Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42562
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠
dc.contributor.authorCheng-Yen Chenen
dc.contributor.author陳正言zh_TW
dc.date.accessioned2021-06-15T01:16:21Z-
dc.date.available2010-07-29
dc.date.copyright2009-07-29
dc.date.issued2009
dc.date.submitted2009-07-28
dc.identifier.citation1. W. P. Halperin, “Quantum size effects in metal particles,” Rev. Mod. Phys. 58, 533 (1986).
2. P. Drude, “Zur Elektronentheorie der Metalle,” Ann. Phys. 1, 566–613 (1900).
3. P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B. 6, 4370(1972).
4. C. Sönnichsen, Plasmons in metal nanostructures PhD Thesis (Ludwig- Maximilians-Universtät München, München, 2001).
5. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver Nanowires as Surface Plasmon Resonators,” Phys. Rev. Lett. 95, 257403 (2005).
6. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, “Drastic Reduction of Plasmon Damping in Gold Nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
7. R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Phys. Rev. 106, 874 (1957)
8. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
9. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, (Springer, Berlin, 1988), p. 16 -18.
10. J. D. Jackson, Classical Electrodynamics John Wiley & Sons, Inc., New York, NY, 3rd edition, chap. 3 – chap. 4(1999).
11. C. F. Bohren and D. R. Huffman, “Absorption and scattering of light by small particles,” John Wiley & Sons, Inc., New York, NY, 1st edition (1983).
12. G. Mie, “Beiträge zur Optik trüber Medien, speaiell kolloidaler Metallösungen (Contributions to the optics of turbid media, particularly of colloidal metal solutions),” Ann. Phys. 25, 377 (1908)
13. M. Meier and A. Wokaun, “Enhanced fields on large metal particles: dynamic depolarization,” Opt. Lett. 8,581 (1983).
14. H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, “Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation,” Appl. Phys. Lett. 83, 2625 (2003).
15. A. Wokaun, J. P. Gordon, and P. F. Liao, “Radiation damping in surface- enhanced Raman scattering,” Phys. Rev. Lett. 48, 957 (1982).
16. T. Kokkinakis and K. Alexopoulos, “Observation of radiative decay of surface plasmons in small silver particles,” Phys. Rev. Lett. 28, 1632 (1972).
17. S. A. Maier, M. L. Brongersma, P. G. Kik, and H. A. Atwater, “Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy,” Phys. Rev. B 65,193408 (2002).
18. E., Prodan, P. Nordlander, and N. J. Halas, “Electronic structure and optical properties of gold nanoshells,” Nano Lett., 3, 1411 (2003).
19. E. Kretschmann and H. Raether, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturforschung 23A, 2135–2136 (1968).
20. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Physik 216, 398–410(1968).
21. S. Moehl, H. Zhao, B. Dal Don, S. Wachter, and H. Kalt, “Solid immersion lens-enhanced nano-photoluminescence: Principle and applications,” J. Appl. Phys. 93, vol. 10, 6265 (2003).
22. J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. Schultz, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles,” J. Chem. Phys. 116 6755 (2002).
23. J. R. Krenn, M. Salerno, N. Félidj, B. Lamprecht, G.Schider, A. Leitner, F. R. Aussenegg, J. C. Weeber, A. Dereux, and J. P. Goudonnet, “Light field propagation by metal micro- and nanostructures,” J. Microscopy 202, 122 (2001).
24. B. Hecht, H. Bielefeld, L. Novotny, Y. Inouye, and D. W. Pohl, “Local excitation, scattering, and interference of surface plasmons,” Phys. Rev. Lett. 77, 1889 (1996).
25. K. Kneipp,Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9):1667(1997).
26. S. M. Nie, and S. R. Emery, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102 (1997).
27. T. Liebermann and W. Knoll, “Surface-plasmon field-enhanced fluorescence spectroscopy,” Colloids Surf. A 171, 115 (2000).
28. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 931, 667 (1998).
29. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39 (2007)
30. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
31. C. Marquart, S. I. Bozhevolnyi, and K. Leosson, “Near-field imaging of surface plasmon-polariton guiding in band gap structures at telecom wavelengths,” Opt. Express 13, 3303 (2005).
32. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, F. R. and Aussenegg, “Two dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762 (2002).
33. L. Yin, V. K. Vlasko-Vlasov, J, Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399 (2005).
34. I. R. Hooper, and J. R. Sambles, “Differential ellipsometric surface plasmon resonance sensors with liquid crystal polarization modulators,” Appl. Phys. Lett. 85, 3017 (2004).
35. J. Homola, S. S. Yee, G. and Gauglitz, “Surface plasmon reonance sensors: review,” Sensors and Actuators B 54, 3 (1999).
36. M. C. Daniel and D. Astruc. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 104, 293 (2004).
37. X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780 (2004).
38. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957 (2005).
39. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett., 85, 3966 (2000).
40. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534.
41. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells.,” J. Appl. Phys. 101, 093105 (2007).
42. C. Hägglund, M. Zach, and B. Kasemo, “Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons,” Appl. Phys. Lett. 92, 013113 (2008).
43. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface- plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 601 (2004).
44. S. Nakamura, M. Senoh, and T. Mukai, “High‐power InGaN/GaN double‐ heterostructure violet light emitting diodes,” Appl. Phys. Lett. 62, 2390 (1993).
45. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. Rudaz, “Illumination With Solid State Lighting Technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310 (2002).
46. E. F. Schubert and J. K. Kim, “Solid-State Light Sources Getting Smart,” Science 308, 1274 (2005).
47. T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett. 79, 711 (2001).
48. S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers (Springer, New York, 1997).
49. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1–xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94, 6477 (2003).
50. A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94, 2779 (2003).
51. F. Yun, M. A. Reshchikov, L. He, T. King, H. Morkoc, S. W. Novak, and L.Wei, “Energy band bowing parameter in AlxGa1–xN alloys,” J. Appl. Phys. 92, 4837 (2002).
52. J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Universal bandgap bowing in group-III nitride alloys,” Solid State Commun. 127, 411 (2003).
53. I. Ho, and G. B. Stringfellow. “ Solid phase immiscibility in GaInN,” Appl. Phys. Lett. 69, 2701 (1996).
54. K. Okamoto, A. Kaneta, Y. Kawakami, S. Fujita, J. Choi. M. Terazima, and T. Mukai, “Confocal microphotoluminescence of InGaN-based light-emitting diodes,” J. Appl. Phys. 98, 064503 (2005), and references therein.
55. C. Wetzel,T. Salagaj, T. Detchprohm, P. Li, and J. S. Nelson, “GaInN/GaN growth optimization for high-power green light-emitting diodes,” Appl. Phys. Lett. 85, 866 (2004).
56. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87, 071102 (2005).
57. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3, 160 (2007).
58. T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect,”Appl. Phys. Lett. 73, 1691 (1998).
59. A. Hangleiter, F. Hitzel, S. Lahmann, and U. Rossow, “Composition dependence of polarization fields in GaInN/GaN quantum wells,” Appl. Phys. Lett. 83, 1169 (2003).
60. I. H. Tan, G. L. Snider, L. D. Chang, and E. L. Hu, “A self‐consistent solution of Schrödinger–Poisson equations using a nonuniform mesh,” J. Appl. Phys. 68, 4071 (1990).
61. N. E. Hecker, R. A. Hopfel, N. Sawaki, T. Maier, and G. Strasser, “Surface plasmon-enhanced photoluminescence from a single quantum well,” Appl. Phys. Lett. 75, 1577 (1999).
62. J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quant. Elec. 36, 1131 (2000).
63. P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light emitting diodes,” Adv. Mater. 14, 1393 (2002).
64. I. Gontijo, M. Borodisky, E. Yablonvitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60, 11564 (1999).
65. A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
66. E.M. Purcell, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev. 69, 681 (1946).
67. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253 (2008).
68. W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Quantum efficiency enhancement of a light-emitting diode based on surface plasmon coupling with a quantum well,” IEEE Photon. Technol. Lett. 20, 1339 (2008).
69. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
70. Mark I. Stockman, “Spasers explained,” Nature Photonics 2, 327 - 329 (2008)
71. D. A. Genov, M. Ambati, and X. Zhang, “Surface plasmon polariton amplification in planar metal films,” IEEE J. Quant. Electron. 43, 1104 (2007).
72. D. L. Feldheim and C. A. Foss Metal Nanoparticles; Synthesis, Characterization, and Applications Dekker, New York (2002).
73. Y. Y. Yu, S. S. Chang, C. L. Lee, and C. R. C. Wang, “Gold nanorods: electrochemical synthesis and optical properties,” J. Phys. Chem. B 101, 6661-6664 (1997).
74. M. Brust and C. J. Kiely “Some recent advances in nanostructure preparation from gold and silver particles: a short topical review,” Colloid Surf. A 202, 175–186 (2002).
75. C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105, 5599- 5611 (2001).
76. R. Gupta, M. J. Dyer, and W. A. Weimer, “Preparation and characterization of surface plasmon resonance tunable gold and silver films,” J. Appl. Phys. 92, 5264 (2002).
77. G. Compagnini, A. A. Scalisi, and O. Puglisi, “Production of gold nanoparticles by laser ablation in liquid alkanes,” J. Appl. Phys. 94, 7874 (2003).
78. J. Bischof, D. Scherer, S. Herminghaus, and P. Leiderer, “Dewetting modes of thin metallic films: nucleation of holes and spinodal dewetting,” Phys. Rev. Lett. 77, 1536 (1996).
79. W. Huang, W. Qian, and M. A. El-Sayed, “Photothermal reshaping of prismatic Au nanoparticles in periodic monolayer arrays by femtosecond laser pulses,” J. Appl. Phys. 98, 114301 (2005).
80. C. Y. Chen Laser induced semiconductor surface grating formation and quantum well intermixing Master Theses (National Taiwan University, Taiwan, 1999), and references therein.
81. A. Habenicht, M. Olapinski, F. Burmeister, P. Leiderer, and J. Boneberg, “Jumping nanodroplets,” Science 309, 2043-2045 (2005).
82. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer, Berlin, 1988), p. 8.
83. A. Neogi and H. Morkoç, “Resonant surface plasmon-induced modification of photoluminescence from GaN/AlN quantum dots,” Nanotechnology 15, 1252 (2004).
84. J. H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557 (2005).
85. C. K. Choi, Y. H. Kwon, B. D. Little, G. H. Gainer, J. J. Song, Y. C. Chang, S. Keller, U. K. Mishra, and S. P. DenBaars, “Time-resolved photoluminescence of InxGa1-xN/GaN multiple quantum well structures: effect of Si doping in the barriers,” Phys. Rev. B 64, 245339 (2001).
86. T. Kawashima, H. Yoshikawa, S. Adachi, S. Fuke, and K. Ohtsuka, “Optical properties of hexagonal GaN,” J. Appl. Phys. 82, 3528 (1997).
87. K. Arya, Z. B. Su, and J. L. Birman, “Localization of the surface plasmon polariton caused by random roughness and its role in Surface-enhanced optical phenomena,” Phys. Rev. Lett. 54, 1559 (1985).
88. C. Y. Chen, D. M. Yeh, Y. C. Lu, and C. C. Yang, “Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure,” Appl. Phys. Lett. 89, 203113 (2006).
89. J. A. Sánchez-Gil, “Localized surface-plasmon polaritons in disordered nanostructured metal surfaces: shape versus Anderson-localized resonances,” Phys. Rev. B 68, 113410 (2003).
90. S. Wedge and W. L. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films,” Opt. Express 12, 3673 (2004).
91. S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett. 73, 2006 (1998).
92. S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1–xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett. 83, 4906 (2003).
93. G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007).
94. J. B. Khurgin, G. Sun, and R. A. Soref, “Enhancement of luminescence efficiency using surface plasmon polaritons: figures of merit,” J. Opt. Soc. Am. B 24, 1968 (2007).
95. C. Y. Chen, Y. C. Lu, D. M. Yeh, and C. C. Yang, “Influence of the quantum- confined Stark effect in an InGaN/GaN quantum well on its coupling with surface plasmon for light emission enhancement,” Appl. Phys. Lett. 90, 183114 (2007).
96. Y. C. Lu, C. Y. Chen, D. M. Yeh, C. F. Huang, T. Y. Tang, J. J. Huang, and C. C. Yang, “Temperature dependence of the surface plasmon coupling with an InGaN/GaN quantum well,” Appl. Phys. Lett. 90, 193103 (2007).
97. D. M. Yeh, C. Y. Chen, Y. C. Lu, C. F. Huang and C. C. Yang, “Formation of various metal nanostructures with thermal annealing to control the effective coupling energy between a surface plasmon and an InGaN/GaN quantum well,” Nanotechnology 18, 265402 (2007).
98. P. T. Worthing and W. L. Barnes, “Coupling efficiency of surface plasmon polaritons to radiation using a corrugated surface; angular dependence,” J. Mod. Opt. 49, 1453 (2002).
99. C. Bonnand, J. Bellessa, C. Symonds, and J. C. Plenet, “Polaritonic emission via surface plasmon cross coupling,” Appl. Phys. Lett. 89, 231119 (2006).
100. U. Schroter and D. Heitman, “Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,” Phys. Rev. B 60, 4992 (1999).
101. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science 277, 1078-1081 (1997).
102. A. J. Haes and R. P. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc. 124, 10596-10604 (2002).
103. A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, 'A localized surface plasmon resonance biosensor: first steps toward an assay for alzheimer's disease,' Nano Lett. 4, 1029-1034 (2004).
104. B. D. Chithrani, A. A. Ghazani, and W. C. W. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Lett. 6, 662-668 (2006).
105. Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett. 7, 690–696 (2007).
106. E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7, 1256-1263 (2007).
107. J. A. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7, 442–453 (2008).
108. R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294, 1901-1903 (2001).
109. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant, and F. J. G. de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90, 057401 (2003).
110. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085-1088 (2004).
111. M. Maillard, P. Huang, and L. Brus, “Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+],” Nano Lett. 3, 1611-1615 (2003).
112. R. Jin, Y. C. Cao, E. Hao, G. S. Metraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticles growth through plasmon excitation,” Nature 425, 487-490 (2003).
113. L. J. Sherry, R. C. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett. 6, 2060-2065 (2006).
114. A. V. Simakin, V. V. Voronov, G. A. Shafeev, R. Brayner, and F. Bozon-Verduraz, “Nanodisks of Au and Ag produced by laser ablation in liquid environment,” Chem. Phys. Lett. 348, 182-186 (2001).
115. R. Sangiorgi, M. L. Muolo, D. Chatain, and N. Eustathopoulos, “Wettability and work of adhesion of nonreactive liquid metals on silica,” J. Am. Ceram. Soc. 71, 742-748 (1988).
116. F. Didier and J. Jupille, “The van der Waals contribution to the adhesion energy at metal-oxide interfaces,” Surf. Sci. 314, 378-384 (1994).
117. F. Brochard-Wyart, “Triple line dynamics in superfluid helium,' J. Phys. II France 3, 21 (1993).
118. C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, “Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons,” Appl. Phys. Lett. 92, 053110 (2008).
119. E. D. Palik, Handbook of optical constants of solids II (Academic Press, Boston, 1991).
120. P. K. Jain, K. S. Lee, I. H. El Sayed, and M. A. El Sayed, “Calculated Aabsorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238-7248 (2006).
121. V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. Javier Garcia de Abajo, 'Modelling the optical response of gold nanoparticles,' Chem. Soc. Rev. 37, 1792–1805 (2008)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42562-
dc.description.abstract在本論文中,我們首先研究與金屬結構有關的表面電漿子和藍光氮化銦鎵量子井之間的耦合作用;實驗使用的樣品中,金屬結構距離量子井10奈米。我們比較在半導體表面蒸鍍銀薄膜和銀奈米顆粒時,表面電漿子和量子井耦合作用的差異。實驗發現,光激螢光強度的減弱程度和時域解析螢光頻譜的衰變速率皆與金屬的表面型態有關。我們也建立了一個表面電漿子和量子井耦合過程中載子釋放現象的速率方程式模型,用以進一步擬合分析時域解析螢光頻譜並獲取載子與表面電漿子的衰變期時間常數。
再者,我們分析在表面電漿子和量子井耦合過程中,量子史塔克效應的載子屏蔽效應對增強量子井放光的影響。我們先進行變激發功率光激螢光和時域解析螢光頻譜實驗,再利用衰變速率方程式模型擬合時域解析螢光頻譜的數據。分析發現當激發變強,量子史塔克效應的載子屏蔽效應不僅增強發光,同時也因為放光頻譜的藍移而增強表面電漿子的耦合效率。因為如此,相較於純粹量子井放光,來自表面電漿子放光的比例會隨著激發強度而增強。此外在擬合分析中也發現表面電漿子和量子井的耦合強度會隨著激發強度增強而有飽和現象。
此外,我們也利用一個與鄰近銀金屬光柵具有表面電漿子耦合作用的氮化銦鎵雙層量子井結構,分析單一維度銀金屬光柵結構中表面電漿子的特性。我們建構了一套角度解析光激螢光光譜自動量測系統,以記錄量測表面電漿子的特徵。我們觀察到具有特定偏光特性的螢光,其來源是經由光柵繞射提供動量匹配的表面電漿子。此外我們也利用了觀測到的電漿子色散曲線,測定出表面電漿子的群速度。我們也驗證了在實驗中使用的金屬光柵,可以經由改變其周圍環境介質而改變其表面電漿子的色散特性。
最後,我們展示一種利用波長266奈米的脈衝雷射照射,在不同基板(包含藍寶石,氮化鎵,二氧化矽)上製作近似球型的金奈米顆粒的方法。金奈米顆粒的粒徑、與基板的接觸角、顆粒密度和表面覆蓋百分比可利用以下參數控制:雷射能量密度、基板種類、雷射照射時覆蓋金薄膜氣體或液體。因為奈米顆粒排列具有固定的方向性,光學穿透量測顯示此種奈米顆粒具有明顯的平面和非平面的表面電漿子共振特徵。這些特徵中,似空氣共振態主要受奈米顆粒所處介質影響;平面基板共振態受基板材料和接觸角影響;非平面共振特徵則明顯地受基板材料和接觸角影響。利用有限元素法得到的數值模擬結果顯示出與實驗一致的侷域性表面電漿子共振頻譜變化特徵。模擬結果也顯示出奈米顆粒的吸收與散射效率對其光滅減率的影響。這種以簡單的雷射照射製作而成的金奈米顆粒具備固定方向性、奈米顆粒間不易聚集與牢固的基板附著等特點,可應用於具偏振靈敏度的侷域性表面電漿子共振生化檢測技術上。
zh_TW
dc.description.abstractIn this dissertation, we first study the metallic-structure dependent surface plasmon (SP) coupling behaviors with a blue-emitting InGaN/GaN quantum well (QW), which is 10 nm away from the metallic structures. The SP-QW coupling behaviors in the areas of semiconductor surface coated with Ag thin film and Ag nanoparticles are compared. It is found that both the suppression of photoluminescence (PL) intensity and the reduction of time-resolved PL (TRPL) decay time strongly depend on the metallic morphology. A phenomenological rate-equation model of carrier relaxation in the SP-QW coupling process is built to fit the TRPL decay profiles for calibrating the reasonable decay time constants of carrier and SP.
Next, we analyze the contribution of the screening of the quantum-confined Stark effect (QCSE) to the emission enhancement behavior in the process of SP coupling with an InGaN/GaN QW, which is 20 nm away from an Ag thin film that supports the SP. From the measurements of excitation power-dependent PL and TRPL spectroscopy, and the fitting to the TRPL data based on the modified rate-equation model, it is found that when the excitation level is high, the QCSE screening effect not only contributes significantly to the emission enhancement, but also increases the SP coupling rate because of the blue shift of emission spectrum caused by the screening effect. Therefore, the emission strength from SP radiation, relative to that from QW radiative recombination, increases with the excited carrier density. Also, a saturation behavior of SP-QW coupling is observed from the fitting procedure.
Besides, we report the characterizations of the SP features on a 1-D Ag-grating structure through the SP coupling with an InGaN/GaN dual-QW structure closely below the metal grating. We build an angle-resolved PL measurement system to observe the SP features. Polarized photon output is observed because only the momentum matching condition of the SP mode propagating in the direction perpendicular to the grating grooves can be reached through the diffraction of the fabricated grating. Hence, the SP radiation efficiency is significantly enhanced only in this polarization. We also calibrate the group velocity of the observed SP mode from the measured dispersion curves. With the Ag-grating structure used in the experiment, the SP dispersion properties can be manipulated by changing the dielectric material surrounding the grating structure.
Finally, we demonstrate the fabrications of sphere-like Au nanoparticles (NPs) of similar shapes and alignments on sapphire, GaN, and SiO2 substrates through the irradiation of a few pulses of 266-nm laser onto Au thin films deposited on the substrates. The top-view diameter, contact angle on substrate, surface population density, and surface coverage percentage of the NPs can be controlled by the Au thin film thickness, laser energy density, substrate choice, and the gas or liquid, in which the Au thin film is immersed during laser irradiation. Due to the fixed orientation of NPs, optical transmission measurements show clear in-plane and out-of-plane localized surface plasmon resonance (LSPR) features, including the air resonance feature dictated by the gas or liquid immersing the NPs during transmission measurement, the in-plane substrate resonance feature controlled by the substrate material and the contact angle, and the out-of-plane resonance feature, which is strongly influenced also by the substrate material and the contact angle. Numerical simulations based on the finite-element method using the experimental parameters show highly consistent LSPR spectral positions and their variation trends. From the simulation results, one can also observe the relative importance between NP absorption and scattering in contributing to the extinction. This simple laser-irradiation method for fabricating fixed-orientation sphere-like Au NPs of no aggregation and of strong adhesion to the substrate is useful for developing polarization-sensitive LSPR bio-sensing.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:16:21Z (GMT). No. of bitstreams: 1
ntu-98-D92941001-1.pdf: 7792777 bytes, checksum: 915d9eb508bccef687a85d2bf09f97ba (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsChapter 1 Introduction 1
1.1 Surface Plasmons 1
1.1.1 Dielectric Constants of Metals 1
1.1.2 Surface Plasmon Polaritons 4
1.1.3 Localized Surface Plasmons 7
1.1.4 Measurement of Surface Plasmons 13
1.1.5 Application of Surface Plasmons 15
1.2 Nitride-based Semiconductors for Optoelectronics 17
1.2.1 Application of Nitride-based Devices 17
1.2.2 Characteristics of an InGaN/GaN Quantum Well 19
1.2.3 Coupling between an InGaN/GaN QW and Surface Plasmons 22
1.3 Fabrication of Metal Nanoparticles 24
1.4 Research Motivations 26
1.5 Organization of the Dissertation 27
Chapter 2 Dependence of Resonant Coupling between Surface Plasmons and an InGaN Quantum Well on Metallic Structure 31
2.1 Introduction 31
2.2 Sample Description and Sample Preparation 32
2.3 Analysis of the Surface Morphology across the Metallic Boundary 34
2.4 Position-dependent PL and TRPL Measurements 34
2.4.1 Position-dependent PL Measurements 34
2.4.2 Position-dependent TRPL Measurements 39
2.5 Calibration of TRPL Decay Profiles 42
2.6 Summary 45
Chapter 3 Influence of the Quantum- confined Stark Effect in an InGaN/GaN Quantum Well on its Coupling with Surface Plasmon for Light Emission Enhancement 47
3.1 Introduction 47
3.2 Sample Description 50
3.3 Optical Characterizations 51
3.3.1 Photoluminescence Measurement 51
3.3.2 Time-resolved Photoluminescence Measurement 53
3.4 Calibrations of the QCSE Carrier Screening Effect 55
3.5 Summary 60
Chapter 4 Characterizations of the Coupling of Surface Plasmon on a 1-D Ag Grating with an InGaN/GaN Quantum Well 61
4.1 Introduction 61
4.2 Sample Description and Sample Preparation 62
4.3 Angle-resolved Photoluminescence Measurement 65
4.3.1 Reflective Angle-resolved Photoluminescence 67
4.3.2 Transmissive Angle-resolved Photoluminescence 70
4.4 Discussions 72
4.4.1 Characteristics of Surface Plasmon Dispersion 72
4.4.2 Numerical Simulation 73
4.4.3 Polarization Dependence of Surface Plasmons 75
4.4.4 Manipulation of Surface Plasmon Dispersion 76
4.5 Summary 77
Chapter 5 Fabrication of Sphere-like Au Nanoparticles on Substrate with Laser Irradiation and Their Polarized Localized Surface Plasmon Behaviors 79
5.1 Introduction 79
5.2 Au Nanoparticle Fabrication 81
5.3 Transmission Measurement 87
5.4 Numerical Simulation 91
5.5 Au Nanoparticle Fabrication under Different Liquid Coverage Conditions 99
5.6 Conclusions 104
Chapter 6 Conclusions 105
References 109
Publication List of Cheng-Yen Chen 127
dc.language.isoen
dc.subjectsurface plasmon;InGaN;nanoparticle;laser irradiation;gratings;dispersionzh_TW
dc.subject表面電漿;氮化銦鎵;奈米顆粒;雷射照射;光柵;色散en
dc.title具金屬結構的氮化銦鎵/氮化鎵量子井發光元件及雷射成形金屬奈米顆粒之表面電漿子特性分析zh_TW
dc.titleCharacterizations of Surface Plasmon Behaviors in InGaN/GaN Quantum-well Light Emitters with Metallic Structures and in Metal Nanoparticles Formed by Laser Irradiationen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree博士
dc.contributor.oralexamcommittee張宏鈞,江衍偉,林啟萬,徐大正,黃鼎偉,黃建璋
dc.subject.keywordsurface plasmon;InGaN;nanoparticle;laser irradiation;gratings;dispersion,zh_TW
dc.subject.keyword表面電漿;氮化銦鎵;奈米顆粒;雷射照射;光柵;色散,en
dc.relation.page142
dc.rights.note有償授權
dc.date.accepted2009-07-28
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
7.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved