Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42565
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張宏鈞
dc.contributor.authorChung-Yu Huangen
dc.contributor.author黃仲宇zh_TW
dc.date.accessioned2021-06-15T01:16:25Z-
dc.date.available2013-07-01
dc.date.copyright2011-08-20
dc.date.issued2011
dc.date.submitted2011-08-16
dc.identifier.citation[1] Baida, F. I., A. Belkhir, and D. V. Labeke, “Subwavelength metallic coaxial
waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B,
vol. 74, 205419, 2006.
[2] Benabid, F., J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated
Raman scattering in hydrogenfilled hollow-core photonic crystal fibers,”
Science, vol. 298, pp. 399–402, 2002.
[3] Berenger, J. P., “A Perfectly Matched Layer for the Absorption of Electromagnetic
Waves.” J. Comp. Phys., vol. 114, pp. 185–200, 1994.
[4] Berini, P., “Plasmon polariton modes guided by a metal film of finite width,”
Opt. Lett., vol. 24, pp. 1011–1013, 1999.
[5] Berini, P., “Plasmon-polariton waves guided by thin lossy metal films of finite
width: Bound modes of symmetric structures,” Phys. Rev. B, vol. 61, pp.
10484–10503, 2000.
[6] Berini, P., “Plasmon-polariton waves guided by thin lossy metal films of finite
width: Bound modes of asymmetric structures,” Phys. Rev. B, vol. 63, 125417,
2001.
[7] Berini, P., “Figures of merit for surface plasmon waveguides,” Opt. Express,
vol. 14, pp. 13030-13042, 2006.
[8] Bierwirth, K., N. Schulz, and F. Arndt, “Finite-difference analysis of rectangular
dielectric waveguide structures,” IEEE. Trans. Microwave Theory Tech.,
vol. 34, pp. 1104–1113, 1986.
[9] Boardman, A. D., G. C. Aers, and R.Teshima, “Retarded edge modes of a
parabolic wedge,” Phys. Rev. B, vol. 24, pp. 5703—5712, 1981.
[10] Bodewig, E., Matrix Calculus. Amsterdam: North Holland Pub. Co., 1956.
[11] Boltasseva, A., V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S.
I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton
guiding at telecom wavelengths,” Opt. Express, vol. 16, pp. 5252–5260, 2008.
[12] Bozhevolnyi, S. I., V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel
plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. B, vol.
95, 046802, 2005.
[13] Bozhevolnyi, S. I., V. S. Volkov, E. Devaux, J. Y. Laluet, and T.W. Ebbesen,
“Channel plasmon subwavelength waveguide components including interferometers
and ring resonators,” Nature, vol. 440, pp. 508-511, 2006.
[14] Brongersma, M. L., J. W. Hartman, and H. A. Atwater, “Electromagnetic
energy transfer and switching in nanoparticle chain arrays below the diffraction
limit,” Phys. Rev. B, vol. 62, pp. R16356–R16359, 2000.
[15] Burke, J. J., G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided
by thin, lossy metal films,” Phys. Rev. B, vol. 33, pp. 5186–5201, 1986.
[16] Burnett, D. S., Finite Element Analysis., AT& T Bell Laboratories, 1987.
[17] Cavendish, J. C., D. A. Field, and W. H. Frey, “An approach to automatic
three-dimensional finite element mesh generation,” Int. J. Number. Meth. Eng.,
vol. 21, pp. 329–347, 1985.
[18] Cendes, Z. J., and P. Silvster, “Numerical solution of dielectric loaded waveguides:
Finite-element analysis,” IEEE Trans. Microwave Theory Tech., vol.
MTT-18, pp. 1124–1131, 1970.
[19] Charbonneau, R., P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental
observation of plasmon polariton waves supported by a thin metal film of finite
width,” Opt. Letters, vol. 25, pp. 844–846, 2000.
[20] Chen, H. J., Hybrid-Elements FEM Based Complex Mode Solver for Optical
Waveguides with Triangular-Mesh Generator. M. S. Thesis, Graduate Institute
of Electro-optical Engineering, National Taiwan University, Taipei, Taiwan,
June 2003.
[21] Chiang, Y. C., Y. P. CHiou, and H. C. Chang, “Improved full-vectorial finitedifference
mode solver for optical waveguides with step-index profiles,” J. Light-
wave Technol., vol. 20, pp. 1609–1618, 2002.
[22] Chung, C. C., Analysis of Slot and Triangle-Shaped Surface Plasmonic Waveg-
uides Using a Full-Vectorial Imaginary-Distance Finite-Element Beam Propa-
gation Method. M. S. Thesis, Graduate Institute of Electro-optical Engineering,
National Taiwan University, Taipei, Taiwan, June 2008.
[23] Collin, R. E., Foundations for Microwave Engineering., 2nd edition. Wiley-
IEEE Press, 2001.
[24] Economou, E. N., “Surface plasmons in thin films,” Phys. Rev., vol. 182, pp.
539-554, 1969.
[25] Fokine, M., L. Nilsson, E. Claesson, A. D. Berlemont, L. Kjellberg, L. Krummenacher,
and W. Margulis, “Integrated fiber Mach-Zehnder interferometer for
electro-optic switching,” Opt. Lett., vol. 27, pp. 1643–1645, 2002.
[26] Fujisawa, T., and Koshiba, M., “Full-vector finite-element beam propagation
method for three-dimensional nonlinear optical waveguides,” J. Lightwave Tech-
nol., vol. 20, pp. 1876–1884, 2002.
[27] Gauvreau, B., A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy,
“Photonic bandgap fiberbased Surface Plasmon Resonance sensors, ”
Opt. Express vol.15, pp. 11413–11426, 2007.
[28] Gordon, R., and A. G. Brolo, “Increased cut-off wavelength for a subwavelength
hole in a real metal,” Opt. Express, vol. 13, pp. 1933–1938, 2005.
[29] Gramotnev, D. K., and D. F. P. Pile, “Single-mode subwavelength waveguide
with channel plasmonpolaritons in triangular grooves on a metal surface,” Appl.
Phys. Lett., vol. 85, pp. 6323–6325, 2004.
[30] Gramotnev, D. K., and S. I. Bozhevolnyi, “plasmonics beyond the diffraction
limit,” Nature Photonics, vol. 4, pp. 83–91, 2010.
[31] Grillot, F., L. Vivien, and E. Cassan, “Propagation loss in single-mode ultrasmall
square silicon-on-insulator optical waveguides,” J. Lightwave Technol.,
vol. 24, pp. 891–896, 2006
[32] Harley, G. R., and R. E. Smith, “Full-vector waveguide modeling using an
iterative finite-difference method with transparent boundary conditions,” J.
Lightwave Technol., vol. 13, pp. 465–469, 1995
[33] Hou, J., D. Bird, A. George, S. Maier, B. T. Kuhlmey, and J. C. Knight,
“Metallic mode confinement in microstructured fibres,” Opt. Express, vol.16,
pp. 5983–5990, 2008.
[34] Hsu, S. M., Full-Vectorial Finite Element Beam Propagation Method Based on
Curvilinear Hybrid Edge/Nodal Elements for Optical Waveguide Problems. M.
S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan
University, Taipei, Taiwan, June 2004.
[35] Jin, J., The Finite Element Method in Electromagnetics., 2nd edition. Wiley-
IEEE Press, 2002
[36] Johnson, P. B., and R. W. Christy, “Optical constants of the noble metals,”
Phy. Rev, B.6, pp.4370–4378, 1972.
[37] Kawata, S., Near-Field Optics and Surface Plasmon Polaritons. Berlin:
Springer-Verlag Berlin Heidelberg, 2001.
[38] Kekatpure, R. D., Hrylew, A. C., Barnard, E. S., and M. L. Brongesma ,
“Solving dielectric and plasmonic waveguide dispersion relations on a pocket
calculator,” Opt. Express, vol. 17, pp. 24112–24129, 2009.
[39] Kerbage, C., A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton , “Integrated
all-fiber variable attenuator based on hybrid microstructure fiber,” Appl.
Phys. Lett., vol. 79, pp. 3191–3193, 2001.
[40] Koshiba, M., and Y. Tsuji, “Curvilinear hybrid edge/nodal elements with triangular
shape for guided-wave problems,” J. Lightwave Technol., vol. 18, pp.
737–743, 2000
[41] Krenn, J. R. et al., “Non-diffraction-limited light transport by gold nanowires,”
Europhys Lett., vol. 60, pp. 663–669, 2002.
[42] Kretschmann, E., and H. Raether, “Radiative decay of non-radiative surface
plasmons excited by light,” Z. Naturforschung, vol. 23A, pp. 2135–2136, 1968.
[43] Kumar, A., and T. Srivastava, “Modeling of a nanoscale rectangular hole in a
real metal,” Opt. Letters, vol. 33, pp. 333–335, 2008.
[44] Lamprecht, B., J. R. Krenn, G. Schider, H. Ditlbacher, M. Salerno, N. Flidj,
A. Leitner, F. R. Aussenegg, and J. C. Weeber, “Surface plasmon propagation
in microscale metal stripes,” Appl. Phys. Lett., vol. 79, pp. 51–53, 2001.
[45] Lai, C. H., and H. C. Chang, “Effect of perfectly matched layer reflection
coefficient on modal analysis of leaky waveguide modes,” Opt. Express, vol. 19,
pp. 562–569, 2011.
[46] Lee, J.-F., D.-K. Sun, and Z. J. Cendes, “Full-wave analysis of dielectric waveguides
using tangential vector finite elements,” IEEE Trans. Microwave Theory
Tech., vol. 39, pp. 1262–1271, 1991.
[47] Lee, J. F., Finite element method with curvillinear hybrid edge/nodal triangular
shape element for optical waveguide problems. M. S. Thesis, Graduate Institute
of Communication Engineering, National Taiwan University, Taipei, Taiwan,
June 2002.
[48] Lin, J. J., Analysis of Plasmonic Waveguides with Right-Angled Corners and
Edges Using a Full-Vectorial Imaginary-Distance Finite-Element Beam Propa-
gation Method. M.S. Thesis, Graduate Institute of Communication Engineering,
National Taiwan University, Taipei, Taiwan, July 2009.
[49] Liu, L., Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,”
Opt. Express, vol. 13, pp. 6645–6650, 2005.
[50] L‥usse, P., P. Stuwe, and J. Sch‥ule, “Analysis of vectorial mode fields in optical
waveguides by a new finite difference method,” J. Lightwave Technol, vol. 12,
pp. 487–493, 1994.
[51] Maier, S. A., Surface Plasmons: Fundamental and Application. Berlin:
Springer, 2007.
[52] Maier, S. A. et al., “Local detection of electromagnetic energy transport below
the diffraction limit in metal nanoparticle plasmon waveguides,” Nature Mater.,
vol. 2, pp. 229–232, 2003.
[53] Maier, S. A., and H. A.Atwater, “Plasmonics: Localization and guiding of
electromagnetic energy in metal/dielectric structures,” J. Appl. Phys., vol. 98,
011101, 2005.
[54] Moreno, E., F. J. Garica-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I.
Bozhevolnyi, “Channel plasmon V-polaritons: Modal shape, dispersion, and
losses,” Opt. Lett., vol. 31, pp. 3447–3449, 2006.
[55] Nerkararyan, K. V., “Superfocusing of a surface polariton in a wedge-like structure,”
Phys. Lett. A, vol. 237, pp. 103–105, 1997.
[56] Nikolajsen, T., K. Leosson, and S. I. Bozhevolnyi, “Surface plasmon polariton
based modulators and switches operating at telecom wavelengths,” Appl. Phys.
Lett., vol. 85, pp. 5833–5835, 2004.
[57] Novikov, I. V., and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B, vol.
66, pp. 035403, 2002.
[58] Onuki, T. et al., “Propagation of surface plasmon polariton in nanometre-sized
metal-clad optical waveguides,” J. Microsc., vol. 210, 284-287, 2003.
[59] Otto, A., “Excitation of nonradiative surface plasma waves in silver by the
method of frustrated total reflection,” Z. Physik, vol. 216, pp. 398–410, 1968.
[60] Oulton, R. F., V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid
plasmonic waveguide for subwavelength confinement and long-range propagation,”
Nature Photon, vol. 2, pp. 496–500, 2008.
[61] Palik, E. D., and G. Ghosh, Handbook of Optical Constants of Solids. New
York: Academic, 1985.
[62] Peng, C. H., Analysis of Photonic Crystal Fibers Using a Full-Vectorial
Imaginary-Distance Finite-Element Beam Propagation Method. M. S. Thesis,
Graduate Institute of Electro-Optical Engineering, National Taiwan University,
Taipei, Taiwan, June 2007.
[63] Pile, D. F. P., and D. K. Gramotnev, “Channel plasmon-polariton in a triangular
groove on a metal surface,” Opt. Lett., vol. 29, pp. 1069–1071, 2004.
[64] Pile, T. Ogawa, and D. K. Gramotnev, “Theoretical and experimental investigation
of strongly localized plasmons on triangular metal wedges for subwavelength
waveguiding,” Appl. Phys. Lett., vol. 87, 061106, 2005.
[65] Pile, D. F. P. et al., “Two-dimensionally localized modes of a nanoscale gap
plasmon waveguide,” Appl. Phys. Lett., vol. 87, 261114, 2005.
[66] Pile, D. F. P., D. K. Gramotnev, R. F. Oulton, and X. Zhang, “On long-range
plasmonic modes in metallic gaps,” Opt. Express, vol. 15, pp. 13669-13674,
2007.
[67] Peterson, A. F., “Vector finite element formulation for scattering from twodimensional
heterogeneous bodies,” IEEE Trans. Antennas Propagat., vol. AP-
43, pp. 357–365, 1994.
[68] Quinten, M., A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic
energy transport via linear chains of silver nanoparticles,” Opt. Lett., vol. 23,
pp. 1331-1333, 1998.
[69] Raether, H., Surface Plasmons. Berlin: Springer-Verlag, 1988.
[70] Rebay, S., “Efficient unstructured mesh generation by means of Delaunay triangulation
and Bowyer-Watson algorithm,” J. Comput. Phys., vol. 105, pp.
125–138, 1993.
[71] Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee, “Perfectly matched
anisotropic absorber for use as an absorbingboundary condition,” IEEE Trans.
Antennas Propagat., vol. 43, pp. 1460–1463, 1995.
[72] Saitoh, K., and M. Koshiba, “Approximate scalar finite-element beampropagation
method with perfectly matched layers for anisotropic optical
waveguides,” J. Lightwave Technol., vol. 19, pp. 786–792, 2001.
[73] Saitoh, K., and M. Koshiba, “Full-vectorial imaginary-distance beam propagation
method based on a finite element scheme: application to photonic crystal
fibers,” IEEE J. Quantum Electron., vol. 38, pp. 927–933, 2002.
[74] Satuby, Y., and M. Orenstein, “Surface-plasmon-polariton modes in deep metallic
trenches-measurement and analysis,” Opt. Exp., vol. 15, pp. 4247–4252, 2007.
[75] Schulz, D., C. Gingener, M. Bludsuweit, and E. Voges, “Finite element beam
propagation method,” J. Lightwave Technol., vol. 16, pp. 1336–1341, 1998.
[76] Takahara, J., S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding
of a one-dimensional optical beam with nanometer diameter,” Opt. Lett., vol.
22, pp. 475–477, 1997.
[77] Tanaka, K., and M. Tanaka, “Simulations of nanometric optical circuits based
on surface plasmon polariton gap waveguide,” Appl. Phys. Lett., vol. 82, pp.
1158–1160, 2003.
[78] Tanaka, K., M. Tanaka, and T. Sugiyama, “Simulation of practical nanometric
optical circuits based on surface plasmon polariton gap waveguides,” Opt.
Express, vol. 13, pp. 256–266, 2005.
[79] Teixeira, F. L., and W. C. Chew, “PML-FDTD in cylindrical and spherical
grids,” IEEE Microwave Guided Wave Lett., vol. 7, pp. 285–287, 1997.
[80] Verhagen, E., A.Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered
plasmonic waveguides,” Opt. Express, vol. 16, pp. 45–47, 2008.
[81] Veronis, G., and S. Fan, “Guided subwavelength plasmonic mode supported by
a slot in a thin metal film,” Opt. Lett., vol. 30, pp. 3359–3361, 2005.
[82] Wang, B., and G. P. Wang, “Surface plasmon polariton propagation in
nanoscale metal gap waveguides,” Opt. Lett., vol. 29, pp. 1992–1994, 2004.
[83] Weeber, J. C., A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon
polaritons of metallic nanowires for controlling submicron propagation of
light,” Phys. Rev. B, vol. 60, pp. 9061–9068, 1999.
[84] Yan, M., and M. Qiu, “Guided plasmon polariton at 2D metal corners,” J. Opt.
Soc. Am. B, vol. 24, pp. 2333–2342, 2007.
[85] Zia, R., A. Chandran, and M. L. Brongersma, “Dielectric waveguide model for
guided surface polaritons,” Opt. Lett., vol. 30, pp. 1473–1475, 2005.
[86] Zia, R., J. A. Schuller, and M. L. Brongersma, “Near-field characterization of
guided polariton propagation and cutoff in surface plasmon waveguides,” Phys.
