請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42459完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃德富 | |
| dc.contributor.author | Ting-Yun Huang | en |
| dc.contributor.author | 黃亭雲 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:14:08Z | - |
| dc.date.available | 2011-09-15 | |
| dc.date.copyright | 2009-09-15 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-28 | |
| dc.identifier.citation | REFERENCES
Ajizian SJ, English BK, Meals EA. 1999. Specific inhibitors of p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways block inducible nitric oxide synthase and tumor necrosis factor accumulation in murine macrophages stimulated with lipopolysaccharide and interferon-gamma. J Infect Dis 179(4):939-944. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. 2001. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med 29(7):1303-1310. Bone RC, Grodzin CJ, Balk RA. 1997. Sepsis: a new hypothesis for pathogenesis of the disease process. Chest 112(1):235-243. Borsch-Haubold AG, Pasquet S, Watson SP. 1998. Direct inhibition of cyclooxygenase-1 and -2 by the kinase inhibitors SB 203580 and PD 98059. SB 203580 also inhibits thromboxane synthase. J Biol Chem 273(44):28766-28772. Bradley JR. 2008. TNF-mediated inflammatory disease. J Pathol 214(2):149-160. Carter AB, Knudtson KL, Monick MM, Hunninghake GW. 1999. The p38 mitogen-activated protein kinase is required for NF-kappaB-dependent gene expression. The role of TATA-binding protein (TBP). J Biol Chem 274(43):30858-30863. Castellheim A, Brekke OL, Espevik T, Harboe M, Mollnes TE. 2009. Innate immune responses to danger signals in systemic inflammatory response syndrome and sepsis. Scand J Immunol 69(6):479-491. Cavaillon JM, Annane D. 2006. Compartmentalization of the inflammatory response in sepsis and SIRS. J Endotoxin Res 12(3):151-170. Chan CC, Boyce S, Brideau C, Charleson S, Cromlish W, Ethier D, Evans J, Ford-Hutchinson AW, Forrest MJ, Gauthier JY, Gordon R, Gresser M, Guay J, Kargman S, Kennedy B, Leblanc Y, Leger S, Mancini J, O'Neill GP, Ouellet M, Patrick D, Percival MD, Perrier H, Prasit P, Rodger I, et al. 1999. Rofecoxib [Vioxx, MK-0966; 4-(4'-methylsulfonylphenyl)-3-phenyl-2-(5H)- furanone]: a potent and orally active cyclooxygenase-2 inhibitor. Pharmacological and biochemical profiles. J Pharmacol Exp Ther 290(2):551-560. Chen CC, Wang JK. 1999. p38 but not p44/42 mitogen-activated protein kinase is required for nitric oxide synthase induction mediated by lipopolysaccharide in RAW 264.7 macrophages. Mol Pharmacol 55(3):481-488. Chokri M, Freudenberg M, Galanos C, Poindron P, Bartholeyns J. 1989. Antitumoral effects of lipopolysaccharides, tumor necrosis factor, interferon and activated macrophages: synergism and tissue distribution. Anticancer Res 9(4):1185-1190. Cogswell JP, Godlevski MM, Wisely GB, Clay WC, Leesnitzer LM, Ways JP, Gray JG. 1994. NF-kappa B regulates IL-1 beta transcription through a consensus NF-kappa B binding site and a nonconsensus CRE-like site. J Immunol 153(2):712-723. Coussens LM, Werb Z. 2002. Inflammation and cancer. Nature 420(6917):860-867. Cuschieri J, Bulger E, Garcia I, Jelacic S, Maier RV. 2005. Calcium/calmodulin-dependent kinase II is required for platelet-activating factor priming. Shock 23(2):99-106. Delgado AV, McManus AT, Chambers JP. 2003. Production of tumor necrosis factor-alpha, interleukin 1-beta, interleukin 2, and interleukin 6 by rat leukocyte subpopulations after exposure to substance P. Neuropeptides 37(6):355-361. Dileepan KN, Page JC, Li Y, Stechschulte DJ. 1995. Direct activation of murine peritoneal macrophages for nitric oxide production and tumor cell killing by interferon-γ. Journal of Interferon & Cytokine Research 15(5):387-394. Dinarello CA. 2007. Historical insights into cytokines. Eur J Immunol 37 Suppl 1:S34-45. Fujihara M, Connolly N, Ito N, Suzuki T. 1994. Properties of protein kinase C isoforms (beta II, epsilon, and zeta) in a macrophage cell line (J774) and their roles in LPS-induced nitric oxide production. J Immunol 152(4):1898-1906. Gabay C. 2006. Interleukin-6 and chronic inflammation. Arthritis Res Ther 8 Suppl 2:S3. Gilroy DW, Lawrence T, Perretti M, Rossi AG. 2004. Inflammatory resolution: new opportunities for drug discovery. Nat Rev Drug Discov 3(5):401-416. Gray JG, Chandra G, Clay WC, Stinnett SW, Haneline SA, Lorenz JJ, Patel IR, Wisely GB, Furdon PJ, Taylor JD, et al. 1993. A CRE/ATF-like site in the upstream regulatory sequence of the human interleukin 1 beta gene is necessary for induction in U937 and THP-1 monocytic cell lines. Mol Cell Biol 13(11):6678-6689. Guzik TJ, Korbut R, Adamek-Guzik T. 2003. Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol 54(4):469-487. Han J, Lee JD, Bibbs L, Ulevitch RJ. 1994. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265(5173):808-811. Herrera-Velit P, Reiner NE. 1996. Bacterial lipopolysaccharide induces the association and coordinate activation of p53/56lyn and phosphatidylinositol 3-kinase in human monocytes. J Immunol 156(3):1157-1165. Ialenti A, Ianaro A, Moncada S, Di Rosa M. 1992. Modulation of acute inflammation by endogenous nitric oxide. Eur J Pharmacol 211(2):177-182. Jones SA. 2005. Directing transition from innate to acquired immunity: defining a role for IL-6. J Immunol 175(6):3463-3468. Kasahara T, Matsushima K. 2001. Macrophage signaling, apoptosis, lectins and leukocyte trafficking. Trends Immunol 22(11):593-594. Kim JB, Han AR, Park EY, Kim JY, Cho W, Lee J, Seo EK, Lee KT. 2007. Inhibition of LPS-induced iNOS, COX-2 and cytokines expression by poncirin through the NF-kappaB inactivation in RAW 264.7 macrophage cells. Biol Pharm Bull 30(12):2345-2351. Lahti A, Jalonen U, Kankaanranta H, Moilanen E. 2003. c-Jun NH2-terminal kinase inhibitor anthra(1,9-cd)pyrazol-6(2H)-one reduces inducible nitric-oxide synthase expression by destabilizing mRNA in activated macrophages. Mol Pharmacol 64(2):308-315. Lakics V, Medvedev AE, Okada S, Vogel SN. 2000. Inhibition of LPS-induced cytokines by Bcl-xL in a murine macrophage cell line. J Immunol 165(5):2729-2737. Lee HJ, Hyun EA, Yoon WJ, Kim BH, Rhee MH, Kang HK, Cho JY, Yoo ES. 2006. In vitro anti-inflammatory and anti-oxidative effects of Cinnamomum camphora extracts. J Ethnopharmacol 103(2):208-216. Lien E, Ingalls RR. 2002. Toll-like receptors. Crit Care Med 30(1 Supp):S1-S11. Lopez-Bojorquez LN, Dehesa AZ, Reyes-Teran G. 2004. Molecular mechanisms involved in the pathogenesis of septic shock. Arch Med Res 35(6):465-479. Ma W, Lim W, Gee K, Aucoin S, Nandan D, Kozlowski M, Diaz-Mitoma F, Kumar A. 2001. The p38 mitogen-activated kinase pathway regulates the human interleukin-10 promoter via the activation of Sp1 transcription factor in lipopolysaccharide-stimulated human macrophages. J Biol Chem 276(17):13664-13674. Maeda S, Omata M. 2008. Inflammation and cancer: role of nuclear factor-kappaB activation. Cancer Sci 99(5):836-842. Medvedev AE, Kopydlowski KM, Vogel SN. 2000. Inhibition of lipopolysaccharide-induced signal transduction in endotoxin-tolerized mouse macrophages: dysregulation of cytokine, chemokine, and toll-like receptor 2 and 4 gene expression. J Immunol 164(11):5564-5574. Miyake K. 2004. Innate recognition of lipopolysaccharide by Toll-like receptor 4-MD-2. Trends Microbiol 12(4):186-192. Moncada S. 1999. Nitric oxide: discovery and impact on clinical medicine. J R Soc Med 92(4):164-169. Nakano H, Shindo M, Sakon S, Nishinaka S, Mihara M, Yagita H, Okumura K. 1998. Differential regulation of IkappaB kinase alpha and beta by two upstream kinases, NF-kappaB-inducing kinase and mitogen-activated protein kinase/ERK kinase kinase-1. Proc Natl Acad Sci U S A 95(7):3537-3542. Nathan C. 2002. Points of control in inflammation. Nature 420(6917):846-852. Nishimoto N, Kishimoto T. 2004. Inhibition of IL-6 for the treatment of inflammatory diseases. Curr Opin Pharmacol 4(4):386-391. Nussler AK, Billiar TR. 1993. Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leukoc Biol 54(2):171-178. Pahl HL. 1999. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18(49):6853-6866. Paul AT, Gohil VM, Bhutani KK. 2006. Modulating TNF-alpha signaling with natural products. Drug Discov Today 11(15-16):725-732. Robinson MJ, Cobb MH. 1997. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 9(2):180-186. Saklatvala J. 2007. Inflammatory signaling in cartilage: MAPK and NF-kappaB pathways in chondrocytes and the use of inhibitors for research into pathogenesis and therapy of osteoarthritis. Curr Drug Targets 8(2):305-313. Serhan CN, Brain SD, Buckley CD, Gilroy DW, Haslett C, O'Neill LA, Perretti M, Rossi AG, Wallace JL. 2007. Resolution of inflammation: state of the art, definitions and terms. FASEB J 21(2):325-332. Sweet MJ, Hume DA. 1996. Endotoxin signal transduction in macrophages. J Leukoc Biol 60(1):8-26. Vanden Berghe W, Plaisance S, Boone E, De Bosscher K, Schmitz ML, Fiers W, Haegeman G. 1998. p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor-kappaB p65 transactivation mediated by tumor necrosis factor. J Biol Chem 273(6):3285-3290. Wong ET, Tergaonkar V. 2009. Roles of NF-kappaB in health and disease: mechanisms and therapeutic potential. Clin Sci (Lond) 116(6):451-465. Yen YT, Liao F, Hsiao CH, Kao CL, Chen YC, Wu-Hsieh BA. 2006. Modeling the early events of severe acute respiratory syndrome coronavirus infection in vitro. J Virol 80(6):2684-2693. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42459 | - |
| dc.description.abstract | 發炎反應即個體遭遇到外界有害刺激,像是病原菌、有害化學物質、傷口感染、組織受損時,體內所產生的自然防禦機制。適當的發炎反應得以協助人體抵擋來自外界的傷害,清除病原菌,藉以恢復健康。然而過度甚而失去控制的強烈發炎反應,其產生的發炎相關激素與機制,往往會在體內不斷累積並放大反應,最終於器官組織造成損害,引發一系列的相關疾病。近來許多研究發現,發炎反應的確與關節炎、多發性硬化、氣喘、動脈硬化等慢性疾病有所相關,甚至某些癌症的發生也歸咎於持續而激烈的發炎反應。正因如此,研究開發有效的抗發炎藥物,減輕患者的發炎症狀,並試圖終止強烈的發炎反應,也成了現今許多專家學者與藥廠努力的方向與動力。
在實驗室初步篩藥過程中,發現一化學合成物質pcpc07f2具有抑制巨噬細胞釋放細胞激素的能力,引發我們進一步探究其抗發炎能力與機轉的興趣。首先確認了實驗中所用濃度並不會影響噬菌細胞株的生存率。接著在抑制噬菌細胞受到LPS 活化後釋放發炎性細胞激素之測試中,我們發現pcpc07f2在10μg/ml (約30μM)即能有效抑制由LPS 100ng/ml在原生性小鼠巨噬細胞、細胞株RAW264.7巨噬細胞、亦或細胞株THP-1單核細胞所引發之TNF-α與IL-6釋放,且此抑制作用呈現明顯的濃度相關性。除此之外,對於LPS 100ng/ml活化細胞株RAW264.7巨噬細胞後,其產生之移動現象(migration) 以及大量釋放nitric oxide的發炎反應,pcpc07f2也都能在10μg/ml (30μM)時達抑制作用,同樣此抑制作用呈現明顯的劑量相關性。最後,延伸pcpc07f2之抗發炎能力,將其運用至LPS誘發之敗血症動物模式中,結果發現pcpc07f2 (8μg/g)能有效降低敗血症小鼠血清中的發炎細胞激素含量(TNF-α與IL-6),並明顯降低LPS誘發敗血症小鼠之死亡率。 而對於LPS刺激活化巨噬細胞後所產生的下游訊息傳遞鏈之中,我們檢視了MAPK 路徑中的三種重要激酶:p-38、ERK、JNK的磷酸化現象,以及NF-κB路徑中重要調控因子: IκB的降解情形 (degradation)。研究結果發現,在給予pcpc07f2之後,p-38、ERK、JNK這些MAPK重要激酶的磷酸化都有被抑制的現象,而抑制NF-κB活化的IκB,其降解情形也可被pcpc08f2所回復(reverse),進而抑制NF-κB的活化。此外,我們也使用了MAPK和NF-κB inhibitor來研究兩種訊息傳遞路徑和發炎激素之間的關聯性,發現它們可以抑制LPS刺激活化之巨噬細胞釋放發炎性細胞激素與nitric oxide。 綜合以上所述,我們可以推測pcpc07f2可能經由抑制MAPK路徑中的三種重要激酶p-38、ERK、JNK的磷酸化,以及抑制NF-κB此轉錄因子的活化,來進行其抑制發炎的能力。當然,詳細的作用機轉還有待更多方面的實驗進一步來探討。 | zh_TW |
| dc.description.abstract | Macrophages play a vital role in inflammation and innate immune responses. Foreign pathogens recognized by macrophages trigger a serial of signaling cascades upon ligand-receptor stimulation, then resulting in releasing several pro-inflammatory and anti-inflammatory cytokines, and activating other immune cells. In this study, we used lipopolysaccharide (LPS), a component of the gram-negative bacterial cell wall for activating macrophages, as an experimental model. The pro-inflammatory cytokines, such as TNF-α and IL-6 increased significantly after LPS stimulation as measured by ELISA. We found pcpc07f2, a synthetic benzimidazole compound, concentration-dependently (10~90μM) inhibited LPS (100ng/ml)-induced TNF-α and IL-6 release in macrophages (RAW 264.7 cells), and the inhibition appeared more obvious in primary macrophages. However, pcpc07f2 did not affect the cell viability. Regarding the anti-inflammation effects of pcpc07f2 on LPS-induced septic animal model, we also found that pcpc07f2 significantly reduced pro-inflammatory cytokines release and also reduced LPS-induced mortality in a dose-dependent manner. Furthermore, pcpc07f2 also inhibited macrophage migration and NO production induced by LPS. We further examined if pcpc07f2 affects the activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) pathways in LPS-induced RAW 264.7 cells by Western blotting analysis. Pcpc07f2 concentration-dependently inhibited LPS-induced extracellular signal-regulated kinase 1/2 (ERK1/2), JNK, and p38 phosphorylation, and suppressed LPS-induced NF-κB activation, suggesting that pcpc07f2 decreased TNF-α, IL-6 and NO production via the inactivation of ERK1/2, JNK, and p38 ,and NF-κB signal pathway. Taken together, we suggest that pcpc07f2 may be used as therapeutic approach for the treatment of inflammatory diseases. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:14:08Z (GMT). No. of bitstreams: 1 ntu-98-R96443001-1.pdf: 1850180 bytes, checksum: f93007a43fc60b6a9c06f215268f953c (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 目 錄
中文摘要…………………………………………………………………………. i Abstract ..………………………………………………………………………..... iii Abbrevation table .................................................................................................... v Chapter 1 Introduction ................................................................................................1 1.1 Inflammation ...........................................................................................1 1.2 Monocyte/macrophage ............................................................................2 1.3 Cytokine ...................................................................................................3 1.3.1 Tumor Necrosis Factor-α (TNF-α) .................................................5 1.3.2 Interleukin-6 (IL-6) .........................................................................6 1.4 NO ............................................................................................................7 1.5 The signaling pathways of lipopolysaccharide (LPS) ..............................8 1.5.1 Activation of NF-κB and regulation of gene expression .................9 1.5.2 Phosphorylation of mitogen-actived protein kinases (MAPKs) signaling pathway ............................................................................11 1.6 Sepsis .......................................................................................................14 1.7 Cancer and inflammation ........................................................................15 1.8 Aims of this thesis....................................................................................15 Chapter 2 Materials and methods ................................................................................26 2.1 Materials ....................................................................................................26 2.2 Cell cultures ...............................................................................................27 2.2.1 Cell culture – RAW 264.7 macrophage cell ...................................27 2.2.2 Cell culture – Murine peritoneal macrophage cell .........................27 2.2.3 Cell culture – Human THP-1 monocytic leukemia cell .................28 2.3 Cell viability assay ....................................................................................28 2.4 Nitric oxide assay ......................................................................................29 2.5 Cytokine assays .........................................................................................30 2.6 Migration assay .........................................................................................31 2.7 Western blot analysis .................................................................................32 2.8 Thromboxane A2 synthase, COX and other kinases or enzymatic activity assay ..........................................................................................................33 2.9 Animal model ............................................................................................33 2.9.1 Animals ...........................................................................................33 2.9.2 LPS challenge .................................................................................33 2.9.3 Mice whole blood and plasma collection .......................................33 2.9.4 Measurement of cytokine levels .....................................................34 2.10 Statistical analysis ...................................................................................34 Chapter 3 Results ........................................................................................................35 3.1 The effects of pcpc07f2 on LPS-stimulated pro-inflammatory TNF-α production in phagocytes ..........................................................................35 3.2 The effects of pcpc07f2 on LPS-stimulated pro-inflammatory cytokine IL-6 production in phagocytes ..................................................................35 3.3 The effects of pcpc07f2 on cell viability in murine macrophage cells in vitro and ex vivo ........................................................................................36 3.4 The inhibition of Pcpc07f2 on NO production in LPS-induced RAW 264.7 macrophage cells .......................................................................................36 3.5 Pcpc07f2 inhibits the migration of LPS-activated RAW264.7 macrophage cells ............................................................................................................37 3.6 The effects of pcpc07f2 on the LPS-stimulated activation of mitogen-activated protein (MAP) kinases ...............................................38 3.7 Pcpc07f2 inhibits IκB degradation in LPS-induced RAW264.7 macrophages ............................................................................................39 3.8 The effects of MAPKs-specific inhibitors and NF-κB inhibitor (PDTC) on the production of cytokines TNF-α and IL-6 in LPS-stimulated RAW264.7 macrophages ........................................................................39 3.9 The effects of MAPKs-specific inhibitors and NF-κB inhibitor (PDTC) on the production of NO in LPS-stimulated RAW264.7 macrophages .......40 3.10 Pcpc07f2 inhibits LPS-induced pro-inflammatory cytokines production such as TNF-α and IL-6 in vivo ...............................................................41 Chapter 4 Discussion ...................................................................................................62 Chapter 5 Conclusion ..................................................................................................67 Chapter 6 In the future .................................................................................................69 References ...............................................................................................................70 | |
| dc.language.iso | en | |
| dc.subject | 巨噬細胞 | zh_TW |
| dc.subject | 發炎反應 | zh_TW |
| dc.subject | 細胞激素 | zh_TW |
| dc.subject | macrophage | en |
| dc.subject | inflammation | en |
| dc.subject | cytokine | en |
| dc.title | Pcpc07f2抑制LPS活化噬菌細胞發炎反應之機轉探討 | zh_TW |
| dc.title | The anti-inflammatory mechanisms of pcpc07f2 on lipopolysaccharide-stimulated phagocytes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄧哲明,楊春茂,顏茂雄 | |
| dc.subject.keyword | 發炎反應,細胞激素,巨噬細胞, | zh_TW |
| dc.subject.keyword | inflammation,cytokine,macrophage, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-29 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 1.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
