請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42488完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄧茂華(Mao-Hua Teng) | |
| dc.contributor.author | Li-Ying Chen | en |
| dc.contributor.author | 陳俐穎 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:14:42Z | - |
| dc.date.available | 2009-07-31 | |
| dc.date.copyright | 2009-07-31 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-28 | |
| dc.identifier.citation | 1.R. W. Luth (1993) 'Diamonds, Eclogites, and the Oxidation State of the Earth's Mantle,' Science, vol. 261, p.66-68
2.S. S. Schmidberger and D. Francis. (1999) 'Nature of the Mantle Roots Beneath the North American Craton: Mantle Xenolith Evidence From Somerset Island Kimberlites,' Lithos, vol. 48, p.195–216. 3.Kozai, M. and Yaoko Arima (2005) 'Diamond Dissolution Rates in Kimberlitic Melts at 1300-1500 °C in the Graphite Stability Field,' European Journal of Mineralogy, vol. 20, no. 3, p. 357-364. 4.T. Tanaka, S. Esaki, K. Nishida, T. Nakajima and K. Ueno (2004) 'Development and Application of Porous Vitrified-bonded Wheel with Ultra-fine Diamond Abrasives,' Key Engineering Materials, 257, p.251. 5.C. Portet, G. Yushin and Y. Gogotsi (2007) 'Electrochemical Performance of Carbon Onions, Nanodiamonds, Carbon Black and Multiwalled Nanotubes in Electrical Double Layer Capacitors,' Carbon , vol. 45, p.2511-2518. 6.T.S. Huang, Y. Tzeng, Y.K. Liu, Y.C. Chen, K.R. Walker, R. Guntupalli and C. Liu (2004) 'Immobilization of Antibodies and Bacterial Binding on Nanodiamond and Carbon Nanotubes for Biosensor Applications,' Diamond and Related Mateials, vol. 13, p.1098-1102. 7.A. Hirata, M. Igarashi and T. Kaito(2004) 'Study on Solid Lubricant Properties of Carbon Onions Produced by Heat Treatment of Diamond Clusters or Particles,' Tribology International, 37 p.899-905. 8.J.L. Davidson and D.T. Bradshaw 'Compositions with Nano-particle Size Conductive Material Powder and Methods of Using Same for Transferring Heat between a Heat Source and a Heat Sink,' U.S. Patent, No. 6,858,157 9.T. Evans and C. Phaal (1962) 'The Kinetics of The Diamond-oxygen Reaction,' Proceedins of the fifth Biennial Conference on Carbon, 7, p.147-153. 10.A.P. Rudenko, I.I. Kulakova and V.L. Shturman (1979) 'Oxidation of Natural Diamond,' Novye Dannye O mineralogii SSSR, p.105-125 11.Chang Q Sun, H Xie, W Zhang, H Ye and P Hing (2000) 'Preferential Oxidation of Diamond {111},' Journal of Physics D: Applied Physics, vol. 33, p.2196-2199. 12.Avarami, M. (1941) 'Granulation, Phase Change, and Microstructure- Kinetics of Phase Change. III,' Journal of Chemical Physics, vol. 9, issue 2, p177-184. 13.Avrami, M. (1939) 'Kinetics of Phase Change. I,' Journal of Chemical Physics , vol. 7, p.1103-1112. 14.Avrami, M. (1940) 'Kinetics of Phase Change. II.' Journal of Chemical Physics, vol. 8, p.212-224 15.梁家豪 (2003) 三種分析反應動力學及燒結資料的新方法。國立台灣大學地質科學研究所碩士論文,共159頁。 16.陳孟霞 (2004) 主導曲線模型運用在奈米氧化鋁和奈米二氧化鈦陶瓷粉末燒結之研究。國立台灣大學地質科學研究所碩士論文,共95頁。. 17.林書弘 (2007) 蒸發岩礦物熱分解反應動力學之研究方法與應用探討。國立台灣大學地質科學研究所碩士論文,共119頁。 18.Yana Fedortchouk1, Dante Canil1 and Elena Semenets (2007), 'Mechanisms of Diamond Oxidation and Their Bearing on The Fluid Composition in Kimberlite,' American Mineralogist v. 92, no. 7, p.1200-1212. 19.張宏福 (1990) '上地幔的氣逸度與金剛石的成因,' 地質科技情報, vol. 9, no. 1, p.9-15. 20.C. V. Raman (1957) 'The Heat Capacity of Diamond Between 0 and 1000 K,' Proceedings of the Indian Academy of Science, vol. 46, no. 5, p. 323-332. 21.Field, J. E. (1993) 'The Properties of Natural and Synthetic Diamond,' Uspekhi Fizicheskikh Nauk, vol. 163, p.99-101. 22.A. Joshi, R. Nimmagadda, and J. Herrington (1990) 'Oxidation Kinetics of Diamond, Graphite, and Chemical Vapor Deposited Diamond Films by Thermal Gravimetry,' The Journal of Vacuum Science and Technology A, vol. 8, issue 3, p. 2137-2142. 23.C. Z. Wang, K. M. Ho, M. D. Shirk, and P. A. Molian (2000) 'Laser-induced Graphitization on a Diamond (111) Surface,' Physical review letters, vol.85, p.4092-4095. 24.Guohua Zhao, Shihao Shen, Mingfang Li, Meifen Wu, Tongcheng Cao and Dongming Li (2008) 'The Mechanism and Kinetics of Ultrasound-enhanced Electrochemical Oxidationof Phenol on Boron-doped Diamond and Pt Electrodes,' Chemosphere, vol.73, no. 9, p.1407-1413. 25.O.M. Kuttel, R.G. Agostino, a, R. Fasel, J. Osterwalder and L. Schlapbach (1994) 'X-ray Photoelectron and Auger Electron Diffraction Study of Diamond and Graphite Surfaces,' Surface Science Letters, vol. 312, p. 131-142. 26.H. P. Bovenkerk, F. P. Bundy, H. T. Hall, H. M. Strong and R. H. Wentorf (1959) 'Preparation of Diamond,' Nature, vol. 184, p.1094-1098. 27.戴智偉 (2004) 鑽石單晶與鑽石薄膜氧化行為之探討。國立臺北科技大學材料及資源工程系碩士論文,共 99頁。 28.John P., Polwart N. Troupe C. E. and Wilson J.I. (2002) 'The Oxidation of (100) Textured Diamond,' Diamond and Related Materials, vol. 11, p.861-866. 29.De Theije F. K., Van Veenendaal E., Van Enckevort W. J. P. and Vlieg E. (2001) 'Oxidative Etching of Cleaved Synthetic Diamond Surfaces,' Surface Science Letters, vol. 492, p.91-105. 30.Rao R. Nimmagadda, A. Joshi and W. L. Hsu (1990) 'Role of Microstructure on the Oxidation Behavior of Microwave Plasma Synthesized Diamond and Diamond-like Carbon Films,' Journal of Materials Research, vol. 5, no. 11, p.2445-2450. 31.M. Alam and Q. Sun (1993) 'The Kinetics of Chemical Vapor Deposited Diamond-oxygen Reaction,' Journal of Materials Research, vol. 8, p.2870-2878. 32.Jae-Kap Lee, Michael W. Anderson, and Fraser A. Gray (2006) 'Explosive Oxidation of HPHT Diamond Particles,' Diamond and Related Materials, vol. 15, p.1206-1209 33.Jae-Kap Lee, Michae W. Anderson, Fraser A. Gray, Phillip John, Jin-Yu Lee, Young-Joon Baik and Kwang Young Eun (2004) 'Oxidation of CVD Diamond Powders,' Diamond and Related Materials, vol. 13, p.1070-1074. 34.宋健民 (2000) 鑽石合成, 全華科技發行. 35.宋健民 (2008) 鑽石爭霸戰(一):金剛石的世界大戰, 全華科技發行. 36.宋健民 (2008) 鑽石爭霸戰(二):金剛石的世界大戰, 全華科技發行. 37.杜逸虹 (2003) 熱化學,物理化學第七章。三民書局發行,p.149-167。 38.H. E. Kissinger (1956) 'Variation of Peak Temperature With Heating Rate in Differential Thermal Analysis,' Jourmal of Research of the National Bureau of Standards, vol. 57, no. 4, p.218-221. 39.H. E. Kissinger (1957) 'Reaction Kinetics in Differential Thermal Analysis,' Analstical Chemistry vol. 29, p.1702-1706. 40.Ozawa, T. (1965) 'A New Method of Analyzing Thermogravimetric Data,' Bulletin of the Chemical Society of Japan, vol. 38, no. 11, p.1881-1886. 41.王進威 (2006) 擬合X光繞射峰形判定奈米微粒粉末的粒徑分佈。國立中央大學物理研究所。 42.吳南均 (1998) X光粉末繞射儀,材料分析第三章,汪建民主編。中國材料學會發行,p. 47-72。 43.林泗賓 (2003) X-光射線繞射及螢光分析, 實用儀器分析第十九章,王明光、王敏昭聯合編著。和記書局發行,p.125-160。 44.鄧茂華(2003)比表面積,實用儀器分析第五章,王明光、王敏昭聯合編著。和記書局發行,p.125-160。 45.S. Diamond (1970) 'Pore Size Distributions in Clays,' Clays and Clay Minerals, vol. 18, p.7-23. 46.R. J. Good (1982) 'The Contact Angle in Mercury Intrusion Porosimetry,' Powder Technology, vol. 29, p.53 - 62. 47.E. W. Washburn (1921) 'Note on a Method of Determining the Distribution of Pore sizes in a porous material,' Proceedings of the National Academy of Sciences of the United States of America, vol. 7, p.115-116 48.T. Ozawa (2000) 'Thermal Analysis-review and Prospect,' Thermochimica Acta, vol. 355, no.1, p.35-42. 49.鄭淑芬 (2003) 熱分析儀,實用儀器分析第八章。國立編譯館發行,p.215-236。 50.李源弘 (1998) 熱分析,材料分析第二十章。中國材料學會發行,p.553-612。 51.Neeft J. P. A., Hoornaert F., Makkee M. and Moulijn J. A. (1996). 'The Effects of Heat and Mass Transfer in Thermogravimetrical Analysis.A Case Study Towards the Catalytic Oxidation of Soot,' Thermochimica Acta, vol. 287, p.261-278. 52.黃坤祥 (2003) 燒結製成,粉末冶金學第七章。中華民國粉末冶金協會,p.192。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42488 | - |
| dc.description.abstract | 珍貴且生成環境特殊的鑽石在基礎礦物學、岩石學與反應動力學領域中是相當受重視的研究課題。本研究藉熱重分析實驗數據觀察不同粒徑之鑽石氧化反應變化,以及利用動力學模型-主導曲線模型(Master Curve Model, MCM)與Avrami Equation分析,嘗試擬合出各反應之主導曲線以描述其反應過程之溫度、時間與反應歷程。更以主導曲線數據建立不同粒徑的鑽石氧化反應之反應量與溫度時間的定量關係。
實驗設計上可分為三部分,首先針對各不同粒徑之鑽石粉末以X光粉末繞射儀(XRD)確認其成分,使用掃描式電子顯微鏡(SEM)觀察鑽石表面並檢視鑽石顆粒尺寸的粒徑分佈。並利用BET法量測各不同鑽石粉末隨氧化程度而改變之比表面積;第二部分以熱重分析儀(TGA)進行等溫的鑽石氧化反應實驗。第三部分利用MCM與Avrami方程式擬合熱重分析所得到的反應數據。進一步以MCM所分析的主導曲線建立不同粒徑之鑽石氧化反應量、溫度與時間關係。並將TGA實驗結果與TGA模擬結果作比較,探討控制氧化反應之因素與其反應機制。 從研究結果得知,未分析出歷經加熱過程後按鑽石氧化反應機制假說中可能出現的石墨;由SEM觀察結果,觀察到鑽石氧化初步的表面變化因氧化晶面偏好性、表面缺陷與弱鍵結而有不同形貌之表面。但隨著氧化程度越來越高,其顆粒邊界鈍化,鑽石隨著氧化反應不斷縮小粒徑。藉由探討奈米鑽石團聚的情形與針對氧化反應放出的反應熱進行實驗校正,即可以MCM擬合不同粒徑之鑽石氧化反應結果,並且得到良好之主導曲線。但因整體反應放熱致使溫度不穩定,而無法以Avrami方程式得到良好的結果。另一方面,從MCM之推導原理看來它無法辨別反應機制,但依MCM所得之反應視活化能176.3-272.0 kJ/mol與其他相關研究之反應活化能相近,則很可能指向鑽石氧化反應為單一機制。再加上,TGA顯示重量隨時間和溫度變化的單一路徑與XRD未發現石墨的出現,初步排除鑽石氧化反應機制是由鑽石相變為石墨而後轉為二氧化碳的機制。綜合各定量分析與MCM的良好的擬合結果,進而推論鑽石氧化反應機制應由單一機制所主導,鑽石氧化是由氧氣直接與鑽石之表面碳原子結合形成二氧化碳。 | zh_TW |
| dc.description.abstract | Many studies have discussed the kinetic processes and the mechanism of diamond oxidation; however, there is no convincible theory concerning the reaction mechanism. Moreover, kinetic studies on the oxidation of nano-sized diamond are still lacking. The novelty of this work lies in the fact that we confirmed the mechanism of diamond oxidation controlled by one single mechanism.
The research consists of three parts: First is to verify diamond powders crystal phases and purities by X-ray diffractometer (XRD). Observation of the morphology and size distribution of diamond powders is confirmed by scanning electron microscope (SEM). We also use mercury intrusion porosimetry (MIP) equipment to analyze the porosity of the diamond powder aggregates. Moreover, we obtained the specific surface area of diamond powder by BET method. Second is to oxidize a series of diamond powders by thermal gravitometry analyser (TGA) at isothermal conditions. Third is to analyze the weight loss data by kinetic models: Avrami equation and Master Curve Model (MCM). In conclusion, the composition of graphite was not detected by XRD. The fact that diamond oxidation starts from the edge, defect and dislocation was observed by SEM. By the MCM results, we can obtain good fitting curves presenting the relation between reaction percentage, time and temperature. The apparent activation energy of different sized diamond oxidation is around 176.3-272.0 kJ/mol. By XRD and MCM results, diamond oxidation is only controlled by one single mechanism that diamond oxidized by the oxygen directly and without the transformation of graphite. The study of diamond oxidation behaviors may have significant impact on all of the nanotechnology industries, as well as on basic science. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:14:42Z (GMT). No. of bitstreams: 1 ntu-98-R96224211-1.pdf: 4584263 bytes, checksum: aaffc8aecee056feb9534c60c92ee127 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 目錄
誌謝............................ i 中文摘要 …….……………………...……………………ii Abstract ………………………………………………………… iii 目錄 ………………………………..…………………………iv 附錄目錄 …………………………………………………………vi 圖目錄 ………………………….……………………………… vi 表目錄 …………………….…………………………………… xiv 參數符號對照表…….……………………………………… xv 第一章 緒論 1.1 前言 ….........………………………... 1 1.2 研究目的 ……………………………….……………... 2 1.3 研究方法 ………………………………….…………... 2 1.4 論文大綱 ………………………………….…………... 4 第二章 文獻回顧 2.1 鑽石氧化反應……………………..………………. 5 2.2 可能影響鑽石氧化反應之因素…………………... 10 2.3 化學動力學簡介 …………........... 13 2.4 Avrami方程式理論推導……………….……….... 14 2.5 主導曲線模型的理論推導…...………....... 15 第三章 研究步驟與分析方法 3.1 研究步驟與流程 ……………………………… 18 3.2 重要儀器配合使用 …....…………………….… 21 3.3 鑽石樣本準備 …….………………………………..25 3.4 鑽石氧化反應實驗 ………………………………... 26 3.5 實驗儀器與校正溫度的影響…………….………... 29 3.6 動力學模型分析 ……………………………..…. 31 第四章 實驗結果與討論 4.1 不同尺寸鑽石粉定量分析結果與討論……..……33 4.2 不同粒徑鑽石氧化反應之結果 ……………..…47 4.3 以MCM分析鑽石氧化結果與討論 ……………...48 4.4 Avrami Equation之動力學分析....... 60 4.5 鑽石氧化反應視活化能的比較……………..……. 62 4.6 比較鑽石氧化反應結果與模擬鑽石氧化之模型結果... 62 4.7 定量化不同粒徑之鑽石氧化反應......... 64 4.8 鑽石氧化反應機制................…. 65 第五章 結論.……….....….………….…..………………………...67 參考文獻……………….....……………………………..……….....….69 | |
| dc.language.iso | zh-TW | |
| dc.subject | 奈米級 | zh_TW |
| dc.subject | 鑽石 | zh_TW |
| dc.subject | 微米級 | zh_TW |
| dc.subject | 動力學 | zh_TW |
| dc.subject | 氧化反應 | zh_TW |
| dc.subject | 表面積效應 | zh_TW |
| dc.subject | micron-sized | en |
| dc.subject | surface effect | en |
| dc.subject | diamond oxidation | en |
| dc.subject | kinetics | en |
| dc.subject | nano-sized | en |
| dc.title | 探討奈米至微米尺度之鑽石氧化反應動力學機制 | zh_TW |
| dc.title | The Kinetics Study on the Oxidation Mechanism of Nano- and Micron-sized Diamond | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃武良(Wuu-Liang Huang),宋健民(Chien-Min Sung),王玉瑞(Yun-Ruey Wang) | |
| dc.subject.keyword | 鑽石,氧化反應,動力學,微米級,奈米級,表面積效應, | zh_TW |
| dc.subject.keyword | diamond oxidation,kinetics,micron-sized,nano-sized,surface effect, | en |
| dc.relation.page | 90 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-29 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 4.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
