Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42520
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor顏瑞泓
dc.contributor.authorFang-Yu Hsuen
dc.contributor.author徐芳瑜zh_TW
dc.date.accessioned2021-06-15T01:15:22Z-
dc.date.available2012-08-22
dc.date.copyright2011-08-22
dc.date.issued2011
dc.date.submitted2011-08-16
dc.identifier.citation王一雄。1997年。土壤環境污染與農藥。國立編譯館主編。明文書局股份有限公司出版。台北。
林蒼澤。1991年。不同有機物在土壤中養分釋放之研究。國立中興大學碩士論文。
張仲民。1987年。普通土壤學。國立編譯館。 P 1-10.
陳新傑。2000年。除草劑三福林、倍尼芬、施得圃及歐拉靈在環境中之消散。國立台灣大學農業化學研究所碩士論文。
陳存澤。2008年。不同的施肥管理對土壤化學性質、酵素活性及微生物族群結構的影響。國立台灣大學農業化學研究所碩士論文。
林豊祺。2009年。硫醯尿素類除草劑Chlorsulfuron及依速隆於土壤中的消散及對土壤細菌族群結構的影響。臺灣大學農業化學系碩士論文。
黃玉如,2006。施用貝芬替、賓克龍和益達胺對土壤細菌族群結構的影響。國立台灣大學農業化學系研究所碩士論文。
潘泊原。2010年。奈米和微米級TiO2, SiO2和Al2O3對本土水蚤、大腸桿菌、小白菜和空心菜的毒性及土壤菌相的影響。臺灣大學農業化學系碩士論文。
盧俊廷。2009年。殺菌劑免克寧在土壤中之降解與降解產物的生成對土壤菌相之影響。臺灣大學農業化學系碩士論文。
洪正中、吳天基、杜正榮。1996年。環境生態學。台北:國立空中大學。
蔡宜峰。1990年。中部地區紅壤改良之綜合研究。台中區農業改良場研究彙報。29:49-60.
王為一。2007年。綠肥作物栽培手冊羽扇豆(魯冰)。中華肥料協會編印。
行政院農委會農業藥毒試驗所。2011年。殘留農藥安全容許量標準表。 (http://www.tactri.gov.tw/htdocs/Extend/data/.pdf)
行政院環境保護署環境檢驗所。1994年。土壤中陽離子交換容量-醋酸銨法 (NIEA S201.60T)。土壤檢測方法彙編。(http://www.niea.gov.tw/analysis/method/methodfile.asp?mt_niea=S201.60T)
行政院環境保護署環境檢驗所。2002年。土壤水分含量測定方法-重量法 (NIEA S280.61C)。土壤檢測方法彙編。(http://www.niea.gov.tw/analysis/method/methodfile.asp?mt_niea=S280.61C)
行政院環境保護署環境檢驗所。2008年。土壤酸鹼值 (pH 值) 測定方法-電極法 (NIEA S410.62C)。土壤檢測方法彙編。(http://www.niea.gov.tw/analysis/method/methodfile.asp?mt_niea=S410.62C)
Atri S., B., S. Jayanta, C. Subhendu, C. Ashim, A. Narayan, A. K. Ainouche and B. J. Randall. 1999. Phylogenetic relationships in Lupinus (Fabaceae: Papilionoideae) based on internal transcribed spacer sequences (ITS) of nuclear ribosomal DNA. Am. J. Bot. 86(4):590-607.
Amann, R. I., W. Ludwig and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59(1):143-169.
Appleby, J.R. and B.E. Valverde. 1988. Behavior of dinitroaniline herbicides in plants. Weed. Technol. 3:198-206.
Avidano, L., E. Gamalero, G. P. Cossa and E. Carraro. 2005. Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators. Appl. Soil Ecol.. 30:21-33.
Baker, A. E., M. Vielska, Brautigam and J. J. Watters. 2004. Estrogen Modulates Microglial Inflammatory Mediator Production via Interactions with Estrogen Receptor β. Endocrinology. 145 (11):5021-5023.
Ball, D. F. 1964. Loss-on ignition as estimate of organic matter and organic carbon in non-calcareous soils. J. Soil. Sci. 15:84-92.
Barrett, M. R. and T. Lavy. 1983. Effects of soil water content on pendimethalin dissipation. J. Environ. Qual. 12:504-508.
Barriuso, E., S. Houot and C. Serrea-wittling. 1997. Influnce of compost addition to soil on the behaviour of herbicides. Pestic. Sci. 49:64-75.
Bremner, J. M. 1965. Inorganic forms of nitrogen, pp. 1149-1178. In “Methods of soil Analysis. Part 2” C. A. Black (ed.). Agro. No. 9, ASA-SSSA, Wisconsin, USA.
Brunner, W. and D. D. Focht. 1984. Deterministic three-half-order kinetic model for microbial degradation of added carbon substrates in soil. Appl. Environ. Microbiol. 47(1):167-172.
Cowan, D. A. 2000. Microbial genomes – the untapped resource. Trends. Biotechnol. 18:14-16.
Costantino, V., C. Cristiano and P. Piero. 2002. Relationship between changes of soil microbial biomass content and imazamox and benfluralin degradation. Biol. Fertil. Soils. 35:13–17
Damstra, T., S. Barlow, A. Bergman, R. Kavlock, and G. Van Der Kraak (Eds.), International Programme on Chemical Safety, Global Assessment of the State-of-the-Science of Endocrine Disruptors, World Health Organization, 2002.
Danzo, B. J. 1997. Environmental xenobiotics may disrupt normal endocrine function by interfering with the binding of physiological ligands to steroid receptors and binding proteins. Environ. Health. Perspect. 105(3): 294-301.
Dureja, P. and S. Walia. 1989. Photodecomposition of pendimethalin. Pest. Sci. 25:105-114.
Felsot, A. and P. A. Dahm.1979. Sorption of organophosphorus and carbamate insecticides by soil. J. Agric. Food Chem. 27(3):557–563
Follet, R. F., J. W. B. Stewart, C. V. Cole and J. F. Power. 1987. Soil fertility and organic matter as critical components of production system. SSSA, ASA and Madison, Wisconsin.
Garland, J. L. 1997. Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS. Microbiol. Ecol. 24(4):289-300.
Garland, J. L. and A. L. Mills. 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbonsource utilization. Appl. Environ. Microbiol. 57:2351-2359.
Gerhard, M., H. Juhl, H. Kalthoff, H. W. Schreiber, C. Wagener and M. Neumaier. 1994. Specific detection of carcinoembryonic antigen-expressing tumor cells in bone marrow aspirates by polymerase chain reaction. J. Clin. Oncol. 12:725-729.
Giesy, J. P. and K. Kannan. 2002. Perfluorochemical surfactants in the environment. Environ. Sci. Technol. 36(7):146A-152A.
Golubev, A. A. and B. S. Kurlovich. 2002. Diseases and Pests. In: Kurlovich, Boguslav S. (ed.): Lupins: geography, classification, genetic resources and breeding: 287-312.
Grayston, S. J., S. Wang, C. D. Campbell and A. C. Edwards. 1998. Selective influence of plant species on microbial diversity in rhizosphere. Soil. Biol. Biochem. 30:369-378.
Gupta, M. N. and Y. Samata. 1963. Somatic mutation studies on cosmos bipinnatus with particular reference to induction of flower color changes. Gamma Field Symposia. 2:69-76.
Hafez, A. A. R. 1974. Comparative changes in soil-physical properties induced by admixtures of manures from various domestic animals. Soil Sci. 118:53-59.
Halder, P., A.S. Barua, P. Raha, B. Biswas, S. Pal, A. Bhattacharya, S.Bedi and A. Chowdhury. 1989. Studies on the photodegradation of pendimethalin in solvents and in Kalyani (India) soil. Chemosphere 18:1611-1620.
Hu, Q. C. R. Shew, M. B. Bally, and T. D. Madden. 2001. Programmable fusogenic vesicles for intracellular delivery of antisense oligodeoxynucleotides: enhanced cellular uptake and biological effects. Biochim. Biophys. Acta. 1514:1-13.
Jiang, W., W. Jijun, W. Jianshe, T. Jianshe, F. Hou and L. Yitong. 2010. Soil bacterial functional diversity as influenced by cadmium, phenanthrene and degrade bacteria application. Environ. Earth. Sci. 59:1717-1722.
Kelce, W.R., and E.M. Wilson. 1997. Environmental antiandrogens: developmental effects, molecular mechanisms, and clinical implications. J. Mol. Med. 75:198-207.
Kojima, H., E. Katsura, S. Takeuchi, K. Niyama and K. Kobayashi. 2004. Screening for estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using Chinese hamster ovary cells. Environ. Health Perspect. 112:524–531.
Kole, R.K., J. Saha, S. Pal, S. Chaudhuri and A. Chowdhury. 1994. Bacterial degradation of the herbicide pendimethalin and activity evaluation of its metabolites. Bull. Environ. Contam. Toxicol. 52:779-786.
Konopka, A., L. Oliver and R. F. Turco.1998. The use of carbon substrate utilization patterns in environmental and ecological microbiology. Microb. Ecol. 35:103-115.
Kristensen, H. 2000. Vejledning i Plantevarn. Landbrugskontoret for Uddannelse 2000. Landbrugsforlaget, A ˚ rhus, Denmark.
Kulshrestha, G. and S. B. Singh. 1992. Influence of soil moisture and microbial activity on pendimethalin degaradation. Bull. Environ. Contam. Toxicol. 48: 269-274.
Kulshrestha, G. and S. B. Singh. 1992. Influence of soil moisture and microbial activity on pendimethalin degradation. 48:269-274.
Kurlovich, B. S., I. A. Tikhonovich, L. T. Kartuzova, J. Heinanen, A. P. Kozhemykov, S. A. Tchetkova, B. M. Cheremisov and T. A. Emeljanenko. 2002. Nitrogen fixation. In: Kurlovich, Boguslav S. (ed.): Lupins: geography, classification, genetic resources and breeding. 269-286.
Malosso, E., L. English, D. W. Hopkins and A. G. O’Donnel. 2005. Community level physiological profile response to plant residue additions in Antarctic soils. Biol. Fertil. Soils. 42:60-65.
McLean, E. O. 1982. Soil pH and lime requirement, pp.199-224. In “Methods of soil Analysis Part 2 Chemical and Microbiological Properties” 2nd (ed.), A. L. Page (ed.). Academic Press, New York, USA.
Mills, A. L. and L. M. Mallory. 1987. The community structure of sessile heterotrophic bacteria stressed by acid mine drainage. Microb. Ecol. 14:219-232.
Moorman, T. B., K. Jennifer, E. L. Cowan, Arthur and J. R. Coats. 2001. Organic amendments to enhance herbicide biodegradation in contaminated soils. Biol. Fertil. Soils. 33:541-545.
Mullis, K. B. 1983. The unusual origin of the polymerase chain reaction Scientific American.
Muyzer, G., E.C. de Waal, and A.G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695-700.
Muyzer G., and K. Smalla. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhoek. 73:127-141.
Myers, R.M., S.G. Fischer, T. Maniatis, and L.S. Lerman. 1985. Modification of the melting properties of duplex DNA by attachment of a GC-rich DNA sequence as determined by denaturing gradient gel electrophoresis. Nucleic Acids Res. 13:3111-3129.
Preston-Mafham, J., L. Boddy and P. F. Randerson. 2002. Analysis of microbial community functional diversity using sole-carbonsource utilisation profiles - a critique. FEMS. Microbiol. Ecol. 42:1–14.
Rhoades, J. D. 1982. Soluble salts, pp. 167-178. In “Method of soil Analysis Part 2 Chemical and Microbiological Propertirs”, 2nd (ed.), A. L. Page (ed.). Academic Press, New York, USA.
Richardson, M.L. and S. E. Gangolli. 1994. The Dictionary of Substances and Their Effects. The Royal Society of Chemistry. Clays Ltd. Cambridge. UK. 6:431–432.
Ros, M., I. Rodriguez, C. Garcia and T. Hernandez. 2010. Microbial communities involved in the bioremediation of an aged recalcitrant hydrocarbon polluted soil by using organic amendments. Bioresour. Technol. 101:6916-6923.
Saltzman, S. L. Kliger and B. Yaron. 1972. Adsorption-desorption of parathion as affected by soil organic matter. J. Agric. Food Chem. 20 (6):1224-1226.
Savage, K. E. 1978. Persistence of several dinitroaniline herbicides as affected by soil moisture. Weed Sci. 26: 153-156.
Scheunerta, I., M. Mansourb, U. Dorflera and R. Schrolla. 1993. Fate of pendimethalin, carbofuran and diazinon under abiotic and biotic conditions. Sci. Total. Environ. 132:361-369.
Schloter, M., M. Lebuhn, T. Heulin, and A. Hartmann. 2000. Ecology and evolution of bacterial microdiversity. FEMS Microbiol. Rev. 24: 647-660.
Schroll, R., U. Doerfler and I. Scheunert. 1999. Volatilization and mineralization of 14C-labeled pesticides on lysimeter surfaces. Chemosphere 39:595-602.
Scow, K. M., S. Simkins and M. Alexander. 1986. Kinetics of mineralization of organic compounds at low concentrations in soil. Appl. Environ. Microbiol. 51:1028-1035.
Scow, K. M., R. R. Merica and M. Alexander. 1990. Kinetics analysis of enchanced biodegradation of carbofuran. J. Agric. Food Chem. 38:908-912.
Sharma, R. and H. M. Mehta. 1989. Studies on pendimethalin and fluchloralin residues in soil and onion. Indian J. Agron. 34(2):245-247.
Shea, P. J. 1985. Detoxification of herbicide residues in soil. Weed Sci. 33(2):30-41.
Sheffield, V. C., D. R. Cox, L. S. Lerman, and R. M. Myers. 1989. Attachment of a 40-base-pair G+C-rich sequence (GC-clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. Proc. Natl. Acad. Sci. USA. 86:232-236.
Simkins, S. and M. Alexander. 1984. Models for mineralization kinetics with the variables of substrate concentration and population density. Appl. Environ. Microbiol. 47(6):1299-1306.
Simpson, K. 1986. Fertilizers and manures. pp.83-108. Longman Group Limited. New York.
Smith, A. E., A. J. Aubin and T. C. McIntosh. 1995. Field persistence studies with emulsifiable concentrate and granular formulations of the herbicide pendimethalin in saskatchewan. J. Agric. Food Chem. 43: 2988-2991.
Sommerfeldt, T. C. and C. Chang. 1985. Changes in soil properties under annual applications of feedlot manure and different tillage practices. Soil Sci. Soc. Am. J. 49:983-987.
Strandberg, M. and J. J. Scott-Fordsmand. 2004. Effects of pendimethalin at lower trophic levels-a review. Ecotoxicol. Environ. Saf. 57:190-201.
Stevenson, F. J. 1986. Cycles of soil: Carbon, nitrogen, phosphorus, sulfure, micronutrients. John Wiley & Sons, Inc., USA.
Steveninck, R. F. M. V. 1957. Factors affecting the abscission of reproductive organs in yellow lupins (Lupinus luteus L.). J. Exp. Bot. 8 (3):373-381.
Sumpter, J.P. 1999. Xenoendocrine disrupters - environmental impacts. Toxicol. Lett. 28:337-342.
Tomlin, C. D. S. 1997. The pesticide manual, 11th edition. British crop protection council.
Tomoya, M., N. Yasunori, M. Kazuo, I Makoto, A. Susumu, and K. Makoto. 2007. Bacterial community in plant residues in a Japanese paddy field estimated by RFLP and DGGE analyses. Soil Biol. Biochem. 39:463-472.
U.S. EPA. 1998. Endocrine disruptor screening and testing advisory committee. Final Report, August.
Undeg˘er, U., M. Schlumpf and W. Lichtensteiger. 2010. Effect of the herbicide pendimethalin on rat uterine weight and gene expression and in silico receptor binding analysis. Food. Chem. Toxicol. 48:502-508.
Wang, Q., W. Yang and W. Liu. 1999. Adsorption of acetanilide herbicides on soils and its correlation with soil properties. Pestic. Sci. 55:1103-1108.
Winding, A. K. 1994. Fingerprinting bacterial soil communities with BIOLOG microtiter plates. In Beyond the Biomass: Compositional and Functional Analysis of Soil Microbial Communities (K. Ritz, J. Dighton and K E. Giller Eds).pp. 85-94. Wiley, Chichester.
Zak, J. C., M. R. Willig, D. L. Moorhead and H. G. Wildman. 1994 Functional diversity of microbial communities: a quantitative approach. Soil. Biol. Biochem. 26:1101-l 108.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42520-
dc.description.abstract近年來農業耕作型態改變,綠肥作物被大量使用以取代部分化學肥料。因此本實驗目的即為探討添加常見的綠肥植物大波斯菊 (Cosmos bipinnatus) 及羽扇豆 (Lupinus luteus) 於不同土壤中對疑似環境荷爾蒙除草劑施得圃(Pendimethalin) 消散的影響,並觀察綠肥孵育過程中土壤菌相結構的變化。本實驗將羽扇豆與大波斯菊分別施用於pH 5.2的三坑子土系 (Sankengtzu, Sk) 及pH 7.7的二林土系 (Erhlin, Eh) 兩種試驗土中,並於孵育110天期間分別取樣並分析土壤中施得圃殘留量,以觀察綠肥對施得圃消散的影響。中性Eh土壤中添加羽扇豆、大波斯菊及未添加植體,施得圃半生期分別為 46.3, 52.6 及 34.8天;但在酸性Sk土壤中則分別為 49.0, 54.9 及 62.2天。此結果顯示酸性土壤環境下施得圃的消散情形較中性土壤環境中緩慢,但添加綠肥後則有助於酸性土中施得圃的消散。
土壤菌相結構變化則以Biolog EcoplateTM 及變性梯度電泳 (Denaturing gradient gel electrophoresis, DGGE) 檢視菌相的改變,並分別以主成分分析及UPGMA比較改變情形。結果發現,施得圃與綠肥的添加皆會使孵育初期的微生物族群改變且單純化;但經110天孵育後微生物族群會隨時間而互有消長,而使110天後的微生物族群與孵育初始產生明顯變化。添加綠肥處理下經孵育110天後微生物族群結構會與對照組相似,而有施得圃的施用則與對照組相似度較低;但羽扇豆添加於中性土中處理下,經孵育後有助於減輕施得圃對微生物族群的衝擊。因此,土壤pH及所添加綠肥性質的差異,皆為造成土壤菌相結構改變的原因。
zh_TW
dc.description.abstractGreen manure is primarily used in environmentally friendly agricultural practices to reduce the application of chemical fertilizer and herbicide. A widely used dinitroaniline herbicide, pendimethalin, was found to be the endocrine disrupting potential herbicide in recent studies. In this study, the cosmos (Cosmos bipinnatus) and lupin (Lupinus luteus) were amended in Sankengtzu (pH 5.2) and Erhlin (pH 7.7) series soil, respectively. The dissipation of pendimethalin in the soil was investigated and the effect of pendimethalin on soil bacterial community structure during the degradation periods was also studied. In the dissipation experiments, half-life of pendimethalin in Erhlin soil was 34.8 days. After amended the cosmos and lupin, the half-life of pendimethalin were 46.3 and 52.6 days. In Sankengtzu soil, the half-life of pendimehtalin increased to 62.2 days. After amended the cosmos and lupin, the half-life decreased to 49.0 and 54.9 days. The results revealed that the pendimethalin degradation process is more critical in Sankengtzu soil. The cosmos and lupin amended would be beneficial to degrade of pendimethalin in Sankengtzu soil.
The soil microbial community diversity has been discussed in terms of the genetic by using PCR-DGGE data and functional diversity by using the Biolog EcoplateTM. From the Ecoplate method, PCA analysis indicated that microbial communities were relatively close under the pendimethalin treatments for 24 hours, and the green manure treatments revealed the same effects. After incubated for 110 days, the microbial communities clearly differed from the initial communities (24 hours). This is also in agreement with the results of the DGGE methods. The microbial communities of the blank treatment were relatively close with the green manure treatment, but seperated after applied pendimethalin in 110 days. Morever, only the lupin treatment was not so influenced by pendimethalin in Erhlin soil. Therefore, the soil pH and green manure properties resulted in different effects to soil microbial community diversity.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:15:22Z (GMT). No. of bitstreams: 1
ntu-100-R98623021-1.pdf: 2770746 bytes, checksum: 5cd6f558441c4adfa5f48b4befe2fe75 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents中文摘要 I
Abstract II
目錄............ III
表次.......... V
圖次.......................... VI
一、前言 1
二、 文獻回顧 4
(一) 土壤環境與生態 4
(二) 施得圃的簡介 5
(三) 施得圃於農業的應用 8
(四) 施得圃之降解及對生物的影響 10
1. 施得圃的降解 10
2. 環境荷爾蒙 11
3. 雌性激素與抗雌性激素的作用機制 13
4. 環境荷爾蒙生物檢測法 15
5. 施得圃的內分泌干擾物質特性 17
(五) 植體添加對土壤中農藥降解的影響 19
1. 植物殘體在土壤中的分解過程 19
2. 有機質碳氮比對分解速率的影響 20
(六) 綠肥作物作為土壤有機添加物 21
1. 綠肥用途 21
2. 綠肥作物的種類介紹 22
(七) 研究相關分子生物技術 25
1. 16S rRNA 基因 (16S rRNA gene) 28
2. 聚合酶連鎖反應 (Polymerase chain reaction, PCR) 30
3. 變性梯度凝膠電泳 (Denaturing gradient gel electrophoresis, DGGE) 32
(八) Biolog EcoplateTM 36
三、 材料與方法 38
(一) 試驗材料及基本性質分析 38
1. 供試土壤樣品 38
2. 試驗植體採樣及基本性質 38
3. 土壤性質與供試綠肥特性分析 39
(二) 孵育試驗 43
(三) 施得圃的殘留量試驗 45
(四) 施得圃及植體添加對土壤菌相影響之研究 47
(五) 土壤微生物群落層級生理圖譜 (Community-level physiological profile) 影響之研究 55
四、 結果與討論 57
(一) 試驗土壤與添加植體之基本性質 57
1. 供試土壤的基本性質 57
2. 試驗植體之基本性質 59
(二) 施得圃的土壤回收率測定 61
(三) 施得圃於滅菌土壤中的消散 64
(四) 添加綠肥對施得圃在土壤中的消散的影響 66
1. 施得圃在土壤中消散的動力描述 66
2. 添加綠肥對施得圃在Eh土壤中消散的影響 69
3. 添加綠肥對Sk 土壤中施得圃消散的影響 72
(五) 孵育後期添加綠肥土壤的基本性質 74
(六) 添加綠肥及施得圃對土壤菌相的影響 78
1. 孵育初期兩種土壤間土壤菌相差異 79
2. 添加施得圃及兩種綠肥對兩種土壤菌相的影響 81
(1) 添加施得圃對土壤菌相的影響 81
(2) 孵育初期添加綠肥對土壤菌相的影響 81
3. 添加綠肥後施得圃在降解期間土壤菌相的變化 86
(1) 添加綠肥對Eh土壤中施得圃降解過程期間土壤菌相的影響 87
(2) 添加綠肥對Sk土壤中施得圃降解過程期間土壤菌相的影響 92
4. 添加綠肥孵育後對土壤菌相的影響 97
(1) Eh土中添加綠肥與施得圃對土壤微生物族群結構的影響 97
(2) Sk土中添加綠肥與施得圃對土壤微生物族群結構的影響 101
5. 土壤孵育前後添加綠肥對施用施得圃土壤中微生物活性的影響 104
五、 結論 106
參考文獻 107
dc.language.isozh-TW
dc.title添加植體對除草劑施得圃在土壤中的消散及土壤菌相的影響zh_TW
dc.titleEffects of amending plant materials on the dissipation of herbicide of herbicide pendimethalin in soil and its microbial communitiesen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王一雄,李國欽,張碧芬,劉秀美
dc.subject.keyword施得圃,綠肥,Biolog EcoplateTM,變性梯度凝膠電泳,zh_TW
dc.subject.keywordpendimethalin,green manure,Biolog EcoplateTM,PCR-DGGE,en
dc.relation.page112
dc.rights.note有償授權
dc.date.accepted2011-08-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
2.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved