請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42513
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 潘永寧教授 | |
dc.contributor.author | Chin-Hua Cheng | en |
dc.contributor.author | 鄭進華 | zh_TW |
dc.date.accessioned | 2021-06-15T01:15:13Z | - |
dc.date.available | 2009-07-30 | |
dc.date.copyright | 2009-07-30 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-28 | |
dc.identifier.citation | 1. C. R. Loper, M. J. Lalich and H. K. Park, “Microstructure-Mechanical Property Relationship in Compacted (Vermicular) Graphite Cast Iron,” The Proceedings to the 46th International Foundry Congress, Madrid, Spain, 1979.
2. Dawson, S; Schroeder, T., “Practical Applications for Compacted Graphite Iron,” AFS Trans., pp. 813-821, 2004. 3. M. G. Day, “Effect of Magnesium Additions on the Structure of Eutectic Graphite,” Bcira Journal, January, pp. 19-29, 1971. 4. N. N. Aleksandrov, et al., “Production and Properties of High Duty Iron with Compacted Graphite,” Russian Castings Production, pp. 319-321, 1976. 5. P. C. Liu, C.R. Loper, Jr., T. Kimura and E. N. Pan, “Observations on the Graphite Cast Iron,” AFS Trans., pp. 65-78, 1981. 6. 潘永寧,“耐高溫球狀石墨鑄鐵”,機械月刊,第10卷,第8期,第95~101頁,民國73年八月(1984)。 7. C. P. Cheng, S. M. Chen, T. S. Lui and L. H. Chen, “High-Temperature Deformation and Thermal Cranking of Ferritic Spheroidal Graphite Cast Iron,” Metallurigal and Material Trans. A, vol.28A, pp. 325-333, 1997. 8. 潘永寧 & C. R. Loper, Jr., “縮狀石墨鑄鐵石墨顯微組織,凝固形成理論,生產方法,品質管制,性能及其應用發展(一)”,鑄工36期, pp.16~25, 1983. 9. 潘永寧 & C. R. Loper, Jr., “縮狀石墨鑄鐵石墨顯微組織,凝固形成理論,生產方法,品質管制,性能及其應用發展(二)”,鑄工37期, pp.15-36, 1983. 10. Y. Gan, & C. R. Loper Jr., “Observations on the Formation of Graphite in the Compacted and Spheroidal Graphite Cast Iron,” AFS Trans., pp. 781-788, 1983. 11. 潘永寧,“薄壁縮狀石墨鑄鐵之研製”,鑄工45期, pp.1~16, 1985. 12. Chen, I., Martinez, F., Setfanescu, D., “Solidification Behavior of Hypoeutectic and Eutectic Compacted Graphite Cast Irons – Chilling Tendency and Eutectic Cells,” AFS Trans, pp. 205-216. 1983. 13. S. Charoenvilaisiri, D.M. Stefanescu, R. Ruxanda, T.S. Piwonka, “Thin Wall Compacted Graphite Iron Castings,” AFS Trans., pp. 1113-1130, 2002. 14. 陳輝國,“片狀石墨鑄鐵之耐熱性質研究”, 國立台灣大學機械所碩士論文,2000。 15. 魏瓞彰,“球狀石墨鑄鐵之耐熱性質研究”,國立台灣大學機械所碩士論文,2000。 16. 賴逸林,“石墨型態對鑄鐵耐熱性質之影響研究”, 國立台灣大學機械所碩士論文,2000。 17. 鐘明祥,“石墨型態與化學組成對於鑄鐵拘束型熱疲勞性質之影響研究”, 國立台灣大學機械所碩士論文,2001。 18. 張宏源,“薄壁球狀石墨鑄鐵之高溫熱疲勞性質研究”, 國立台灣大學機械所碩士論文,2008。 19. 財團法人中鋼集團教育基金會,鋼鐵材料設計與應用,中國礦冶工程學會。 20. 潘永寧 ,“鑄鐵的石墨形狀及成形理論之探討(一)”, 鑄工44期, pp.28~45, 1985. 21. 郝石堅,現代鑄鐵學,冶金工業出版社。 22. Charles F. Walton,Iron Castings Handbook,Iron Castings Society 23. I. Minkoff,The Physical Metallurgy of cast iron,WILEY 24. 中華民國國家標準,“縮狀石墨鑄鐵件”,總號14438,類號G3266。 25. 賴逸林,“縮墨鑄鐵材料應用”,鑄造科技187期,PP.8~14,2005. 26. 張中仇,李克銳,吳建基,“關於蠕墨鑄鐵標準的幾點看法”,現代鑄鐵,pp.20~25,2006. 27. 歐陽耀傳,邱春豐 ,“鑄鐵中石墨組織與機械性能之關係”,鑄工29期PP.45~59, 1985. 28. G.F.Sergeant and E. R. Evans., “The Production and Properties of Compacted Graphite Iron,” The British Foundry man, pp.115-124, 1978. 29. P. A. Green and A. J. Themas, “Production, Properties and Application of Compacted Graphite Iron,” AFS Trans., Vol. 87, pp.569-572, 1979. 30. 潘國桐、廖高宇 譯,“球墨鑄鐵手冊”,中華民國鑄造學會,1994。 31. R.W. Ressman and C. R. Loper, Jr., “Heavy Section Ductile Iron As Affected by Certain Processing Variables,” AFS Trans., vol. 75, pp.1-9, 1976. 32. S. I. Karsay and R. D. Schelleng., “Heavy Section Ductile Castings Composition Effect on Graphite Structure,” AFS Trans., vol. 69, pp.672-678,1961. 33. T. W. Parks, Jr. N. G. Berry, and C. R. Loper, Jr., “The Effect of Solidification Time and Section Size on the Mechanical Properties and Microstructure of High Carbon Ferrous Alloys,” AFS Trans., vol. 76, pp.565-572, 1968. 34. C. R. Loper and R. W. Heine., “Variables Influencing Graphitization and Carbon Flotation,” Gray Iron News, 1963. 35. D. H. Witney and C. R. Loper Jr., “Effect of the Use of Chills in Heavy Section Ductile Iron Castings,” AFS Trans., vol. 77, 1969. 36. Eugene C. Muratore, et al., “Development of Carbide Free Thin-Wall Ductile Iron Castings”, Proceedings of the 7th Asian Foundary Congress-Taipei, Taiwan, pp.153-167, 2001. 37. J. R. Drake, “Cast Irons for Future Diesel Engines,” Modern Casting, vol.72, no. 5, pp.46-47, 1982. 38. J. F. Janowak, R. B. Gundlach, G. T. Eldis and K. Rohrig, “Technical Advances in Cast Iron Metallurgy,” Int. Cast Met. J. , vol.6, No. 4, pp.28-42, 1981. 39. J. F.Janowal, J. D. Crawford and K. Rohrig, “Ferritic Nodular Iron for Elevated Temperature Service,” Casting Engineering/Foundry World, vol. 14, pp. 32-41, 1982. 40. 鄭子樵、李紅英,“稀土功能材料”,曉圓出版社 41. 徐君文&許春林,“稀土元素在鑄造合金中的應用(一)”,鑄工78期,pp.45~69, 1993. 42. 徐君文&許春林,“稀土元素在鑄造合金中的應用(二)”,鑄工79期,pp.28~44, 1993. 43. D. M. Stefanescu, R. C. Voigt and C. R. Loper, Jr.,“ The Importance of the Lanthanum/Rare Earth Ratio in the Production of Compacted Graphite Cast Irons,” AFS Trans., 1981. 44. R. D. Schelleng, “Effect of Certain Elements on the Form of Graphite in Cast Irons,” AFS Trans., Vol. 74, pp. 700-708, 1966. 45. 潘永寧譯,“鈦對於鑄鐵的影響”,鑄工50期,pp.33~41, 1987. 46. www.Sintercast.com 47. Dawson, J. V. ;Smith, L. W. L. and Bach, B. B.:BCIRA J. of Research and Development, V.4, June, pp.540, 1953. 48. Gumbinger, D. H. “Magnesium wire treatment for ductile irons,” Modern Castings., pp. 40~41, 1988. 49. Best, K. “The treatment of molten cast iron with magnesium treatment wire and inoculant wire for the series parts in nodular and compacted graphite irons,” Giesserei Mar., pp. 69~73, 1989. 50. M. J. Fallon,“Experiments on the treatment of compacted graphite iron,” Fundry Trade Journal, pp.34~38, 2004. 51. D. Sparkman, D. Kelley, M. Barstow, ‘‘Experience Production Compacted Graphite Cast irons by Sulfer Addition After Magnesium Treatment,’’ AFS Trans., Vol. 02-007, pp. 851-859, 2002. 52. 賴耿陽,特殊鑄鐵鑄物,復漢出版社 53. K. Rohrig, “Thermal Fatigue of Gray and Ductile Irons”, AFS Trans., vol.86, pp.75-88, 1978. 54. Y. J. Park, R. B. Gundlach, R. G. Thomas, “Thermal Fatigue Resistance of Gray and Compacted Graphite Irons”, AFS Trans.,vol.93, pp.415-422, 1985. 55. Y. J. Park, R. B. Gundlach and J. F. Janowak, “Effects of Molybdenum on Thermal Fatigue Resistance of Ductile and Compacted Graphite Irons”, AFS Trans.,vol.95, pp.267-272, 1987. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42513 | - |
dc.description.abstract | 本研究的主要目的為建立薄壁縮墨鑄鐵之鑄造技術,鑄件之厚度標的為2~3mm,研究上探討一些相關製程及冶金參數對於顯微組織(包含縮化率、石墨數目、肥粒鐵、波來鐵、碳化物)以及熱疲勞性質之影響,以期獲致優良薄壁縮墨鑄鐵之最佳製程參數條件。
實驗結果顯示,欲得到有效的縮化處理,需將含縮化劑之鐵罐壓扁,並固定於澆斗底部,以避免澆鑄時上浮,如此可避免縮化不完全及不良石墨型態出現。在固定C(2.88%)及Si(5.0%)成分下,縮化劑處理量在0.3%應可得到縮狀石墨鑄鐵。 在相同C、Si含量下,2mm鑄件之石墨數目均高於3mm鑄件,對於縮化率而言,其3mm鑄件之縮化率均高於2mm鑄件。改變造模材料(化學模、濕砂模),對於石墨數目與縮化率之影響不大。在固定C(3.0%)及處理條件下(縮化劑0.3%、接種劑0.15%),對任一厚度、造模材料而言,石墨數目及肥粒鐵量均隨Si含量之增加而逐漸增加,在約4.6%Si達到最高值。在相同Si含量下,影響肥粒鐵量的參數以鑄件厚度最大,造模材料次之。 在固定Si(3.0%)時,縮化劑種類對於石墨數目、肥粒鐵之影響而言,以含Ti縮化劑處理時,會明顯降低鑄件斷面敏感度,且以含Ti縮化劑處理之鑄件其石墨數目及肥粒鐵均高於以鎂-稀土縮化劑處理之鑄件。 熱疲勞試驗之結果顯示,在固定C、Si成分及縮化率條件下,若肥粒鐵及石墨數目差異不大,熱疲勞次數隨肥粒鐵及石墨數目之增加而增加,但石墨數目與肥粒鐵差異大時,則兩者對於熱疲勞性質呈現交互影響。又,將石墨數目及肥粒鐵固定後,其熱疲勞次數隨縮化率之增加而增加,超過一定值以後則顯著降低。 在固定C(3.0%)及處理條件(縮化劑0.3%、接種劑0.15%)之條件下(No.11.12.13),熱疲勞次數隨Si含量之增加而增加,且其變化趨勢與石墨數目及肥粒鐵對Si量之變化趨勢一致,但對於縮化率而言並無明確的相關。此外,添加約0.5% Mo,對於任一鑄件厚度、造模材料而言,皆明顯提昇熱疲勞性質。 由熱疲勞裂紋之SEM觀察,可以發現二次石墨氧化燒失而形成之空孔,使晶界強度減弱,應力容易集中。另,裂紋形成後,在裂紋界面容易氧化,高溫下氧化層與基材間之結合力減弱,造成氧化層與金屬基地分離,產生氧化起皮現象。 | zh_TW |
dc.description.abstract | The primary purpose of this research is to establish the optimal conditions for the production of thin-section (2∼3 mm) compacted graphite cast irons for high temperature applications (up to 800℃). Experimentally, the microstructures (include vermicularity, graphite count, and matrix structure) and thermal fatigue property will be evaluated and correlated with alloy design and casting parameters, such as section size and molding material.
The results show that, for a fixed C content of some 2.88% and Si content of some 5.0%, an addition of about 0.3% compactizing alloys can attain compacted graphite structure. Regarding the effects of casting parameters on microstructure, the results show that for fixed C and Si contents higher graphite counts can be obtained in castings with a thinner section, while, higher vermicularity can be obtained in castings with a thicker section. However, the effect of molding material on graphite count and vermicularity are not significant. For a fixed C content (3.0%) and treatment conditions (compactizer 0.3%、inoculant 0.15%), both the %ferrite and graphite count increase with increasing Si content, reach maxima at around 4.6% Si. The result about thermal fatigue show that, for fixed C and Si content and vermicularity, thermal fatigue cycles to failure increases with increasing %ferrite and graphite count. Further, under the conditions of fixed graphite count and ferrite content, thermal fatigue cycle increases first with increasing vermicularity, reaches maximum, and then decreases with further increases in vermicularity. Fixed C content of 3.0% and constant treatment conditions (compactizer 0.3%, inoculant 0.15%), the thermal fatigue cycle increases with increasing Si content. Similar trends have also been obtained for graphite count and %ferrite. Furthermore, adding some 0.5% Mo can significantly increase thermal fatigue cycles to failure. Finally, the fracture mechanism during the thermal fatigue test had also been assessed in this study. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T01:15:13Z (GMT). No. of bitstreams: 1 ntu-98-R96522726-1.pdf: 7557992 bytes, checksum: 6d45ffae2182aa87e31d0d450702dbac (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 目 錄
口試委員會審定書............................................................................................................i 誌 謝...................................................................................................................................ii 中文摘要..........................................................................................................................iii 英文摘要...........................................................................................................................v 第一章 緒論.............................................................................................................1 1.1 前言..................................................................................................................1 第二章 文獻回顧.....................................................................................................4 2.1 Fe-C二元系統相圖..........................................................................................4 2.1.1鋼的凝固機制-准穩定平衡相圖...............................................................4 2.1.2鑄鐵的凝固機制-穩定平衡相圖...............................................................5 2.1.3共晶碳化物的形成.....................................................................................5 2.2 縮墨鑄鐵的石墨型態......................................................................................6 2.2.1縮墨鑄鐵的縮化率評定.............................................................................7 2.3 縮狀石墨鑄鐵之性能......................................................................................7 2.3.1抗拉性質.....................................................................................................7 2.3.2熱傳導性質.................................................................................................8 2.3.3熱疲勞性質.................................................................................................8 2.4 化學成分對薄件縮墨鑄鐵顯微組織之影響..................................................8 2.4.1碳當量與矽元素含量.................................................................................8 2.5 縮化劑..............................................................................................................9 2.5.1稀土元素之影響.........................................................................................9 2.5.2鈦元素之影響...........................................................................................10 2.6 製程參數對薄件縮墨鑄鐵顯微組織之影響................................................10 2.6.1縮化處理...................................................................................................10 2.6.2接種處理...................................................................................................12 2.7 耐熱鑄鐵在高溫應用時之性質要求............................................................12 2.7.1 高矽耐熱鑄鐵.........................................................................................13 第三章 實驗目的與方法.......................................................................................25 3.1 實驗目的........................................................................................................25 3.2 實驗設計........................................................................................................25 3.2.1 鑄造流程.................................................................................................25 3.2.2 模型設計.................................................................................................26 3.2.3 造模材料種類.........................................................................................26 3.2.4 熔液處理及澆鑄.....................................................................................27 3.2.5 金相顯微組織之觀察與影像分析.........................................................27 3.2.6 縮化率的評定方式.................................................................................27 3.3 耐熱疲勞性質測試........................................................................................27 第四章 結果與討論...............................................................................................35 4.1 縮化及接種處理對顯微組織的影響............................................................35 4.1.1 在固定接種劑(0.3%)之條件下,不同縮化劑添加量(縮化劑A)之影響.............................................................................................................35 4.2 在固定處理條件(縮化劑0.3%、接種劑0.15%)下,不同Si含量之影響......37 4.3 在固定製程條件下,不同縮化劑(縮化劑B,含鈦)之影響.........................39 4.4 參數對於熱疲勞性質之影響........................................................................40 4.4.1縮化率對於熱疲勞性質之影響...............................................................40 4.4.2 Si含量對於熱疲勞性質之影響..............................................................42 4.4.3添加Mo之影響........................................................................................43 4.5 SEM觀察........................................................................................................44 4.5.1熱循環裂紋生長觀察...............................................................................44 第五章 結論...........................................................................................................77 附 表...............................................................................................................................79 參 考 文 獻...................................................................................................................81 表 目 錄 Table 3-1 Alloy desine and treatment..............................................................................29 Table 3-2 Chemical analyses of all heats (mass %)........................................................29 Table 3-3 Chemical compositions of charge materials (mass %)..................................30 Table 3-4 Chemical compositions of treating alloys (mass %)......................................30 圖 目 錄 Fig. 1-1. 不同石墨型態之二D顯微組織。......................................................................3 Fig. 1-2. 縮狀石墨在SEM觀察下之3D顯微組織。......................................................3 Fig. 2-1. Fe-C diagram....................................................................................................14 Fig. 2-2. Eutectic region for the stable and metastable reactions....................................14 Fig. 2-3. Solidification Cooling Curve Representing Conditions for White Iron...........15 Fig. 2-4. Typical Solidification Cooling Curve for Hypoeutectic Gray Iron……...…...15 Fig. 2-5. Solidification Cooling Curve Representing Conditions for Mottle in a Poorly Nucleated and/or Rapidly Cooled Iron............................................................16 Fig. 2-6. Solidification Cooling Curve Representing Conditions for the Formation of Intercellular Carbides......................................................................................16 Fig. 2-7. The morphology of compacted graphite……...………………………….....17 Fig. 2-8. The seven types of graphite as established by ASTM Specification A-247.....18 Fig. 2-9. According to Iron and Steel Examination Chart 1560-57……………....….18 Fig. 2-10. According to CNS 14438-G3266………………………...……………….…19 Fig. 2-11. The influence of carbon equivalent on the tensile strength of gray、ductile and compacted graphite irons.................................................................................20 Fig. 2-12. The thermal conductivity of different cast iron from 100℃ to 500℃..........20 Fig. 2-13. The number of thermal (293K~923K) cycles to produce thermal fatigue cracking in various cast irons..........................................................................21 Fig. 2-14. The required C.E. values for different section thicknesses to prevent carbide formation.....................................................................................................22 Fig. 2-15. Small variations of Mg content (0.012 ± 0.005%) lead to significant changes of microstructure..........................................................................................22 Fig. 2-16. Correlation between residual Mg content of cast iron and microstructure. (b) Using combination of Mg, Ce, and Ti.........................................................23 Fig. 2-17. Cored Wire apparatus.....................................................................................23 Fig. 2-18. The Sintercast Process is integrated into the foundry production route.........24 Fig. 2-19. The sensitivity of compacted graphite iron to both magnesium and inoculant..........................................................................................................24 Fig. 3-1. The flow chart of compacted graphite cast iron production..........................31 Fig. 3-2. Pattern drsign,(a) 2mm-plate pattern:2×60×250 mm,(b) 3mm-plate pattern:3×60×300 mm...................................................................................................32 Fig. 3-3. The flow chart of the treatment process............................................................32 Fig. 3-4. The positions of specimens for microstructure analysis and thermal fatigue test.....................................................................................................................33 Fig. 3-5. An example of the specimen code....................................................................33 Fig. 3-6. Dimensoins of thermal fatigue test specimens..................................................34 Fig. 3-7. (a) Schemetic drawing for thermal fatigue test apparatus, (b) Photo of the thermal fatigue test apparatus..........................................................................34 Fig. 4-1. 爐次3縮化劑(0.4%)上浮(縮化劑過量)之鑄件顯微組織(化學模)。...............................................................................................................46 Fig. 4-2. 爐次3縮化劑(0.4%)上浮之鑄件顯微組織(濕砂模)。......................... 47 Fig. 4-3. 縮化劑上浮至熔液表面。................................................................................48 Fig. 4-4. 縮化處理不足之金相照片(爐次5)。.............................................................48 Fig. 4-5. 在固定0.3%接種劑之條件下,縮化劑處理量對於化學模2mm鑄件之石墨數目及肥粒鐵量之影響(括弧內之數字表示縮化劑添加量)。...............49 Fig. 4-6. 在固定0.3% 接種劑之條件下,縮化劑處理量對於化學模3mm之石墨數 目及肥粒鐵量之影響(括弧內之數字表示縮化劑添加量)。.......................49 Fig. 4-7. 不同縮化劑處理量及鑄件厚度之化學模鑄件顯微組織。............................50 Fig. 4-8. 在固定0.3%接種劑之條件下,縮化劑處理量對於濕砂模2mm之石墨數目及肥粒鐵量之影響(括弧內之數字表示縮化劑添加量)。.......................51 Fig. 4-9. 在固定0.3%接種劑之條件下,縮化劑處理量對於濕砂模3mm之石墨數目及肥粒鐵量之影響(括弧內之數字表示縮化劑添加量)。.....................51 Fig. 4-10. 不同縮化劑處理量及鑄件厚度之濕砂模顯微組織。..................................52 Fig. 4-11. 2mm鑄件之石墨數目較3mm鑄件高約12∼17%。....................................53 Fig. 4-12. 在固定製程條件(縮化劑0.3%、接種劑0.15%)下,Si含量對於化學模2mm之石墨數目及肥粒鐵量之影響。(括弧中之數字代表Si含量)....54 Fig. 4-13. 在固定製程條件(縮化劑0.3%、接種劑0.15%)下,Si含量對於化學模3mm之石墨數目及肥粒鐵量之影響。(括弧中之數字代表Si含量)。.............................................................................................................54 Fig. 4-14. 在固定製程條件下(縮化劑0.3%、接種劑0.15%),不同Si含量化學模鑄件之金相照片。.............................................................................................55 Fig. 4-15. 在相同造模材料下(化學模)不同鑄件厚度(2mm & 3mm)之縮化率比較。.................................................................................................................56 Fig. 4-16. 在固定製程條件(縮化劑0.3%、接種劑0.15%)下,Si含量對於濕砂模2mm之石墨數目及肥粒鐵量之影響。.........................................................56 Fig. 4-17. 在固定製程條件(縮化劑0.3%、接種劑0.15%)下,Si含量對於濕砂模3mm之石墨數目及肥粒鐵量之影響。.........................................................57 Fig. 4-18. 在相同造模材料下(濕砂模)不同鑄件厚度(2mm & 3mm)之縮化率比較。.................................................................................................................57 Fig. 4-19. 在固定製程條件(縮化劑0.3%、接種劑0.15%)下,不同Si含量濕砂模鑄件之金相照片。.............................................................................................58 Fig. 4-20. 以含鈦縮化劑處理之金相照片(爐次10)。..................................................59 Fig. 4-21. 不同縮化劑種類對於2mm及3mm化學模鑄件之石墨數目的影響。.......59 Fig. 4-22. 不同縮化劑種類對於2mm及3mm濕砂模鑄件之石墨數目的影響。.......60 Fig. 4-23. 不同縮化劑種類對於2mm及3mm化學模鑄件之肥粒鐵量的影響。.......60 Fig. 4-24. 不同縮化劑種類對於濕砂模2mm、3mm鑄件肥粒鐵量之影響。..............61 Fig. 4-25. 在固定縮化率(15%)及化學成分(C、Si)含量下,3mm之化學模,基地組織(石墨數目、肥粒鐵量)與熱疲勞性質之關係。...................................61 Fig. 4-26. 在固定縮化率(18.5%)及化學成分(C、Si)含量下,3mm之濕砂模,基地組織(石墨數目、肥粒鐵量)與熱疲勞之關係。.......................................62 Fig. 4-27. 在固定縮化率及化學成分(C、Si)含量下,2mm之濕砂模,基地組織(石墨數目、肥粒鐵量)與熱疲勞之關係。.................................................62 Fig. 4-28. 在固定縮化率(14.2%)及化學成分(C、Si)含量下,3mm之濕砂模,基地組織(石墨數目、肥粒鐵量)與熱疲勞之關係。.......................................63 Fig. 4-29. 在固定石墨數目(1400 #/mm2)、肥粒鐵量(94%)下,其熱疲勞次數與縮化率之關係。.........................................................................................63 Fig. 4-30. 在固定石墨數目(1160 #/mm2)及肥粒鐵量(97.1%)下,其熱疲勞次數與縮化率之關係。.....................................................................................64 Fig. 4-31. 在固定石墨數目(1280 #/mm2)及肥粒鐵量(96.5%)下,其熱疲勞次數與縮化率之關係。.....................................................................................64 Fig. 4-32. 在固定石墨數目(790 #/mm2)、肥粒鐵量(94%)下,其熱疲勞次數與縮化率之關係。.........................................................................................65 Fig. 4-33. 在固定C(3.0%)條件下,2mm之濕砂模,不同Si含量對熱疲勞壽命之影響。.................................................................................................................65 Fig. 4-34. 在固定C(3.0%)條件下,3mm之濕砂模,不同Si含量對熱疲勞壽命之影響...............................................................................................66 Fig. 4-35. 在固定C(3.0%)條件下,2mm之化學模,不同Si含量對熱疲勞壽命之影響...................................................................................................................66 Fig. 4-36. 在固定C(3.0%)條件下,3mm之化學模,不同Si含量對熱疲勞壽命之影響。 ...............................................................................................................67 Fig. 4-37. 爐次15(添加0.5%Mo)與1~14各爐次試片比較。.....................................67 Fig. 4-38. 一般鑄件其熱應力與溫度隨時間的變化,其殘留拉應力增加幅度較大。.................................................................................................................68 Fig. 4-39. 鑄件(加Mo)其殘留拉應力增加幅度小。................................................68 Fig. 4-40. 片狀石墨之生長模式。 ................................................................................69 Fig. 4-41. 球狀石墨之生長模式。 ................................................................................69 Fig. 4-42. 縮狀石墨之生長模式。..................................................................................69 Fig. 4-43. (a)爐次6化學模2mm鑄件, (b) a之放大圖..................................................70 Fig. 4-44. 爐次14化學模3mm鑄件(14C3)..................................................................71 Fig. 4-45. 石墨沿A軸方向生長。..................................................................................72 Fig. 4-46. 熱斷後6C2之試片二次石墨,在高溫下氧化逸失造成空孔。....................73 Fig. 4-47. 裂紋表面產生之氧化起皮現象。..................................................................74 Fig. 4-48. 裂紋之周圍氧化形成一氧化層。..................................................................75 Fig. 4-49. EDAX 分析...................................................................................................76 | |
dc.language.iso | zh-TW | |
dc.title | 薄壁縮狀石墨鑄鐵之高溫熱疲勞性質研究 | zh_TW |
dc.title | Study on the High Temperature Thermal Fatigue Property of Thin-Section Compacted Graphite
Cast Iron | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 許正勳教授,楊榮顯副教授 | |
dc.subject.keyword | 薄壁縮墨鑄鐵,石墨數目,縮化率,肥粒鐵,熱疲勞性質, | zh_TW |
dc.subject.keyword | thin-section compacted graphite cast iron, graphite count, vermicularity, thermal fatigue property, secondary graphite., | en |
dc.relation.page | 85 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-28 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 7.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。