Rev. B, vol. 74, 165415, 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42565-
dc.description.abstract本篇論文中,我們以曲線混合型元素為基底的全向量有限元素虛軸波束傳遞法以及完美匹配層來分析表面電漿波導。我們分析了金屬方形波導、圓形波導、金屬孔洞光纖以及在非對稱環境的金屬條狀波導。金屬方型與圓形波導在可見光波段的性質與其在微波波段時可被視為完美電導體的性質不同,我們研究了邊長以及半徑對於增加截止波長的影響。金屬孔洞光纖是一個類似光子晶體的結構,但在其最內圈灌入金屬,因此不僅存在光子晶體的模態,也會存在表面電漿模態。我們分析了以上結構的等效傳播常數。最後在非對稱環境的金屬條狀波導裡,我們分析了完美匹配層中的反射係數對於洩漏模態的影響。zh_TW
dc.description.abstractIn this thesis, the full-vectorial finite element imaginary-distance beam propagation method (FE-ID-BPM) based on the hybrid edge/nodal elements and the perfectly matched layers (PMLs) is used to analyze some surface plasmonic waveguides. The metallic rectangular waveguide, the metallic circular waveguide, the metallic holey fiber, and the asymmetric metal stripe waveguide are investigated. The rectangular and circular waveguides in nano-scale perform differently from the perfectly electric conductor (PEC) waveguides popularly used at microwave frequencies. The extended cutoff wavelengths of TE-like modes and TEM-like mode as well as the effects of the wall width, wall height, and wall radius are discussed. The metallic holey fiber is a photonic-crystal-fiber-like (PCF-like) structure with metal injected to a certain air ring, for which the complicated modes include the surface plasmon (SP) modes and the fundamental PCF mode. The effective refractive indices at optical wavelengths of these modes are analyzed. Finally the asymmetric metal stripe waveguide is studied, and especially the leaky modes for which the calculations are refined by using different values of the PML reflection coefficient.en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:16:25Z (GMT). No. of bitstreams: 1
ntu-100-R98941048-1.pdf: 22495579 bytes, checksum: 3048169c26409e7737c27a94fce7c288 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents1 Introduction 1
1.1 Motivations . . . . .. . . . . . . . . . . . . . . . . 1
1.2 Numerical Methods . . .. . . . . . . . . . . . . . . . 2
1.3 Chapter Outline . . . .. . . . . . . . . . . . . . . . 4
2 Formulation and Related Techniques 6
2.1 The Perfectly Matched Layers . . . . . . . . . . . . . 6
2.2 The Finite Element Mode Solver . . . . . . . . . . . . 8
2.3 The Finite Element Beam Propagation Method . . . . . 12
2.4 The Finite-Element Imaginary-Distance Beam Propagation Method . 15
3 Analysis of Metallic Optical Waveguides 24
3.1 Overview: Surface Plasmon Waveguides . . . .. . . . . 24
3.2 The Drude Model for Metals . . . . . . . . . . . . . 25
3.3 Surface Plasmon Polaritons . . .. . . . . . . . . . . 27
3.4 Circular and Rectangular Metallic Waveguides . . . . 30
3.4.1 Circular Waveguides . . . . . . .. . . . . . . 30
3.4.2 Analysis Results of Circular Waveguides . .31
3.4.3 Rectangular Waveguides . . . . . . . . . . . 33
3.4.4 Analysis Results of Rectangular Waveguides . . . . 35
3.5 Metallic Holey Fibers . . . . .. . . . . 37
3.5.1 An Overview . . . . . . . . . . . . . . . . . . . 37
3.5.2 Analysis Results of Metallic Holey Fibers . . . . . 37
4 Analysis of Asymmetric Metal Stripe Waveguides 65
4.1 Overview of the Metal Stripe Waveguide . . . . . . . 65
4.2 IMI Multilayer System . . . . .. . . . . . . . . . . 67
4.3 Leaky and Other Modes . . . . . . . . . . . . . . . . 68
4.4 Results and Discussion . .. . . . . . . . . . . . . 69
5 Conclusion 86
Bibliography 88
dc.language.isoen
dc.subject波導zh_TW
dc.subject有限元素法zh_TW
dc.subject表面電漿子zh_TW
dc.subjectsurface plasmonen
dc.subjectwaveguidesen
dc.subjectFEMen
dc.title以全向量虛軸有限元素波束傳播法分析金屬光波導與金屬條狀表面電漿子波導zh_TW
dc.titleAnalysis of Metallic Optical Waveguides and Metal-Stripe Surface Plasmonic Waveguides Using a Full-Vectorial Imaginary-Distance Finite-Element Beam Propagation Methoden
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王俊凱,江衍偉
dc.subject.keyword表面電漿子,波導,有限元素法,zh_TW
dc.subject.keywordsurface plasmon,waveguides,FEM,en
dc.relation.page97
dc.rights.note有償授權
dc.date.accepted2011-08-16
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
21.97 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved