請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42549完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 尹相姝(Hsiang-Shu Yin) | |
| dc.contributor.author | Yaw-Hua Yang | en |
| dc.contributor.author | 楊耀華 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:16:00Z | - |
| dc.date.available | 2009-09-15 | |
| dc.date.copyright | 2009-09-15 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-28 | |
| dc.identifier.citation | 1. Andres KH, During MV, Veh RW. 1999. Subnuclear organization of the rat habenular complexes. The Journal of comparative neurology 407:130-150.
2. Baimbridge KG, Celio MR, Rogers JH. 1992. Calcium-binding proteins in the nervous system. Trends Neurosci 15:303-308. 3. Belda X, Armario A. 2009. Dopamine D1 and D2 dopamine receptors regulate immobilization stress-induced activation of the hypothalamus-pituitary-adrenal axis. (Epub ahead of print) 4. Braak E, Strotkamp B, Braak H. 1991. Parvalbumin-immunoractive structures in the hippocampus of the human adult. Cell and tissue research. 264:33-48. 5. Brown RW, Bardo MT, Mace DD, Phillips SB, Kraemer PJ. 2000. D-amphetamine facilitation of morris water task performance is blocked by eticlopride and correlated with increased dopamine synthesis in the prefrontal cortex. Journal of Neuroscience 114(1-2):135-143. 6. Dawirs RR, Teuchert-Noodt G, Czaniera R. 1997. Ontogeny of PFC-related behaviours is sensitive to a single non-invasive dose of methamphetamine in neonatal gerbils (Meriones unguiculatus).J Neural Transm. 103(11):1235-45 7. Degoulet M, Rouillon C, Rostain J.-C, David HN, Abraini JH. 2008. Modulation by the dorsal, but not ventral, hippocampus of the expression of behavioural sensitization to amphetamine. Int. J. of Neuropsychopharmacology 11:497-508. 8. Del Arco A, Castaneda TR, Mora F. 1998. Amphetamine releases GABA in striatum of the freely moving rat: involvement of calcium and high affinity transporter mechanisms. Neuropharmacology 37:199-205. 9. Dipace C, Sung U, Binda F, Blakely RD, Galli A. 2007. Amphetamine induces a calcium/calmodulin-dependent protein kinase II-dependent reduction in norepinephrine transporter surface expression linked to changes in syntaxin 1A/transporter complexes. Mol Pharmacol 71:230-239. 10. Ellison G. 1994. Stimulant-induced psychosis, the dopamine theory of schizophrenia, and the habenula. Brain research reviews 19:223-239. 11. Featherstone RE, Kapur S, Lletcher PJ. 2007. The amphetamine-induced sensitized state as a model of schizophrenia. Progess in Neuro-Psychopharmacology & Biological Psychiatry 31:1556-71. 12. Furman CA, Chen R, Guptaroy B, Zhang M, Holz RW, Gnegy M. 2009. Dopamine and amphetamine rapidly increase dopamine transporter trafficking to the surface: live-cell imaging using total internal reflection fluorescence microscopy. J Neuroscience 29(10):3328-36. 13. Gage FH, Thompson RG. 1980. Differential distribution of norepinephrine and serotonin along the dorsal-ventral axis of the hippocampal formation. Brain research bulletin 5(6):771-773. 14. Geranton SM, Heal DJ, Stanford SC. 2003. Differences in the mechanisms that increase noradrenaline efflux after administration of d-amphetamine: a dual-probe microdialysis study in rat frontal cortex and hypothalamus. British journal of pharmacology 139(8):1441-1448. 15. Glausier JR, Khan ZU, Muly EC. 2008. Dopamine D1 and D5 Receptors Are Localized to Discrete Populations of Interneurons in Primate Prefrontal Cortex. Cerebral cortex Nov19. 16. Gnegy ME, Khoshbouei H, Berg KA, Javitch JA, Clarke WP, Zhang M, Galli A. 2004. Intracellular Ca2+ regulates amphetamine-induced dopamine efflux and currents mediated by the human dopamine transporter. Mol Pharmacol 66:137-143. 17. Hedou G, Homberg J, Feldon J, Heidberder CA. 2001. Experssion of sensitization to amphetamine and dynamics of dopamine neurotransmission in different laminae of the rat medial prefrontal cortex. Neuropharmacology 40(3):366-382. 18. Hedou G, Homberg J, Martin S, Wirth K, Feldon J, Heidbreder CA. 2000. Effect of amphetamine on extracellular acetylcholine and monoamine levels in subterritories of the rat medial prefrontal cortex. European journal of pharmacology 390(1-2):127-136. 19. Heizmann CW, Hunziker W. 1991. Intracellular calcium-binding proteins: more sites than insights. Trends Biochem Sci 16:98-103. 20. Hikosaka O, Sesack, SR, Lecourtier L, Shepard PD. 2008. Habenula: Crossed between the basal ganglia and the limbic system. The journal of neuroscience 28(46):11825-11829. 21. Hillman KL, Lei S, Doze VA, Porter JE. 2009. Alpha-1 adrenergic receptor activation increases inhibitory tone in CA1 hippocamnpus. Epilepsy research 84:97-109. 22. Hörtnagl H, Berger ML, Sperk G, Pifl C. 1991. Regional heterogeneity in the distribution of neurotransmitter markers in the rat hippocampus. Neuroscience 45(2):261-72. 23. Ikura M. 1996. Calcium binding and conformational response in EF-hand proteins. Trends Biochem Sci 21:14-17. 24. Jay TM. 2003. Dopamine: a potential substrate for synaptic plasticity and memory mechanisms. Progress in Neurobiology 69:375-390. 25. Jarrard LE. 1978. Selective hippocampal lesions: differential effects on performance by rats of a spatial task with preoperative versus postoperative training. J Comp Physiol Psychol 92:1119-1127. 26. Ji H, Shepard PD. 2007. Lateral habenula stimulation inhibits rat midbrain dopamine neurons through a GABAA receptor-mediated mechanism. The Journal of neuroscience 27(26):6923-6930. 27. Jinno S, Kosaka T. 2006. Cellular architecture of the mouse hippocampus: A quantitative aspect of chemically defined GABAergic neurons with stereology. Neuroscience Research 56:229-245. 28. Joca SR, Ferreira FR, Guimarães FS. 2007. Modulation of stress consequences by hippocampal monoaminergic, glutamatergic and nitrergic neurotransmitter systems. Stress 10(3):227-249. 29. Kempermann G, Jessberger S, Steiner B, Kronenberg G. 2004 Milestones of neuronal development in the adult hippocampus. Trends in Neurosciences. 27(8)447-452. 30. Kuczenski R, Segal DS. 2000. Locomotor effects of acute and repeated threshold doses of amphetamine and methylphenidate: relative roles of dopamine and norepinephrine. The J of pharmacology and experimental therapeutics 296:876-883. 31. Lecourtier L, Kelly PH. 2007. A conduction hidden in the orchestra? Role of the habenular complex in monoamine transmission and cognition. Neurosci. Biobehav. Rev 31:658-672. 32. Leith NJ, Kuczenski R. 1982. Two dissociable components of behavioral sensitization following repeated amphetamine administration. Psychopharmacology 76(4)310-315. 33. Leranth C, Ribak CE. 1991. Calcium-binding proteins are concentrated in the CA2 field of the monkey hippocampus: a possible key to this region’s resistance to epileptic damage. Exp Brain Res 85:129-136. 34. Mann EO, Radcliffe CA, Paulsen O. 2005. Hippocampal gamma-frequency oscillations: From interneurons to pyramidal cells, and back. The journal of physiological society 562(1):55-63. 35. Mercer A, Trigg HL,, Thomson AM. 2007. Characterization of neurons in the CA2 subfield of the adult rat hippocampus. The journal of neuroscience 27(27):7329-7338. 36. Milner B, Corkin S, Teuber H-L. 1998. Further analysis of the hippocampal amnesic syndrome: 14-year follow-up study of H.M. Neuropsychologia 6:317-388. 37. Mohila CA, Onn SP. 2005. Increases in the density of parvalbumin-immunoreactive neurons in anterior cingulated cortex of amphetamine-withdrawn rats: evidence for corticotrophin-releasing factor in sustained elevation. Cerebral Cortex 15(3):262-274. 38. Morris RGM, Garrud P, Rawlins JNP, O’keefe J. 1982. Place navigation impaired in rats with hippocampal lesions. Nature 297:681-683. 39. Morris RGM, Schenk F, Tweedie F, Jarrard LE. 1990. Ibotenate lesions of hippocampus and/or subiculum: Dissociating components of allocentric spatial learning. Eur J Neurosci 2:1016-1028. 40. Mondy AM, Kunkel DD, Schwartzkroin PA. 1993. Development of dopamine-beta-hydroxylase-positive fiber innervation of the rat hippocampus. Synapse 15(4):307-318. 41. Muller AR, Gerstberger R. 1992. The alpha 2-adrenergic receptor system in the hypothalamus of the Pekin duck. Cell and tissue research Apr;268(1):99-107. 42. Muller M, Felmy F, Schwaller B, Schneggengurger R. 2007. Parvalbumin is a mobile presynaptic Ca2+ buffer in the calyx of held that accelerates the decay of Ca2+ and short-term facilitation. The Journal of Neuroscience 27(9):2261-2271. 43. Mundorf ML, Hochstetler SE, Wightman RM. 1999. Amine weak bases disrupt vesicular storage and promote exocytosis in chromaffin cells. J Neurochem 73:2397-2405 44. Pan WH, Sung JC, Fuh SM. 1996. Locally application of amphetamine into the ventral tegmental area enhances dopamine release in the nucleus accumbens and the medial prefrontal cortex through noradrenergic neurotransmission. The Journal of pharmacology and experimental therapeutics 278(2):725-731 45. Persechini A, Moncrief ND, Kretsinger RH. 1989. The EF-hand family of calcium-modulated proteins. Trends Neurosci 12:462-467. 46. Quirk PL, Richards RW, Avery DD. 2001. Subchronic cocaine produces training paradigm-dependent learning deficits in laboratory rats. Pharmacology, Biochemistry, and Behavior 68(3):545-553. 47. Risold PY, ThompsonRH, Swanson LW. 1997. The structural organization of connections between hypothalamus and cerebral cortex. Brain Research Reviews 24(2-3):197-254. 48. Russig H, Durran A. Yee BK, Murphy CA, Feldon J. The acquisition, retention and reversal of spatial learning in the morris water maze task following withdrawal from an escalating dosage schedule of amphetamine in wistar rats. Neuroscience 119:167-179. 49. Sahay A, Hen R. 2007. Adult hippocampal neurogenesis in depression. Nature Neuroscience 10:1110-15. 50. Seiden LS, Sabol KE, Ricaurte GA. 1993. Amphetamine: effects on catecholamine systems and behavior. Annual review of pharmacology and toxicology 33:639-677. 51. Sharp T, Zetterstrom T, Ljungberg T, Ungerstedt U. 1987. A direct comparison of amphetamine-induced behaviours and regional brain dopamine release in the rat using intracerebral dialysis. Brain Res 401:322-330. 52. Sik A, Penttonen M, Ylinen A, Buzsaki G. 1995. Hippocampal CA1 interneurons: An in vivo intracellular labeling study. The journal of neuroscience 15(10):6651-6665. 53. Tang FR, Chia SC, Jiang FL, Ma DL, Chen PM, Tang YC. 2006. Calcium binding protein containing neurons in the gliotic mouse hippocampus with special reference to their afferents form the medial septum and the entorhinal cortex. Neuroscience 140:1467-1479. 54. Vincent SR, Staines WA, McGeer EG, Fibiger HC. 1980. Transmitters contained in the effercnts of the habenula. Brain research 195:479-484. 55. Verney C, Baulac M, Berger B, Alvarez C, Vigny A, Helle KB. Morphological evidence for a dopaminergic terminal field in the hippocampal formation of young and adult rat. Neuroscience 14(4):1039-1052. 56. Vertes RP, Fortin WJ, Crane AM. 1999. Projections of the median raphe nucleus in the rat. The Journal of Comparative Neurology 407(4):555-582. 57. Wang D-G, Gong N, Luo B, Xu T-L. 2006 Absence of GABA type A signaling in adult medial habenula neurons. Neuroscience 141:133-141. 58. White FJ, Kalivas PW. 1998. Neuroadaptations involved in amphetamine and cocaine addiction. Drug and alcohol dependence 51(1-2):144-153. 59. Yin HS, Tan HW. 2007. Effects of amphetamine on serotoninergic and GABAergic expression of developing brain. Neurotoxicology and Teratology 29:264-272. 60. Yin HS, Cheng PR, Chen CS. 2009. Differential alterations in the relations among GABAergic, catecholaminergic and calcium binding proteins expression in the olfactory bulb of amphetamine-administered mouse. Neurotoxicology 30:103-113. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42549 | - |
| dc.description.abstract | 側韁核(Lateral habenula, LHb)可以抑制多巴胺的過量釋放,是控制大腦內多巴胺濃度的核區之ㄧ。海馬結構(Hippocampal formation)可分為背側及腹側,背側海馬結構(Dorsal hippocampal formation, DH)的功能主要負責空間記憶及空間導航、而腹側海馬結構(Ventral hippocampal formation, VH)負責防禦行為、情感控制等認知功能。這些區域受損會造成類似精神分裂的症狀,但詳細機制並不清楚。
動物經安非他命處理後,可作為研究藥物成癮或精神分裂的模式。本研究使用成年雄性小鼠,經腹腔一劑或重複注射(每天兩劑,四天共七劑) 5 mg/kg安非他命或等容積的生理食鹽水(對照組)。最後一劑注射半小時或四小時後,小鼠接受灌流固定,以石蠟包埋,製成冠狀石蠟切片(7μm),使用免疫化學染色法分析韁核及海馬結構的迦瑪胺基丁酸(GABAergic)系統、兒茶酚胺(catecholaminergic)系統,以及鈣結合蛋白(calcium binding proteins)的表現。 單染結果發現 在本實驗探討的區域內,觀察到免疫標誌的GAD67、DBH及AADC的分布型態為點狀神經末梢(punctate)密集圍在神經細胞周圍,或散布於神經毯上。PV的分布型態為點狀末梢、絲狀的神經纖維(process) 密集圍在神經細胞周圍,或散布於神經毯上,以及整顆細胞體(cell body)的染色。 (1)內韁核與側韁核:GAD67、PV、DBH及AADC在內韁核的表現均不受一劑或重複安非他命影響。在側部側韁核內,PV的表現在一劑安非他命處理半小時及四小時後下降,重複處理半小時及四小時後上升。DBH的表現在一劑半小時後下降,一劑四小時後上升。 (2)海馬結構: (i)背側CA1,DBH的表現在重複安非他命處理半小時後上升。腹側CA1,GAD67的表現在一劑處理半小時後上升,四小時後下降;DBH的表現在重複處理半小時後表現下降。 (ii)背側CA2,DBH的表現在一劑安非他命處理半小時及重複處理四小時後上升。 (iii)背側CA3,GAD67的表現在重複安非他命處理後半小時上升;PV的表現在一劑處理半小時後下降,重複處理半小時後上升:DBH的表現在一劑處理半小時及四小時後下降,重複處理半小時後上升。腹側CA3,PV的表現在一劑處理四小時後下降,重複處理半小時後上升,重複處理四小時後下降。AADC的表現在一劑處理半小時後上升,重複處理半小時後下降,重複處理四小時後上升。 (iv)背側CA4,GAD67的表現在一劑安非他命處理半小時、四小時,以及重複處理半小時後上升;PV的表現在一劑處理半小時及四小時後下降。 (v)背側齒狀迴,GAD67的表現在一劑安非他命處理四小時,重複處理半小時及四小時後上升。PV的表現一劑處理四小時後下降,重複處理半小時及四小時後上升。AADC的表現在一劑處理半小時及四小時後下降。腹側齒狀迴,GAD67的表現在一劑處理四小時後下降,重複處理四小時後上升。 雙重染色結果發現 (1)在內韁核以及側韁核中,沒有觀察到GAD67、PV、DBH及AADC神經末梢之間有特別顯著的緊密分布,彼此之間的調控可能並不明顯,仍需要進一步驗證。 (2)在背側及腹側海馬結構中,AADC或DBH會緊密分布在有表現GAD67或是PV的細胞體周圍。並且會在神經細胞的邊緣與GAD67或是PV的神經末梢非常靠近,甚至重疊,可能彼此之間會互相調控。 一劑或重複安非他命會影響側部側韁核內GAD67、PV、DBH以及AADC的表現,但不影響內韁核。這可能代表成癮性藥物對神經系統產生變化,甚至傷害。一劑或重複安非他命處理後,GAD67及PV的表現代表安非他命對側部側韁核及背、腹側海馬結構中GABA系統的影響。GAD67末梢表現上升及PV末梢表現下降,可能代表了GABA的大量釋放。DBH末梢代表正腎上腺素,AADC代表單胺類的神經傳導物質,可能反映了這些興奮性神經傳導物質也在安非他命處理之後產生變化。 已知安非他命可能會影響到韁核控制腦內多巴胺濃度的功能,造成過動等行為異常;也可能會影響到背側及腹側海馬結構,造成注意力、空間記憶及情緒等認知功能異常等現象。本研究發現一劑或重複安非他命處理後,會改變小鼠側部側韁核及背、腹側海馬結構中兒茶酚胺和GABA系統的表現,可能導致側韁核及海馬結構功能改變,代表精神疾病早期致病機轉。 | zh_TW |
| dc.description.abstract | Lateral habenula (LHb) is one of the nuclei regulating the expression of dopaminergic system in brain. Hippocampal formation may be divided into dorsal and ventral parts by differentials and connections. Dorsal hippocampal formation (DH) is mainly responsible for navigation and long-term memory formation, and ventral part (VH) is related to cognitive functions and emotional control. Damages to habenula and hippocampal formation may result in schizophrenia-like syndromes, such as behavioral hyperactivity and impairment of memory. Amphetamine (Amph) treated animals have been used as models to study pathogenesis of addiction and schizophrenia. In previous studies, Amph could alter the expression of catecholaminergic, serotoninergic and GABAergic systems in neocortex, striatum, and hippocampus of the rat. In addition, parvalbumin (PV), a kind of calcium binding proteins (CaBPs), is used to mark a population of GABAergic neurons in central nervous system. Thus, this study investigated the roles of habenula and hippocampal formation in the mechanisms for the action of acute and repeated Amph treatment, by examining the expression of GAD67, PV, AADC and DBH.
In this study, male adult SV129 mice received single or multiple (2 doses/day, 7doses in total) injections of saline or Amph, 5mg/kg. At 0.5 or 4 hours after the last injection, the mice were perfused with Bouin’s fixative, followed by preparation of paraffin sections and immunohistochemistry. Our results reveled that: (1)Medial and lateral habenula: There’s no significant alteration in the expression of GAD67, PV, AADC and DBH in the medial habenula after acute or repeated Amph treatment. In the lateral part of lateral habenula, the densities of PV terminals and processes were decreased at 0.5 and 4 h after acute Amph treatment, but increased at 0.5 and 4 h after repeated Amph treatment. (2)Hippocampal formation: (i) In DH CA1 pyramidal cell layer, the density of DBH was increased at 0.5 h after repeated Amph treatment. In VH CA1, the density of GAD67 was increased at 0.5 h after acute but decreased at 4 h after repeated Amph treatment; the density of DBH decreased at 0.5 h after repeated Amph treatment. (ii) In CA2 pyramidal cell layer, the density of DBH was increased at 0.5 h after acute and 4 h after repeated Amph treatment. (iii) In DH CA3 pyramidal cell layer, the density of GAD67 was increased at 0.5 h after repeated Amph treatment; the density of PV was decreased at 0.5 h after acute but increased at 0.5 after repeated Amph treatment; the density of DBH was decreased at 0.5 and 4 h after repeated but decreased at 0.5 h after repeated Amph treatment. In VH CA3, the density of PV was decreased at 4 h after acute but increased at 0.5 h after repeated Amph treatment; the density of AADC was increased at 0.5 h after acute but decreased at 0.5 h amd increased at 4h after repeated Amph treatment. (iv) In DH CA4 pyramidal cell layer, the density of GAD67 was increased at 0.5 and 4 h after acute and at 0.5 h after repeated Amph treatment; the density of PV was decreased at 0.5 and 4 h after acute Amph treatment. (v) In DH dentate gyrus (DG) granule cell layer, the density of GAD67 was increased at 4 h after acute and at 0.5 and 4 h after repeated Amph treatment; the density of AADC was decreased at 0.5 and 4 h after acute Amph treatment. In VH dentate gyrus, the density of GAD67 was decreased at 4 h after acute and increased at 4 h after repeated Amph treatment. The results of double staining: (1) In medial and lateral habenula, we observed the phenomenon that DBH and AADC terminals weren’t significantly colocalized or near GAD67- of PV-ir somata or punctuates. It needs more experiments to identify the connections between the terminals which expressd different transmitters synthesizing enzymes. (2) In dorsal and ventral hippocampal formation, AADC or DBH terminals were distributed closely apposed or overlapped, to GAD67- or PV-ir somata or punctates, implicating interactions. The GABAergic terminals might receive the norepinephrinergic or serotonergic regulation. The alteration of the expression of GAD67, PV, AADC and DBH in habenula and hippocampal formation after acute or repeated Amph treatment would represent that addictive drug could alter, even impair, the nervous system. The up-regulation of GAD67 terminals and down-regulation of PV terminals might be due to the increased release of GABA. DBH punctates represented norepinephrine terminals and AADC punctates stand for monoamine terminals. The alteration of DBH and AADC also revealed that Amph treatment would affect nervous system. It’s known that Amph treatment could disturb the functions of lateral habenula to regulate dopamine release. Amph treatment also affects hippocampal formation to impair navigation and memory. Our results suggested that acute or repeated Amph treatments could change the expression of catecholaminergic and GABAergic systems in habenula and hippocampal formation, leading to functional and behavioral changes, and may implicate early mechanisms of pathogenesis of psychosis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:16:00Z (GMT). No. of bitstreams: 1 ntu-98-R95446010-1.pdf: 5549397 bytes, checksum: 2eafad132df9e4db3fd72f81513a0e2a (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 目錄
論文口試委員審定書…………………………………………………………… I 致謝……………………………………………………………………………… II 中文摘要………………………………………………………………………… III 英文摘要………………………………………………………………………… VI 論文本文 緒論……………………………………………………………………………… 1 材料與方法……………………………………………………………………… 11 結果……………………………………………………………………………… 18 討論……………………………………………………………………………… 31 結論……………………………………………………………………………… 45 參考文獻………………………………………………………………………… 46 表格與說明……………………………………………………………………… 55 變化總整理表格………………………………………………………………… 62 圖表與說明……………………………………………………………………… 62 韁核的型態染色圖………………………………………………………… 64 背側海馬結構的型態染色圖……………………………………………… 66 腹側海馬結構的型態染色圖……………………………………………… 67 背側海馬結構的NeuN染色圖……………………………………………… 68 腹側內韁核的免疫染色圖………………………………………………… 69 外側側韁核的免疫染色圖………………………………………………… 70 背側及腹側CA1的免疫染色圖…………………………………………… 76 背側及腹側CA2的免疫染色圖…………………………………………… 86 背側及腹側CA3的免疫染色圖…………………………………………… 90 背側及腹側CA4的免疫染色圖…………………………………………… 104 背側及腹側齒狀迴的免疫染色圖………………………………………… 112 雙重免疫染色圖…………………………………………………………… 124 韁核及海馬結構的CB免疫染色圖…………………………………………126 韁核及海馬結構的CR免疫染色圖…………………………………………127 韁核及海馬結構的TH免疫染色圖………………………………………127 韁核及海馬結構的ChAT免疫染色圖…………………………………………128 簡寫全名列表…………………………………………………………………… 129 | |
| dc.language.iso | zh-TW | |
| dc.subject | 海馬結構 | zh_TW |
| dc.subject | 安非他命 | zh_TW |
| dc.subject | 兒茶酚胺 | zh_TW |
| dc.subject | 迦瑪胺基丁酸 | zh_TW |
| dc.subject | 韁核 | zh_TW |
| dc.subject | Habenula | en |
| dc.subject | Amphetamine | en |
| dc.subject | Hippocampal formation | en |
| dc.subject | Catecholamine | en |
| dc.subject | GABA | en |
| dc.title | 兒茶酚胺及迦瑪胺基丁酸神經元的表現在經急性或重複安非他命注射後的小鼠韁核和海馬結構內的變化 | zh_TW |
| dc.title | Changes in Catecholaminergic and GABAergic Expression in Habenula and Hippocampal Formation of Mouse after Acute or Repeated Amphetamine Treatment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 符文美(Wen_Mei Fu),呂俊宏(June-Horng Lue),黃銀河(Yn-Ho Huang) | |
| dc.subject.keyword | 安非他命,兒茶酚胺,迦瑪胺基丁酸,韁核,海馬結構, | zh_TW |
| dc.subject.keyword | Amphetamine,Catecholamine,GABA,Habenula,Hippocampal formation, | en |
| dc.relation.page | 129 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-28 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 解剖學暨生物細胞學研究所 | zh_TW |
| 顯示於系所單位: | 解剖學暨細胞生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 5.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
