請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42556
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林郁真 | |
dc.contributor.author | Chih-Ann Lin | en |
dc.contributor.author | 林志安 | zh_TW |
dc.date.accessioned | 2021-06-15T01:16:11Z | - |
dc.date.available | 2010-07-30 | |
dc.date.copyright | 2009-07-30 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-28 | |
dc.identifier.citation | Aksu, Z., 2005. Application of biosorption for the removal of organic pollutants: a review. Process Biochemistry 40, 997-1026.
Baran, W., Sochacka, J., Wardas, W., 2006. Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions. Chemosphere 65, 1295-1299. Bendz, D., Paxéus, N.A., Ginn, T.R., Loge, F.J., 2005. Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Höje River in Sweden. Journal of Hazardous Materials 122, 195-204. Benotti, M.J., Brownawell, B.J., 2009. Microbial degradation of pharmaceuticals in estuarine and coastal seawater. Environmental Pollution 157, 994-1002. Brown, K.D., Kulis, J., Thomson, B., Chapman, T.H., Mawhinney, D.B., 2006. Occurrence of antibiotics in hospital, residential, and dairy, effluent, municipal wastewater, and the Rio Grande in New Mexico. Science of the Total Environment 366, 772-783. Carballa, M., Fink, G., Omil, F., Lema, J.M., Ternes, T., 2008. Determination of the solid-water distribution coefficient (Kd) for pharmaceuticals, estrogens and musk fragrances in digested sludge. Water Research 42, 287-295. Carballa, M., Omil, F., Lema, J.M., Llompart, M., Garcia-Jares, C., Rodriguez, I., Gomez, M., Ternes, T., 2004. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Research 38, 2918-2926. Chen, C.F., 2008. http://www.epochtimes.com/b5/8/3/5/n2033607.htm (accessed May, 2009). Edhlund, B.L., Arnold, W.A., McNeill, K., 2006. Aquatic photochemistry of nitrofuran antibiotics. Environmental Science & Technology 40, 5422-5427. Fromme, H., Kühler, T., Otto, T., Pilz, K., Müler, J., Wenzel, A., 2002. Occurrence of phthalates and bisphenol A and F in the environment. Water Research 36, 1429-1438. Gobel, A., McArdell, C.S., Joss, A., Siegrist, H., Giger, W., 2007. Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies. Science of the Total Environment 372, 361-371. Golet, E.M., Xifra, I., Siegrist, H., Alder, A., Giger, W., 2003. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environ. Sci. Technol 37, 3243-3249. Gross, B., Montgomery-Brown, J., Naumann, A., Reinhard, M., 2004. Occurrence and fate of pharmaceuticals and alkylphenol ethoxylate metabolites in an effluent-dominated river and wetland. Environmental Toxicology and Chemistry 23, 2074-2083. Heberer, T., 2002. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology Letters 131, 5-17. Hilton, M.J., Thomas, K.V., 2003. Determination of selected human pharmaceutical compounds in effluent and surface water samples by high-performance liquid chromatography-electrospray tandem mass spectrometry. Journal of Chromatography A 1015, 129-141. Hirsch, R., Ternes, T., Haberer, K., Kratz, K.L., 1999. Occurrence of antibiotics in the aquatic environment. Science of the Total Environment 225, 109-118. Ike, M., Chen, M.Y., Jin, C.S., Fujita, M., 2002. Acute toxicity, mutagenicity, and estrogenicity of biodegradation products of bisphenol-A. Environmental Toxicology 17, 457-461. Karickhoff, S.W., Brown, D.S., Scott, T.A., 1979. Sorption of hydrophobic pollutants on natural sediments. Water Research 13, 241-248. Kim, S., Aga, D.S., 2007. Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants. Journal of Toxicology and Environmental Health-Part B-Critical Reviews 10, 559-573. Lin, A.Y.C., Plumlee, M., Reinhard, M., 2006. Natural attenuation of pharmaceuticals and alkylphenol polyethoxylate metabolites during river transport: Photochemical and biological transformation. Environmental Toxicology and Chemistry 25, 1458-1464. Lin, A.Y.C., Tsai, Y.T., 2009. Occurrence of pharmaceuticals in Taiwan's surface waters: Impact of waste streams from hospitals and pharmaceutical production facilities. Science of The Total Environment 407, 3793-3802. Lin, A.Y.C., Yu, T.H., Lateef, S.K., Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan. Journal of Hazardous Materials In Press, Corrected Proof. Lin, A.Y.C., Yu, T.H., Lin, C.F., 2008. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan. Chemosphere 74, 131-141. Mansell, J., Drewes, J., Rauch, T., 2004. Removal mechanisms of endocrine disrupting compounds(steroids) during soil aquifer treatment. Water science & technology 50, 229-237. McArdell, C.S., Molnar, E., Suter, M.J.F., Giger, W., 2003. Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt Valley Watershed, Switzerland. Environmental Science & Technology 37, 5479-5486. Morrall, D., McAvoy, D., Schatowitz, B., Inauen, J., Jacob, M., Hauk, A., Eckhoff, W., 2004. A field study of triclosan loss rates in river water (Cibolo Creek, TX). Chemosphere 54, 653-660. Nakada, N., Tanishima, T., Shinohara, H., Kiri, K., Takada, H., 2006. Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment. Water Research 40, 3297-3303. Northern Region Water Resources Office, W.R.A., Ministry of Economic Affairs, 2008. North Water Resources Management System: Ching-Tan Weir http://www.wranb.gov.tw/ct.asp?xItem=1211&ctNode=323&mp=5 (accessed May,2009) Patel, R., Suresh, S., 2008. Kinetic and equilibrium studies on the biosorption of reactive black 5 dye by Aspergillus foetidus. Bioresource Technology 99, 51-58. Paxeus, N., 2004. Removal of selected non-steroidal anti-inflammatory drugs (NSAIDs), gemfibrozil, carbamazepine, beta-blockers, trimethoprim and triclosan in conventional wastewater treatment plants in five EU countries and their discharge to the aquatic environment. Water Science and Technology 50, 253-260. Piram, A., Salvador, A., Verne, C., Herbreteau, B., Faure, R., 2008. Photolysis of β-blockers in environmental waters. Chemosphere 73, 1265-1271. Ruthven, D., 1984. Principles of adsorption and adsorption processes. Wiley-Interscience. Santos, J.L., Aparicio, I., Alonso, E., 2007. Occurrence and risk assessment of pharmaceutically active compounds in wastewater treatment plants. A case study: Seville city (Spain). Environment International 33, 596-601. Scheytt, T., Mersmann, P., Lindstät, R., Heberer, T., 2005. Determination of sorption coefficients of pharmaceutically active substances carbamazepine, diclofenac, and ibuprofen, in sandy sediments. Chemosphere 60, 245-253. Schwarzenbach, R.P., Gschwend, P.M., Imboden, D.M., 2003. Environmental Organic Chemistry. Wiley-Interscience, New York. Siegrist, H., Joss, A., Adler, A., McArdell-Burgisser, C., Gobel, A., Keller, E., Ternes, T., 2003. Micropollutants-new challenge in wastewater disposal. EAWAG news 57, 10. Suthersan, S., 2001. Natural and enhanced remediation systems. CRC Press. Taipei Water Department, T.C.G., 2005. Taipei Water Department: Sin-Dian River http://www.twd.gov.tw/news/200504/index.html (accessed May, 2009). Ternes, T.A., 2001. Analytical methods for the determination of pharmaceuticals in aqueous environmental samples. Trac-Trends Anal. Chem. 20, 419-434. Thomas, K.V., Hilton, M.J., 2004. The occurrence of selected human pharmaceutical compounds in UK estuaries. Marine Pollution Bulletin 49, 436-444. Tixier, C., Singer, H.P., Oellers, S., Muller, S.R., 2003. Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environmental Science & Technology 37, 1061-1068. Uwai, K., Tani, M., Ohtake, Y., Abe, S., Maruko, A., Chiba, T., Hamaya, Y., Ohkubo, Y., Takeshita, M., 2005. Photodegradation products of propranolol: The structures and pharmacological studies. Life Sciences 78, 357-365. Vieno, N.M., Harkki, H., Tuhkanen, T., Kronberg, L., 2007. Occurrence of pharmaceuticals in river water and their elimination a pilot-scale drinking water treatment plant. Environmental Science & Technology 41, 5077-5084. Westerhoff, P., Yoon, Y., Snyder, S., Werts, E., 2005. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ. Sci. Technol 39, 6649-6663. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42556 | - |
dc.description.abstract | 由於台灣健保體制健全,國人用藥習慣不佳,使得藥物代謝物或廢棄物量,皆可能比國外流佈調查來得高,又國內相關研究有限,因此,為了幫助了解這些可能潛在危害的藥物化合物之流佈與宿命,本研究調查四種在台灣自然水體,被檢測頻率或檢驗濃度高之藥物化合物(acetaminophen、 caffeine、propranolol及acebutolol),透過實場調查自然降解之潛勢,另利用清潭堰河水做為背景水樣進行批次實驗,以模擬目標化合物在自然水體中吸附與生物降解的行為,綜合評估探討該四種化合物,在河川水體自然降解的機制及宿命。
實場調查結果顯示,伴隨上游流經下游,其濃度有遞減之現象,代表目標化合物皆具有自然降解的潛力。於吸附與生物降解特性,生物降解為acetaminophen主要的自然降解機制(單純吸附之半衰期(t1/2)為4.4天;吸附加生物降解之t1/2為2.1天);對caffeine來說,吸附與生物降解佔相等地位(單純吸附之t1/2為2.2天;吸附加生物降解之t1/2為0.6天);而對propranolol與acebutolol而言,吸附則為主要降解機制(propranolol單純吸附跟綜合吸附與生物降解之t1/2皆約為2.2天;acebutolol為2.4天)。於脫附實驗結果發現,四種化合物皆不易脫附,表示該吸附行為在此實驗條件下(土壤為低有機含量,0.017 g/g),大部分為不可逆的,可能以化學吸附為主要的吸附機制。等溫吸附實驗結果得知,除了acetaminophen以外,皆能套用Freundlich等溫吸附模式,其R2皆大於0.94。取其線性部分計算Kd (Solid-Water Distribution Coefficient)值,發現除了acetaminophen以外(5.0 L/kg),caffeine、propranolol及acebutolol之Kd都偏高(245.0-1901.0 L/kg)的現象,意味該三種化合物,即便在一般有機質含量很低的底泥,大部分caffeine、propranolol與acebutolol仍能吸附於底泥中,此實驗結果與吸附及生物降解實驗結果(吸附為該三種化合物重要的自然降解機制)相符。另比較實驗結果及經驗模式所得之Kd值,發現其差異性大,推測可能為經驗模式較適用於疏水性反應的評估,無法有效運用於極性或離子性化合物的推估,此評估結果與前半部研究推論呼應(化學吸附可能以離子鍵鍵結為主)。 綜合批次實驗結果與實場調查,目標化合物均具自然降解潛力,但由於台灣河川坡陡流急,其自然降解程度有限,表示目標化合物將殘留於河水中,或進一步排至大海,因此,進一步說明提升廢水相關處理效率及進行環境風險評估的重要性。 | zh_TW |
dc.description.abstract | This research used designed batch experiments to verify the fate (sorption and biotransformation, in particular) for four frequently used and detected pharmaceuticals (acetaminophen, caffeine, propranolol, and acebutolol) in aqueous environments.
Acetaminophen, caffeine, propranolol, and acebutolol have all demonstrated significant potential to degrade in the natural aqueous system. For acetaminophen, biodegradation play a major role (the half-lives (t1/2) of biodegradation and sorption together was 2.1 days while sorption alone was 4.4 days); for caffeine, biodegradation and sorption are both important (t1/2 of biodegradation and sorption together was 0.6 days; the t1/2 of sorption was 2.2 days). However, in the case of propranolol and acebutolol, sorption seems to be the most significant removal mechanism (the t1/2 of sorption was approximately 2.2 days and biodegradation didn’t enhance this degradation rate). In desorption experiments, the results showed that sorption are mostly irreversible (small than 3% reversibility). Because of low organic sediment content (1.7%) and the properties of target compounds (acetaminophen, propranolol, and acebutolol) are alkaline, it was implied that the sorption mechanism in this condition likely belong to chemical sorption (ionic interaction). In Kd determination experiment, caffeine, propranolol, and acebutolol had high Kd values, ranging from 245.0 to 1901.0 L/kg. It means that there is high tendency of target compounds to be sorbed to the sediment even though in low organic carbon content system. The results of logKoc values were dissimilar between experimentally derived and calculated values based on correlation equations. It is probably owing to the fact that those approaches are well applied for hydrophobic interaction, but fail to predict sorption of polar and ionic compounds. Laboratory results were further combined with other studies and extrapolated to the field conditions, the information demonstrated that the degradation possibility of pharmaceuticals just by natural attenuation. However, the rivers in Taiwan have high flow rate and with steep slopes. It is implied that the residual pharmaceuticals may enter the ocean before significant attenuation during river transport. Filed occurrence data further supported this conclusion, and it is suggested that these pharmaceuticals are in need to be treated by advanced process before releasing to the aqueous environments. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T01:16:11Z (GMT). No. of bitstreams: 1 ntu-98-R96541115-1.pdf: 2805789 bytes, checksum: 33d6c64091f7ae622e8670838b6c9cdc (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract v Contents vii List of Figures x List of Tables xii Chapter 1 Introduction 1 1.1 Background 1 1.2 Objectives 3 Chapter 2 Literature Review 4 2.1 Occurrence of pharmaceuticals and personal care products 4 2.2 Natural attenuation of pharmaceuticals and personal care products 5 2.2.1 Sorption 5 2.2.1.1 Sorption of pharmaceuticals in the aqueous environments 5 2.2.1.2 Sorption mechanisms 6 2.2.1.3 Adsorption isotherm models and sorption coefficients 7 2.2.1.4 Factors affecting sorption coefficient 9 2.2.2 Biodegradation 10 2.2.3 Other natural attenuation process 11 2.3 Physicochemical properties of target compounds and their potential natural attenuation mechanism 12 Chapter 3 Materials and Methods 15 3.1 Description of sampling site 15 3.2 Analytical methods 20 3.3 Biological and sorption uptake experiments 23 3.4 Desorption tests 25 3.5 Kd determination experiments 26 3.5.1 Experimental design 26 3.5.2 Sorption coefficient calculations 27 Chapter 4 Results and Discussion 29 4.1 Investigation of field data 29 4.2 Biological and sorption uptake experiments 31 4.2.1 Kinetic of the uptake and biodegradation studies 31 4.2.2 Respike experiments 35 4.3 Desorption tests 38 4.4 Kd determination experiments 42 4.4.1 Determination of Kd values 42 4.4.2 Comparison of the measured Kd values with modeled values based on Kow 46 4.5 Extrapolate laboratory results to the field conditions 47 Chapter 5 Conclusions and Recommendations 49 5.1 Conclusions 49 5.2 Recommendations 51 Reference 53 | |
dc.language.iso | en | |
dc.title | 藥物化合物於河川水體自然降解之宿命與探討:吸附與生物轉化 | zh_TW |
dc.title | Natural River Attenuation of Pharmaceuticals: Sorption and Biological Transformation | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 康佩群,李公哲,林正芳 | |
dc.subject.keyword | 藥物與個人保健用品,新興污染物,自然降解,吸附,生物降解,Kd值, | zh_TW |
dc.subject.keyword | pharmaceuticals,emerging contaminants,sorption,biodegradation,distribution coefficient (Kd), | en |
dc.relation.page | 58 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-28 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 2.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。