Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42560
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor張雅雯
dc.contributor.authorWai-Ian Wongen
dc.contributor.author黃蔚欣zh_TW
dc.date.accessioned2021-06-15T01:16:17Z-
dc.date.available2014-09-15
dc.date.copyright2009-09-15
dc.date.issued2009
dc.date.submitted2009-07-28
dc.identifier.citation1. Kojic EM, Darouiche RO: Candida infections of medical devices. Clin Microbiol Rev 2004, 17(2):255-267.
2. Li F, Palecek SP: Identification of Candida albicans genes that induce Saccharomyces cerevisiae cell adhesion and morphogenesis. Biotechnol Prog 2005, 21(6):1601-1609.
3. Reynolds TB, Fink GR: Bakers' yeast, a model for fungal biofilm formation. Science 2001, 291(5505):878-881.
4. Baillie GS, Douglas LJ: Role of dimorphism in the development of Candida albicans biofilms. J Med Microbiol 1999, 48(7):671-679.
5. Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA: Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 2001, 183(18):5385-5394.
6. Verstrepen K, Klis F: Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 2006, 60(1):5-15.
7. Dranginis AM, Rauceo JM, Coronado JE, Lipke PN: A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol Mol Biol Rev 2007, 71(2):282-294.
8. Gimeno CJ, Fink GR: Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development. Mol Cell Biol 1994, 14(3):2100-2112.
9. Lo WS, Dranginis AM: FLO11, a yeast gene related to the STA genes, encodes a novel cell surface flocculin. J Bacteriol 1996, 178(24):7144-7151.
10. Blankenship JR, Mitchell AP: How to build a biofilm: a fungal perspective. Curr Opin Microbiol 2006, 9(6):588-594.
11. Green CB, Cheng G, Chandra J, Mukherjee P, Ghannoum MA, Hoyer LL: RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. Microbiology 2004, 150(Pt 2):267-275.
12. Maidan MM, De Rop L, Serneels J, Exler S, Rupp S, Tournu H, Thevelein JM, Van Dijck P: The G protein-coupled receptor Gpr1 and the Galpha protein Gpa2 act through the cAMP-protein kinase A pathway to induce morphogenesis in Candida albicans. Mol Biol Cell 2005, 16(4):1971-1986.
13. Liu H: Transcriptional control of dimorphism in Candida albicans. Curr Opin Microbiol 2001, 4(6):728-735.
14. Clemons KV, McCusker JH, Davis RW, Stevens DA: Comparative pathogenesis of clinical and nonclinical isolates of Saccharomyces cerevisiae. J Infect Dis 1994, 169(4):859-867.
15. Cassone M, Serra P, Mondello F, Girolamo A, Scafetti S, Pistella E, Venditti M: Outbreak of Saccharomyces cerevisiae subtype boulardii fungemia in patients neighboring those treated with a probiotic preparation of the organism. J Clin Microbiol 2003, 41(11):5340-5343.
16. McCusker JH, Clemons KV, Stevens DA, Davis RW: Genetic Characterization of Pathogenic Saccharomyces cerevisiae Isolates. Genetics 1994, 136(4):1261-1269.
17. Fidalgo M, Barrales RR, Ibeas JI, Jimenez J: Adaptive evolution by mutations in the FLO11 gene. Proc Natl Acad Sci U S A 2006, 103(30):11228-11233.
18. Fidalgo M, Barrales RR, Jimenez J: Coding repeat instability in the FLO11 gene of Saccharomyces yeasts. Yeast 2008, 25(12):879-889.
19. Rupp S, Summers E, Lo HJ, Madhani H, Fink G: MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. The EMBO Journal 1999, 18:1257-1269.
20. Verstrepen KJ, Derdelinckx G, Verachtert H, Delvaux FR: Yeast flocculation: what brewers should know. Appl Microbiol Biotechnol 2003, 61(3):197-205.
21. Chen H, Fink GR: Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev 2006, 20(9):1150-1161.
22. Pan X, Heitman J: Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol 1999, 19(7):4874-4887.
23. Vyas VK, Kuchin S, Berkey CD, Carlson M: Snf1 kinases with different beta-subunit isoforms play distinct roles in regulating haploid invasive growth. Mol Cell Biol 2003, 23(4):1341-1348.
24. Vinod PK, Sengupta N, Bhat PJ, Venkatesh KV: Integration of global signaling pathways, cAMP-PKA, MAPK and TOR in the regulation of FLO11. PLoS ONE 2008, 3(2):e1663.
25. Liu H, Styles CA, Fink GR: Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics 1996, 144(3):967-978.
26. Fichtner L, Schulze F, Braus GH: Differential Flo8p-dependent regulation of FLO1 and FLO11 for cell-cell and cell-substrate adherence of S. cerevisiae S288c. Mol Microbiol 2007, 66(5):1276-1289.
27. Halme A, Bumgarner S, Styles C, Fink GR: Genetic and epigenetic regulation of the FLO gene family generates cell-surface variation in yeast. Cell 2004, 116(3):405-415.
28. Lo WS, Dranginis AM: The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell 1998, 9(1):161-171.
29. Reynolds TB, Jansen A, Peng X, Fink GR: Mat formation in Saccharomyces cerevisiae requires nutrient and pH gradients. Eukaryot Cell 2008, 7(1):122-130.
30. Van Mulders SE, Christianen E, Saerens SM, Daenen L, Verbelen PJ, Willaert R, Verstrepen KJ, Delvaux FR: Phenotypic diversity of Flo protein family-mediated adhesion in Saccharomyces cerevisiae. FEMS Yeast Res 2009, 9(2):178-190.
31. Peeters E, Nelis HJ, Coenye T: Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Methods 2008, 72(2):157-165.
32. Donnelly JP, De Pauw BE: Voriconazole-a new therapeutic agent with an extended spectrum of antifungal activity. Clin Microbiol Infect 2004, 10 Suppl 1:107-117.
33. Odds FC, Vranckx L, Woestenborghs F: Antifungal susceptibility testing of yeasts: evaluation of technical variables for test automation. Antimicrob Agents Chemother 1995, 39(9):2051-2060.
34. Pfaller MA, Diekema DJ, Messer SA, Boyken L, Hollis RJ, Jones RN: In vitro activities of voriconazole, posaconazole, and four licensed systemic antifungal agents against Candida species infrequently isolated from blood. J Clin Microbiol 2003, 41(1):78-83.
35. Swinne D, Watelle M, Nolard N: In vitro activities of voriconazole, fluconazole, itraconazole and amphotericin B against non Candida albicans yeast isolates. Rev Iberoam Micol 2005, 22(1):24-28.
36. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO: Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 2000, 11(12):4241-4257.
37. Reynolds TB: The Opi1p transcription factor affects expression of FLO11, mat formation, and invasive growth in Saccharomyces cerevisiae. Eukaryot Cell 2006, 5(8):1266-1275.
38. Kim TS, Kim HY, Yoon JH, Kang HS: Recruitment of the Swi/Snf complex by Ste12-Tec1 promotes Flo8-Mss11-mediated activation of STA1 expression. Mol Cell Biol 2004, 24(21):9542-9556.
39. van Dyk D, Hansson G, Pretorius IS, Bauer FF: Cellular differentiation in response to nutrient availability: The repressor of meiosis, Rme1p, positively regulates invasive growth in Saccharomyces cerevisiae. Genetics 2003, 165(3):1045-1058.
40. Lambrechts MG, Bauer FF, Marmur J, Pretorius IS: Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc Natl Acad Sci U S A 1996, 93(16):8419-8424.
41. Barrales RR, Jimenez J, Ibeas JI: Identification of novel activation mechanisms for FLO11 regulation in Saccharomyces cerevisiae. Genetics 2008, 178(1):145-156.
42. Espinazo-Romeu M, Cantoral JM, Matallana E, Aranda A: Btn2p is involved in ethanol tolerance and biofilm formation in flor yeast. FEMS Yeast Res 2008, 8(7):1127-1136.
43. Stanhill A, Schick N, Engelberg D: The yeast ras/cyclic AMP pathway induces invasive growth by suppressing the cellular stress response. Mol Cell Biol 1999, 19(11):7529-7538.
44. Verstrepen KJ, Jansen A, Lewitter F, Fink GR: Intragenic tandem repeats generate functional variability. Nat Genet 2005, 37(9):986-990.
45. Verstrepen KJ, Reynolds TB, Fink GR: Origins of variation in the fungal cell surface. Nat Rev Microbiol 2004, 2(7):533-540.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42560-
dc.description.abstract生物膜的形成機制中第一步就是菌體黏附在一表面上,而生物膜的形成常伴隨著抗藥性的產生,因此於臨床上,研究如何阻擋微生物的黏附性以及抗藥性成為臨床上重要的議題。Saccharomyces cerevisiae能形成生物膜的初始型態結構mats,其黏附上塑膠表面能力的重要因子是FLO11基因,過去針對實驗室菌種∑1278b中FLO11基因的研究,可分為二個方向: FLO11的調控機制及FLO11的中央串聯重覆序列如何影響其表現型。因此於本論文中,我們的研究目標是1. 藉由比較實驗室菌種∑1278b與研究臨床菌種的mats表現型及其FLO11的表現,找出FLO11的可能調控機制,2. 針對FLO11基因型與mats表現型兩者之間的關係作分析,3. Mats表現型與抗黴菌藥物抗藥性的關係。
我們先從三株台大臨床分離株S. cerevisiae中找到能產生mats典型表現型的菌株,並分析其15組四分孢子的mats表現型,指出mats表現型為數量性狀 (quantitative trait),可能受多基因調控,並且找到一種被我們稱做“hyper mats”的特殊表現型。在黏附能力試驗中,結果顯示細胞的黏附能力與mats的形成能力有正相關,然而不同表現型之間的黏附能力的差異在此試驗中則不明顯。我們利用北方點墨法分析各菌株間的FLO11表現,發現FLO11於對數生長期的表現對於mats的形成是必須的,然而其量的變化與mats的表現型並沒有太大關係。為了分析∑1278b與YYC1間FLO11表現量的差異,我們對FLO11的基因的3.1 kb 啟動子作定序,但並沒有找到有意義的突變點。另一方面,我們針對FLO11的中央串聯重覆序列研究,證實此段序列於YYC1中比∑1278b縮短了約1 kb 大小,指出YYC1與∑1278b的mats表現型差異源由可能在此。此外,我們對此三株台大臨床分離株作抗藥性篩檢,然而就目前篩檢的菌種中,我們並未能找出mats的形成與抗藥性有直接關係。
總括來說,在本研究中,我們的研究結果指出mats的形成依靠FLO11的表現,然而其表現量與mats的表現型沒有太大的關係,真正影響mats表現型的因子,可能是FLO11的中央串連序列的結構所導致的Flo11p多樣性。而抗黴菌藥物的測試,我們發現S. cerevisiae臨床分離株中,生物膜的形成與抗藥性之間並無直接的關聯性,未來可朝著mats的生成對整體菌落而言是否能對抗黴菌藥物產生抗藥性去研究。
zh_TW
dc.description.abstractThe first step of biofilm formation is surface attachment for microbes, and the consequence of biofilm formation is highly correlated to drug resistance. That is why many studies focus on how to prevent microbes’ adhesion and drug resistance. Saccharomyces cerevisiae cells form the initial structure of biofilm called mats which is dependent on FLO11gene. The previous studies on FLO11 have been focused on lab strain ∑1278b in two directions: the regulation of FLO11 and how the FLO11 phenotype is affected by its central tandem repeat. In this study, in order to find out the regulation of FLO11, first, mats phenotypes and the expression levels of FLO11 were compared in clinical isolates of S. cerevisiae with lab strain ∑1278b. Second, we wanted to find out the relationship between FLO11 genotypes and mats phenotypes. Third, we want to study about the relationship between mats formation and antifungal drug resistance.
We found that one of our National Taiwan Hospital clinical isolates, named YYC1, could form typical mats phenotype. After further screening the mats phenotypes in YYC1 segregants from 15 tetrads, the result indicated that mats phenotype might be a quantitative trait. We also found a special phenotype called “hyper mats” in our study. In the 96-well adherence assay, we found that the adhesion ability of strains was positively related to mat formation. Nevertheless, this assay might not be sensitive enough to distinguish the differences between the typical mats phenotype and “hyper mats.” The results of Northern blot analysis showed that the expression of FLO11 in log phase cells is important for mat formation. However, the change of FLO11 expression levels does not seem to relate to different mats phenotypes. In order to analyze the different expression levels of FLO11 between YYC1 and ∑1278b, we sequenced 3.1 kb of the FLO11 promoter regions in both strains. However, we could not find out any significant change in FLO11 promoter of YYC1 compared to ∑1278b. On the other hand, we surprisingly found that the length of the tandem repeats in FLO11 coding regions in YYC1 was about 1 kb shorter than that in ∑1278b. These results indicated that the different mats phenotypes between YYC1 and ∑1278b might be due to the length of this tandem repeat sequences. In addition, we have screened the antifungal drug resistance on our S. cerevisiae clinical isolates. However, we could not find out the direct relationship between mat formation and antifungal drug resistance in S. cerevisiae.
In conclusion, in our study, we found that mat formation is dependent on FLO11 expression, although higher expression levels of FLO11 did not seem to relate to “hyper mats” phenotype. Our data also inferred that central tandem repeat sequences of FLO11 perhaps affect mats phenotypes in strains we analyzed. We found that the antifungal drug resistance might not directly correlate with mats formation in
S. cerevisiae.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:16:17Z (GMT). No. of bitstreams: 1
ntu-98-R96424010-1.pdf: 3015807 bytes, checksum: 26c6640e6f244933fbbd99e166ead3e6 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents目錄
口試委員審定書.i
誌謝 ii
中文摘要 iii
英文摘要 v
第一章 前言 1
第二章 材料與方法 4
2.1菌種及引子 4
2.2 試劑與培養液 6
2.2.1 培養液 6
2.2.2 抽取酵母菌DNA試劑 6
2.2.3 DNA電泳試劑 6
2.2.4分離RNA試劑 6
2.2.5北方點墨法試劑 7
2.3 實驗步驟 7
2.3.1菌種培養方法及所使用之培養液 7
2.3.2抽取酵母菌菌體DNA 8
2.3.3聚合酶連鎖反應Polymerase chain reaction 8
2.3.4基因定序與分析 9
2.3.5 九十六孔洞微量培養盤黏附性實驗 9
2.3.6 RNA 萃取 10
2.3.7 RNA定量 10
2.3.8北方點墨法 10
2.3.9北方點墨法的半定量 12
2.3.10抗黴菌藥物感受性試驗 13
第三章 結果 15
3.1 臨床菌種YYC1的mats表現型 15
3.2 九十六孔洞微量培養盤黏附能力測試 16
3.3 以北方點墨法(Northern blot)分析FLO11表現量 17
3.4 FLO11啟動子區域的定序 18
3.5 以PCR分析FLO11串連重覆序列的大小 18
3.6 抗黴菌藥物感受性測試 19
第四章 討論 21
4.1 Mat的形成不是受單一基因調控 21
4.2 黏附能力與產生mats能力的關連性 22
4.3 FLO11表現量與產生mats能力的關連性 23
4.4 影響mats表現型因子的探討 24
4.5 臨床菌種YYC1的抗黴菌藥物抗藥性篩檢 25
4.6 結論 25
第五章 附圖 27
第六章 附表 43
第七章 參考文獻 47
dc.language.isozh-TW
dc.subject抗黴菌藥物抗藥性測試zh_TW
dc.subject生物膜zh_TW
dc.subjectmatszh_TW
dc.subjectFLO11zh_TW
dc.subjectSaccharomyces cerevisiaezh_TW
dc.subjectmatsen
dc.subjectantifungal drug susceptibility assayen
dc.subjectSaccharomyces cerevisiaeen
dc.subjectFLO11en
dc.subjectbiofilmen
dc.title探討基因FLO11在台灣之Saccharomyces cerevisiae臨床分離菌株中對Mat形成的影響zh_TW
dc.titleAnalyzing the influence of FLO11 on Mat formation in clinical isolates of Saccharomyces cerevisiae in Taiwanen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧麗珍,廖淑貞,林淑萍
dc.subject.keyword生物膜,mats,FLO11,Saccharomyces cerevisiae,抗黴菌藥物抗藥性測試,zh_TW
dc.subject.keywordbiofilm,mats,FLO11,Saccharomyces cerevisiae,antifungal drug susceptibility assay,en
dc.relation.page50
dc.rights.note有償授權
dc.date.accepted2009-07-28
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
Appears in Collections:醫學檢驗暨生物技術學系

Files in This Item:
File SizeFormat 
ntu-98-1.pdf
  Restricted Access
2.95 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved