rev. B, vol. 74, 165415, 2006. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42565 | - |
| dc.description.abstract | 本篇論文中,我們以曲線混合型元素為基底的全向量有限元素虛軸波束傳遞法以及完美匹配層來分析表面電漿波導。我們分析了金屬方形波導、圓形波導、金屬孔洞光纖以及在非對稱環境的金屬條狀波導。金屬方型與圓形波導在可見光波段的性質與其在微波波段時可被視為完美電導體的性質不同,我們研究了邊長以及半徑對於增加截止波長的影響。金屬孔洞光纖是一個類似光子晶體的結構,但在其最內圈灌入金屬,因此不僅存在光子晶體的模態,也會存在表面電漿模態。我們分析了以上結構的等效傳播常數。最後在非對稱環境的金屬條狀波導裡,我們分析了完美匹配層中的反射係數對於洩漏模態的影響。 | zh_TW |
| dc.description.abstract | In this thesis, the full-vectorial finite element imaginary-distance beam propagation method (FE-ID-BPM) based on the hybrid edge/nodal elements and the perfectly matched layers (PMLs) is used to analyze some surface plasmonic waveguides. The metallic rectangular waveguide, the metallic circular waveguide, the metallic holey fiber, and the asymmetric metal stripe waveguide are investigated. The rectangular and circular waveguides in nano-scale perform differently from the perfectly electric conductor (PEC) waveguides popularly used at microwave frequencies. The extended cutoff wavelengths of TE-like modes and TEM-like mode as well as the effects of the wall width, wall height, and wall radius are discussed. The metallic holey fiber is a photonic-crystal-fiber-like (PCF-like) structure with metal injected to a certain air ring, for which the complicated modes include the surface plasmon (SP) modes and the fundamental PCF mode. The effective refractive indices at optical wavelengths of these modes are analyzed. Finally the asymmetric metal stripe waveguide is studied, and especially the leaky modes for which the calculations are refined by using different values of the PML reflection coefficient. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:16:25Z (GMT). No. of bitstreams: 1 ntu-100-R98941048-1.pdf: 22495579 bytes, checksum: 3048169c26409e7737c27a94fce7c288 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 1 Introduction 1
1.1 Motivations . . . . .. . . . . . . . . . . . . . . . . 1 1.2 Numerical Methods . . .. . . . . . . . . . . . . . . . 2 1.3 Chapter Outline . . . .. . . . . . . . . . . . . . . . 4 2 Formulation and Related Techniques 6 2.1 The Perfectly Matched Layers . . . . . . . . . . . . . 6 2.2 The Finite Element Mode Solver . . . . . . . . . . . . 8 2.3 The Finite Element Beam Propagation Method . . . . . 12 2.4 The Finite-Element Imaginary-Distance Beam Propagation Method . 15 3 Analysis of Metallic Optical Waveguides 24 3.1 Overview: Surface Plasmon Waveguides . . . .. . . . . 24 3.2 The Drude Model for Metals . . . . . . . . . . . . . 25 3.3 Surface Plasmon Polaritons . . .. . . . . . . . . . . 27 3.4 Circular and Rectangular Metallic Waveguides . . . . 30 3.4.1 Circular Waveguides . . . . . . .. . . . . . . 30 3.4.2 Analysis Results of Circular Waveguides . .31 3.4.3 Rectangular Waveguides . . . . . . . . . . . 33 3.4.4 Analysis Results of Rectangular Waveguides . . . . 35 3.5 Metallic Holey Fibers . . . . .. . . . . 37 3.5.1 An Overview . . . . . . . . . . . . . . . . . . . 37 3.5.2 Analysis Results of Metallic Holey Fibers . . . . . 37 4 Analysis of Asymmetric Metal Stripe Waveguides 65 4.1 Overview of the Metal Stripe Waveguide . . . . . . . 65 4.2 IMI Multilayer System . . . . .. . . . . . . . . . . 67 4.3 Leaky and Other Modes . . . . . . . . . . . . . . . . 68 4.4 Results and Discussion . .. . . . . . . . . . . . . 69 5 Conclusion 86 Bibliography 88 | |
| dc.language.iso | en | |
| dc.subject | 波導 | zh_TW |
| dc.subject | 有限元素法 | zh_TW |
| dc.subject | 表面電漿子 | zh_TW |
| dc.subject | surface plasmon | en |
| dc.subject | waveguides | en |
| dc.subject | FEM | en |
| dc.title | 以全向量虛軸有限元素波束傳播法分析金屬光波導與金屬條狀表面電漿子波導 | zh_TW |
| dc.title | Analysis of Metallic Optical Waveguides and Metal-Stripe Surface Plasmonic Waveguides Using a Full-Vectorial Imaginary-Distance Finite-Element Beam Propagation Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王俊凱,江衍偉 | |
| dc.subject.keyword | 表面電漿子,波導,有限元素法, | zh_TW |
| dc.subject.keyword | surface plasmon,waveguides,FEM, | en |
| dc.relation.page | 97 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 21.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
