Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42471
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor謝旭亮
dc.contributor.authorChen-Chui Hsiehen
dc.contributor.author謝承錐zh_TW
dc.date.accessioned2021-06-15T01:14:21Z-
dc.date.available2009-07-29
dc.date.copyright2009-07-29
dc.date.issued2009
dc.date.submitted2009-07-29
dc.identifier.citationAchard, P., Vriezen, W.H., Van Der Straeten, D., and Harberd, N.P. (2003). Ethylene Regulates Arabidopsis Development via the Modulation of DELLA Protein Growth Repressor Function. Plant Cell 15: 2816-2825.
Alonso, J.M., Hirayama, T., Roman, G., Nourizadeh, S., and Ecker, J.R. (1999). EIN2,a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284: 2148-2152.
Alonso, J.M., and Ecker, J.R. (2001). The ethylene pathway: A paradigm for plant hormone signaling and interaction. Sci. STKE (70): re1.
Ahmad, M., and Cashmore, A.R. (1993). HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366: 162-166.
Alonso, J.M., Stepanova, A.N., Leisse, T.J., Kim, C.J., Chen, H., Shinn, P., Stevenson, D.K., Zimmerman, J., Barajas, P., Cheuk, R. Gadrinab C., Heller, C., Jeske, A., Koesema, E., Meyers, C.C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D.E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W.L., Berry, C.C., and Ecker, J.R. (2003). Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653–657.
Ang, L. H., Chattopadhyay, S., Wei, N., Oyama, T., Okada, K., Batschauer, A., and Deng, X. W. (1998). Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development. Mol. Cell 1: 213-222.
Bleecker, A.B., Estelle, M.A., Somerville, C., and Kende, H. (1988). A dominant mutation confers insensitivity to ethylene in Arabidopsis thaliana. Science. 241: 1086-1089.
Browse, J., and Howe, G.A. (2008). Update on jasmonate signaling: new weapons and a rapid response against insect attack. Plant Physiol. 146: 832-838.
Cashmore, A.R., Jarillo, J.A., Wu, Y.J., and Liu, D. (1999). Cryptochromes: Blue light receptors for plants and animals. Science 284: 760-765.
Chae, H.S., and Kieber, J.J. (2005). ETO Brute? Role of ACS turnover in regulating ethylene biosynthesis. Trends Plant Sci. 10: 291-296.
Chao, Q., Rothenberg, M., Solano, R., Roman, G., Terzaghi, W., and Ecker, J.R. (1997). Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89: 1133-1144.
Chen, M., Chory, J., and Fankhouser, C. (2004). Light signal transduction in higher plants. Annu. Rev. Genet. 38: 87-117.
Chen, I. C., Huang, I. C., Liu, M. J., Wang, Z. G., Chung, S. S. and Hsieh, H. L. (2007a). Glutathione S-transferase interacting with FIN219 is involved in phytochrome A-mediated signaling in Arabidopsis. Plant Physiology 143:1189-1202.
Chen, I.C., Lee, S.C., Pan, S.M., and Hsieh, H.L. (2007b). GASA4, a GA-stimulated gene, participates in light signaling in Arabidopsis. Plant Science 172: 1062-1071.
Chini, A., Fonseca, S., Fernandez, G., Adie, B., Chico, J.M., Lorenzo, O., Garcia-Casado, G., Lopez-Vidriero, I., Lozano, F.M., Ponce, M.R., Micol, J.L., and Solano, R. (2007). The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448: 666-671.
Christians, M.J., and Larsen, P.B. (2007). Mutational loss of the prohibitin AtPHB3 results in an extreme constitutive ethylene response phenotype coupled with partial loss of ethylene-inducible gene expression in Arabidopsis seedlings. J. Exp. Bot. 58: 2237–2248.
Christians, M.J., Robles, L.M., Zeller, S.M., and Larsen, P.B. (2008). The eer5 mutation, which affects a novel proteasome-related subunit, indicates a prominent role for the COP9 signalosome in resetting the ethylene-signaling pathway in Arabidopsis. Plant J. 55: 467–477.
Du, X.J. (2005). Investigation of the involvement of Arabidopsis FIN219 in the integration of blue light and ethylene signaling pathway. Master thesis.
Duek, P.D., and Frankhouser, C. (2003). HFR1, a putative bHLH transcription factor, mediates both phytochrome A and cryptochrome signaling. Plant J. 34: 827-836.
Ellis, C., and Turner, J.G. (2002). A conditionally fertile coi1 allele indicates cross-talk between plant hormone signaling pathways in Arabidopsis thaliana seeds and young seedlings. Planta 215: 549-556.
Foo, E., Ross, J.J., Davies, N.W., Reid, J.B., and Weller, J.L. (2006). A role for ethylene in the phytochrome-mediated control of vegetative development. Plant J. 46: 911-921.
Frankhouser, C., and Chory, J. (1997). Light control of plant development. Annu. Rev. Cell Dev. Biol. 13: 203-229.
Frankhouser, C., and Staiger, D. (2002). Photoreceptors in Arabidopsis thaliana : light perception, signal transduction and entrainment of the endogenous clock. Planta 216: 1-16.
Fu, T.Y. (2008). Functional studies of Arabidopsis FIN219 in cross-talk between blue light and far-red light signaling. Master Thesis.
Gagne, J.M., Smalle, J., Gingerich, D.J., Walker, J.M., Yoo, S.D., Yanagisawa, S., and Vierstra, R.D. (2004). Arabidopsis EIN3-binding F-box1 and 2 form ubiquitin-protein ligases that repress ethylene action and promote growth by directing EIN3 degradation. Proc. Natl. Acad. Sci. USA 101: 6803-6808.
Giovani, B., Byrdin, M., Ahmad, M., and Brettel, K. (2003). Light-induced dlectron transfer in a cryptochrome blue-light photoreceptor. Nat. Struct. Biol. 10: 489-490.
Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43: 205-227.
Guo, H., Yang, H., Mockler, T.C., and Lin, C. (1998). Regulation of flowering time by Arabidopsis photoreceptors. Science 279: 1360-1363.
Guo, H., Duong, H., Ma, N., and Lin, C. (1999). The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism. Plant J. 19: 279-287.
Guo, H., Mockler, T., Duong, H., and Lin, C. (2001). SUB1, and Arabidopsis Ca2+-binding protein involved in cryptochrome and phytochrome coaction. Science 291: 487-490.
Guo, H., and Ecker, J.R. (2003). Plant responses to ethylene gas are mediated by SCF(EBF1/EBF2)-dependent proteolysis of EIN3 transcription factor. Cell 115: 667-677.
Gusman, P., and Ecker, J.R. (1990). Exploiting the triple response of Arabídopsís to identify ethylene-related mutants. Plant cell 2: 513-523.
Gyula, P., Schafer, E., and Nagy, F. (2003). Light perception and signaling in higher plants. Curr. Opin. Plant Biol. 6: 446-452.
Hall, A.E., Findell, J.L., Schaller, G.E., Sisler, E.C., and Bleecker, A.B. (2000). Ethylene perception by the ERS1 protein in Arabidopsis. Plant Physiol. 123: 1449-1458.
Hall, B., Schakeel, S., and Schaller, G.E. (2007). Ethylene receptors: ethylene perception and signal transduction. J Plant Growth Regul. 26: 118-130.
Hirayama, T., Kieber, J.J., Hirayama, N., Kogan, M., Guzman, P., Nourizadeh, S., Alonso, J.M., Dailey, W.P., Dancis, A., and Ecker, J.R. (1999). RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell 97: 383-393.
Howe, G., and Jander, G. (2008). Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59: 41-66.
Hsieh, H.L., Okamoto, H., Wang, M., Ang, L.H., Matsui, M., Goodman, H., and Deng, X.W. (2000). FIN219, and auxin-regulated gene, defines a link between phytochrome A and the downstream regulator COP1 in light control of Arabidopsis development. Genes Dev. 14: 1958-1970.
Hua, J., and Meyerowitz, E.M. (1998). Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94: 261-271.
Hua, J., Sakai, H., Nourizadeh, S., Chen, Q.G., Bleecker, A.B., Ecker, J.R., and Meyerowitz, E.M. (1998). EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10: 1321-1332.
Ishiguro, S., Kwai-Oda, A., Ueda, J., Nishida, I., and Okada, K. (2001). The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation. Plant Cell 13: 2191-2209.
Ivanchenko, M.G., Muday, G.K., and Dubrovsky, J.G. (2008). Ethylene auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana. Plant J. 55: 335–347.
Jiao, Y., Lau, O.S., and Deng, X.W. (2007). Light-regulated transcriptional networks in higher plants. Nat. Rev. Genet. 8: 217-230.
Kang, X., and Ni, M. (2006). Arabidopsis SHORT HYPOCOTYL UNDER BLUE1 contains SPX and EXS domains and acts in cryptochrome signaling. Plant Cell 18: 921-934.
Kang, X., Chong, J., and Ni, M. (2005). HYPERSENSITIVE TO RED AND BLUE1, a ZZ-type zinc finger protein, regulates phytochrome B-mediated red and cryptochrome-mediated blue light responses. Plant Cell 17: 822-835.
Khanna, R., Shen, Y., Marion,C.M., Tsuchisaka, A., Theologis, A., Schafer, E., and Quail, P.H. (2007). The basic helix-loop-helix transcription factor PIF5 acts on ethylene biosynthesis and phytochrome signaling by distinct mechanisms. Plant Cell 19: 3915-3929.
Kieber, J.J., Rothenberg, M., Roman, G., Feldmann, K.A., and Ecker, J.R. (1993). CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72: 427-441.
King, J.J., Stimart, D.P., Fisher, R.H., and Bleecker, A.B. (1995). A Mutation Altering Auxin Homeostasis and Plant Morphology in Arabidopsis. Plant Cell 7:
2023-2037.
Klee, H.J. (2004). Ethylene signal transduction. Moving beyond Arabidopsis. Plant Physiol. 135: 660-667.
Kramell, R., Atzorn, R., Schneider, G., Miersch, O., Bruckner, C., Schmidt, J., Sembdner, G., and Parthier, B. (1995). Occurrence and identification of jasmonic acid and its amino acid conjugates induced by osmotic stress in barley leaf tissue. J. Plant Growth Regul. 14: 29-36.
Lariguet, P., Boccalandro, H.E., Alonso, J.M., Ecker, J.R., Chory, J., Casal, J.J., and Fankhauser, C. (2003). A growth regulatory loop that provides homeostasis to phytochrome A signaling. Plant Cell 15: 2966-2978.
Larsen, P.B., and Cancel, J.D. (2003). Enhanced ethylene responsiveness in the Arabidopsis eer1 mutant results from a lossof-function mutation in the protein phosphatase 2A A regulatory subunit, RCN1. Plant J. 34: 709–718.
Li H., Johnson, P., Stepanova, A., Alonso, J.M., and Echer, J.R. (2004). Convergence of signaling pathways in the control of differential cell growth in Arabidopsis. Dev. Cell 7: 193-204.
Liang, X., Abel, S., Keller, J.A., Shen, N.F., and Theologis, A. (1992). The 1-aminocyclopropane-1-carboxylate synthase gene family of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 89: 11046–11050.
Lin, C. (2000a). Photoreceptors and regulation of flowering time. Plant Phyiol. 123: 39-50.
Lin, C. (2000b). Plant blue-light receptors. Trends Plant Sci. 5: 337-342.
Lin, C., Robertson, D.E., Ahmad, M., Raibekas, A.A., Jorns, M.S., Dutton, P.L., and Cashmore, A.R. (1995). Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1. Science 269: 968-970.
Lincoln, C., Britton, J.H., and Estelle, M. (1990). Growth and development of the axr1 mutants of Arabidopsis. Plant Cell 2: 1071-1080.
Liu, H.T., Yu, X.H., Li, K.W., Klejnot, J., Yang, H.Y., Lisiero, D., and Lin, C.T. (2008). Photoexcited CRY2 Interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322: 1535-1539.
Mao, J., Zhang, Y.C., Sang, Y., Li, Q.H., and Yang, H.Q. (2005). A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc. Natl. Acad. Sci. USA 102: 12270-12275.
Mallappa, C., Singh, A., Ram, H., and Chattopadhyay, S. (2008). GBF1, a transcription factor of blue light signaling in Arabidopsis, is degraded in the dark by a proteasome-mediated pathway independent of COP1and SPA1. J Biol. Chem. 283: 35772-35782.
McConn, M., and Browse, J. (1996). The critical requirement for linolenic acid is pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell 8: 403–416.
Melotto, M., Mecey, C., Niu, Y., Chung, H.S., Katsir, L., Yao, J., Zeng, W., Thines, B., Staswick, P.E., Browse J, Howe, G.A., and He, S.Y. (2008). A critical role of two positively charged amino acids in the Jas motif of Arabidopsis JAZ proteins in mediating coronatine- and jasmonoyl isoleucine-dependent interaction with the COI1 F-box protein. Plant J 55: 979-988.
Mockler, T.C., Guo, H., Yang, H., Duong, H., and Lin, C. (1999). Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development 126: 2073-2082.
Moller, S.G., Kim, Y.S., Kunkel, T., and Chua, N.H. (2003). PP7 is a positive regulator of blue light signaling in Arabidopsis. Plant Cell 15: 1111-1119.
Morelli, G., and Ruberti, I. (2002). Light and shade in the photocontrol of Arabidopsis growth. Trends Plant Sci. 7: 399-404.
Olmedo, G., Guo, H., Gregory, B.D., Nourizadeh, S.D., Aguilar-Henonin, L., Li, H., An, F., Guzman, P., and Ecker, J.R. (2006). ETHYLENE-INSENSITIVE5 encodes a 5'-->3' exoribonuclease required for regulation of the EIN3-targeting F-box proteins EBF1/2. Proc. Natl. Acad. Sci. U S A. 103: 13286-132893.
Parks, B. M., and Quail, P. H. (1993). hy8, a new class of Arabidopsis long hypocotyl mutants deficient in functional phytochrome A. Plant Cell 5: 39–48.
Potuschak, T., Vansiri, A., Binder, B.M., Lechner, E., Vierstra, R.D., and Genschik, P. (2006). The exoribonuclease XRN4 is a component of the ethylene response pathway in Arabidopsis. Plant Cell. 18: 3047-3057.
Potuschak, T., Lechner, E., Parmentier, Y., Yanagisawa, S., Grava, S., Koncz, C., and Genschik, P. (2003). EIN3-dependent regulation of plant ethylene hormone signaling by two Arabidopsis F box proteins: EBF1 and EBF2. Cell 115: 679-689.
Qiao, H., Chang, K.N., Yazaki, J., and Ecker, J.R. (2009). Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes Dev. 23: 512-521.
Raz, V., and Ecker, J.R. (1999). Regulation of differential growth in the apical hook of Arabidopsis. Development 126: 3661-3668.
Roman, G., Lubarsky, B., Kieber, J.J., Rothenberg, M., and Ecker, J.R. (1995). Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: five novel mutant loci integrated into a stress response pathway. Genetics 139: 1393-1409.
Robles, L.M., Wampole, J.S., Christians, M.J., and Larsen, P.B. (2007). Arabidopsis enhanced ethylene response 4 encodes an EIN3-interacting TFIID transcription factor required for proper ethylene response, including ERF1 induction. J. Exp. Bot. 58: 2627–2639.
Ruzicka, K., Ljung, K., Vanneste, S., Podhorska, R., Beeckman, T., Friml, J., and Benkova, E. (2007). Ethylene regulates root growth through effects on auxin biosynthesis and transport-dependent auxin distribution. Plant Cell 19: 2197-2212.
Sakai, H., Hua, J., Chen, Q.G., Chang, C., Medrano, L.J., Bleecker, A.B., and Meyerowitz, E.M. (1998). ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 95: 5812-5817.
Sancar, A. (2003). Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem. Rev. 103: 2203-2237.
Sang, Y., Li, Q.H., Rubio, V., Zhang, Y.C., Mao, J., Deng, X.W., and Yang, H.Q. (2005). N-terminal domain-mediated homodimerization is required for photoreceptor activity of Arabidopsis CRYPTOCHROME 1. Plant Cell 17: 1569-1584.
Schaller, G.E., and Bleecker, A.B. (1995). Ethylene-binding sites generated in yeast expressing the Arabidopsis ETR1 gene. Science 270: 1809-1811.
Schilmiller, A.L., and Howe, G.A. (2005). Systemic signaling in the wound response. Curr. Opin. Plant Biol. 8: 369–377.
Seo, H.S., Song, J.T., Cheong, J.J., Lee, Y.H., Lee, Y.W., Hwang, I., Lee, J.S., and Choi, Y.D. (2001). Jasmonic acid carboxyl methyl transferase: a key enzyme for jasmonate-regulated plant responses. Proc. Natl. Acad. Sci. USA 98: 4788–4793.
Shinomura, T., Nagatani, A., Chory, J., and Furuya, M. (1994). The induction of seed germination in Arabidopsis thaliana is regulated principally by phytochrome B and secondarily by phytochrome A. Plant Physiol. 104: 363-371.
Smalle, J., Haegman, M., Kurepa, J., Van Montagu, M., and Van Der Straeten, D. (1997). Ethylene can stimulate Arabidopsis hypocotyls elongation in the light. Proc. Natl. Acad. Sci. USA 94: 2756–2761.
Solano, R., Stepanova, A., Chao, Q., and Ecker, J.R. (1998). Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE- INSENSITIVE3 and ETHYLENE-RESPONSEFACTOR1. Genes Dev. 12: 3703-3714.
Staswick, P.E., and Tiryaki, I. (2004). The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16: 2117–2127.
Staswick, P.E., Su, W., and Howell, S.H. (1992). Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc. Natl. Acad. Sci. USA 89: 6837–6840.
Stepanova, A.N., Hoyt, J.M., Hamilton, A.A., and Alonso, J.M. (2005). A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17: 2230-2242.
Stepanova, A.N., Yun, J., Likhacheva, A.V., Alonso, J.M. (2007). Multilevel interactions between ethylene and auxin in Arabidopsis roots. Plant Cell 19: 2169-2185.
Stepanova, A.N., Robertson-Hoyt, J., Yun, J., Benavente, L.M., Xie, D.-Y., Dolezal, K., Schlereth, A., Jurgens, G., and Alonso, J.M. (2008). TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133: 177-191.
Stintzi, A., and Browse, J. (2000). The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc. Natl. Acad. Sci. USA 97: 10625–10630.
Sun, J., Xu, Y., Ye, S., Jiang, H., Chen, Q., Liu, F., Zhou, W., Chen, R., Li, X., Tietz, O., Wu, X., Cohen, J.D., Palme, K., and Li, C. (2009). Arabidopsis ASA1 Is Important for Jasmonate-Mediated Regulation of Auxin Biosynthesis and Transport during Lateral Root Formation. Plant Cell preview.
Swarup, R., Perry, P., Hagenbeek, D., Van Der Straeten, D., Beemster, G.T., Sandberg, G., Bhalerao R., Ljung K., and Bennett M.J. (2007). Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell 19: 2186-2196.
Tanaka, R., and Tanaka, A. (2007). Tetrapyrrole biosynthesis in higher plants. Annu. Rev. Plant Biol. 58: 321-46.
Taki, N., Sasaki-Sekimoto, Y., Obayashi, T., Kikuta, A., Kobayashi, K., Ainai, T., Yagi, K., Sakurai, N., Suzuki, H., Masuda, T., Takamiya, K-i., Shibata, D., Kobayashi, Y., and Ohta, H. (2005) 12-Oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiol. 139: 1268–1283.
Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G., Nomura, K., He, S.Y., Howe, G.A., and Browse, J. (2007). JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448: 661-665.
Toth, R., Kevei, E., Hall, A., Millar, A.J., Nagy, F., Kozma-Bognar, L. (2001). Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis. Plant Physiol. 127: 1607–1616.
Turner, J.G., Ellis, C., and Devoto, A. (2002). The jasmonate signal pathway. Plant Cell 14: 153-164.
Vandenbussche, F., Vriezen, W.H., Smalle, J., J.J. Laarhoven, L., J.M. Harren, F., and Van Der Straeten, D. (2003). Ethylene and auxin control the Arabidopsis response to decrease light intensity. Plant Physiol. 133: 517-527.
Vandenbussche, F., Vancompernolle, B. and Van Der Straeten, D. (2007). Blue light dependence of Arabidopsis seedling ethylene responses. A. Ramina et al. (eds.), Advances in Plant Ethylene Research: Proceedings of the 7th International symposium on the Plant Hormone Ethylene, 95–100.
Vanholme, B., Grunewald, W., Bateman, A., Kohchi, T., and Gheysen, G. (2007). The tify family previously known as ZIM. Trends Plant Sci. 12: 239-244.
Von Arnim, A. G., and Deng, X. W. (1994). Light inactivation of Arabidopsis
photomorphogenic repressor COP1 involves a cell-specific regulation of its
nucleocytoplasmic partitioning. Cell 79:1035-104.
Wadsworth, G. J., Redinbaugh, M. G., and Scandalios, J. G. (1988). A procedure for the small-scale isolation of plant RNA suitable for RNA blot analysis. Annal. Biochem. 172: 279-283.
Wang, H., Ma, L.G., Li, J.M., Zhao, H.Y., and Deng, X.W. (2001). Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 294: 154-158.
Wang, L., Allmann, S., Wu, J., and Baldwin, I.T. (2008) Comparisons of LIPOXYGENASE3- and JASMONATE-RESISTANT4/6-silenced plants reveal that jasmonic acid and jasmonic acid-amino acid conjugates play different roles in herbivore resistance of Nicotiana attenuata. Plant Physiol. 146: 904–915.
Wang, X., Kong, H., and Ma, H. (2009). F-box proteins regulate ethylene signaling and more. Genes Dev. 23: 391-396.
Wasternack, C. (2006). Oxilipins: Biosynthesis, signal transduction and action. In Plant Hormone Signaling, P.T. Hedden, ed (Oxford, UK: Blackwell), pp. 185–228.
Wasternack, C. (2007). Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, rowth and development. Ann Bot (Lond) 100: 681-697.
Wei, N., Serino, G., and Deng, X.W. (2008). The COP9 signalosome: more than a protease. Trends Biochem. Sci. 33: 592-600.
Yadav, V., Mallappa, C., Gangappa, S.N., Bhatia, S., and Chattopadhyay, S. (2005). A basic helix-loop-helix transcription factor in Arabidopsis, MYC2, acts as a repressor of blue light-mediated photomorphogenic growth. Plant Cell 17: 1953-1966.
Yan, Y., Stolz, S., Chetelat, A., Reymond, P., Pagni, M., Dubugnon, L., and Farmer, E.E. (2007). A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19: 2470-2483.
Yang, H.Q., Tang, R.H., and Cashmore, A.R. (2001). The signaling mechanism of Arabidopsis CRY1 involves direct interaction of with COP1. Plant Cell 13: 2573-2587.
Yang, H.Q., Wu, Y.J., Tang, R.H., Liu, D., Liu, Y., and Cashmore, A.R. (2000). The C-termini of Arabidopsis cryptochromes mediate a constitutive light response. Cell 103: 815-827.
Yu, Y.B., Adams, D.O., and Yang, S.F. (1979). 1-Aminocyclopropanecarboxylate synthase, a key enzyme in ethylene biosynthesis. Arch. Biochem. Biophys. 198: 280–286.
Yu, X., Klejnot, J., Zhao, X., Shalitin, D., Maymon, M., Yang, H., Lee, J., Liu, X., Lopez, J., and Lin, C. (2007). Arabidopsis cryptochrome 2 completes its posttranslational life cycle in the nucleus. Plant Cell 19: 3146-3156.
Zeugner, A., Byrdin, M., Bouly, J.P., Bakrim, N., Giovani, B., Brettel, K., and Ahmad, M. (2005). Light-induced electron transfer in Arabidopsis cryptochrome-1 correlates with in vivo function. J Biol. Chem. 280: 19437-19440.
Zhao, Y., Christensen, S.K., Fankhauser, C., Cashman, J.R., Cohen, J.D., Weigel, D., and Chory, J. (2001). A role for flavin monooxygenase-like enzymes in auxin
biosynthesis. Science 291: 306-309.
Zhong, G.V., and Burns, J.K. (2003). Profiling ethylene-regulated gene expression in Arabidopsis thaliana by microarray analysis. Plant Mol. Biol. 53: 117–131.
Zhu, Z., and Guo H. (2008). Genetic basis of ethylene perception and signal transduction in Arabidopsis. J. Integr. Plant Biol. 50: 808-815.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42471-
dc.description.abstract乙烯是一種氣態的植物荷爾蒙,調控植物的生長發育與防禦反應。在黑暗環境下處理乙烯,阿拉伯芥幼苗會呈現三重反應的外表型,包含過度卷曲的頂端鉤、較粗較短的下胚軸、延長受到抑制的根。先前的研究中得知FIN219與隱花色素可能參與乙烯訊息傳遞的調控;但其調控的分子機制,則尚未瞭解。檢測隱花色素與fin219突變株對ACC的敏感性,發現fin219、cry1、35S::GUS-CCT1轉殖株與cry1 cry2雙突變株對外加乙烯生合成前驅物ACC呈現較敏感的反應,cry2則無顯著的差異。暗示FIN219與CRY1可能為乙烯訊息傳遞的負調控者。此結果與參與乙烯生合成或訊息傳遞的相關基因在fin219或cry1突變株中表現量上升是一致的。進一步檢測cry1 fin219雙突變株與cry1 cry2 fin219三突變株對ACC的敏感性,則與野生型沒有差異。有趣的是,在FIN219大量表現於cry1的轉殖株中,卻呈現較敏感的外表型,然而在FIN219大量表現於cry1 cry2雙突變的轉殖株中,卻回復成野生型的敏感性;推測FIN219可負向調控乙烯的訊息傳遞,並且需要CRY2的輔助。除此之外,添加甲基化茉莉酸(MeJA)會部份回復fin219突變株中對ACC的過敏感外表型,而添加JA-Ile相似物coronatine (COR)則可以完全回復成類似野生型的外表型。綜合上述的結果,我們推論FIN219與CRY1共同負向調控乙烯的訊息傳遞;此外,FIN219可透過活化茉莉酸訊息傳遞達到抑制乙烯在幼苗時期對頂端鉤與下胚軸發育的調控。zh_TW
dc.description.abstractEthylene, a gaseous phytohormone, participates in the regulation of plant development and defense responses. Dark-grown Arabidopsis seedlings under ethylene treatment exhibit triple response phenotype, including exaggerated apical hooks, shortened and thickened hypocotyls, and shortened roots. Previous studies indicated that FIN219 and cryptochromes may regulate ethylene responses. However, the molecular mechanisms underlying their involvement in ethylene signaling remain unknown. Here, we found that fin219, cry1, 35S::GUS-CCT1, and cry1 cry2 were hypersensitive to ACC, but the cry2 mutant showed a sensitivity similar to that in wild-type Columbia (Col). This result indicates that FIN219 and CRY1 negatively regulate ethylene responses, which is consistent with the fact that several ethylene biosynthetic genes. In addition, signaling related genes are also increased in both fin219 and cry1 mutants. Moreover, the cry1 fin219 double mutant and the cry1 cry2 fin219 triple mutant exhibited ACC sensitivities similar to Col. Intriguingly, FIN219 overexpression in cry1 mutant resulted in a hypersensitive response to ACC, but in cry1 cry2 double mutant did not, which implies that FIN219 may negatively regulate ethylene responses with a requirement of the functional CRY2. In addition, MeJA application can partially rescue the hypersensitive responses of the fin219 mutant to ACC, and the coronatine, a JA-Ile analog can fully rescue the defect in ACC responses of the fin219 mutant. Taken together, these data indicate that FIN219 negatively regulates ethylene responses through JA signaling.en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:14:21Z (GMT). No. of bitstreams: 1
ntu-98-R96b42023-1.pdf: 1721409 bytes, checksum: a7676f9b68f3d425d4a3c0bc019a948c (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents目錄 I
中文摘要 III
Abstract IV
縮寫對照表 V
前言 7
一、 緒論 7
二、 FIN219基因參與植物生長發育的調控機制 8
三、 隱花色素(cryptochromes)參與植物生長發育的調控機制 9
四、 乙烯參與植物生長發育調控的分子機制 11
五、 茉莉酸訊息傳遞調控植物生長發育與抗病反應 14
六、 光與荷爾蒙之交互作用參與植物生長發育的調控 15
七、 研究目標 17
材料與方法 19
一、 植物材料與生長條件 19
二、 RNA表現量分析 19
三、 蛋白質表現量分析 20
四、 雙突變株與三突變株的建立與基因型判定 20
五、 GUS活性染色分析 21
結果 22
一、 fin219與隱花色素突變株對ACC呈現過敏感外表型。 22
二、 FIN219與CRY1互為彼此的負向調控者。 23
三、 在fin219與cry1突變體中,乙烯訊息傳遞路徑中的基因表現量上升。 ………………………………………………………………………………24
四、 ACC促進FIN219蛋白質的累積但不影響其RNA量。 25
五、 外加MeJA或coronatine可抑制乙烯誘導之過度卷曲頂端鉤與短下胚軸。 ………………………………………………………………………………26
六、 coronatine可調控FIN219在子葉表現的位置。 27
討論 28
一、 FIN219與隱花色素參與乙烯反應的調控。 28
二、 JA與乙烯訊息傳遞拮抗調控黑暗中下胚軸與頂端鉤的發育。 29
三、 隱花色素可能參與JA訊息傳遞的調控。 31
四、 FIN219與隱花色素對JA與乙烯訊息傳遞之間可能的調控機制。 32
結論 35
結果圖片 36
參考文獻 50
附錄一、實驗操作流程 64
附表一、PCR相關資訊 74
附圖一、基因型鑑定引子設計示意圖 76
dc.language.isozh-TW
dc.title阿拉伯芥中FIN219與隱花色素參與乙烯反應的分子機制的研究zh_TW
dc.titleStudies of the Molecular Mechanisms Underlying Arabidopsis FIN219 and Cryptochromes Regulated Ethylene Responsesen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee葉開溫,王隆棋,吳素幸,張孟基
dc.subject.keyword乙烯,隱花色素,三重反應,茉莉酸,zh_TW
dc.subject.keywordethylene,cryptochrome,triple response,jasmonate,en
dc.relation.page76
dc.rights.note有償授權
dc.date.accepted2009-07-29
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
dc.date.embargo-lift2300-01-01-
Appears in Collections:植物科學研究所

Files in This Item:
File SizeFormat 
ntu-98-1.pdf
  Restricted Access
1.68 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved