請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42430完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳宗霖 | |
| dc.contributor.author | Chia-Yuan Hsieh | en |
| dc.contributor.author | 謝嘉原 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:13:39Z | - |
| dc.date.available | 2009-08-03 | |
| dc.date.copyright | 2009-08-03 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-29 | |
| dc.identifier.citation | [1] K.-L. Tai, “System-in-package (SiP): Challenges and opportunities,” in Proc. Asia–South Pacific Design Automation Conf., 2000, pp. 211–216.
[2] M. Swaminathan, J. Kim, I. Novak and J. P. Libous, “Power Distribution Networks for System-on-Package:Status and Challenges,” IEEE Trans. Adv. Packag., vol. 27, no. 2, pp.286 – 300, May 2004. [3] S. Van den Berghe, F. Olyslager, D. De Zutter, J. De Moerloose and W. Temmerman, “Study of the Ground Bounce Caused by Power Plane Resonances,” IEEE Trans. Electromag. Compat., vol. 40, no. 2, pp.111 – 119, May 1998. [4] T. Sudo, H. Sasaki, N. Masuda, and J. L. Drewniak, “Electromagnetic interference (EMI) of system-on-package (SOP),” IEEE Trans. Adv. Packag., vol. 27, pp. 304-314, May. 2004. [5] R. Senthinathan and J. L. Prince, “Simultaneous switching ground noise calculation for packaged CMOS devices,” IEEE J. Solid-State Circuits, vol. 26, pp. 1724-1728, Nov. 1991. [6] International Technology Roadmap for Semiconductors (http://www.itrs.net/) [7] W. Cui, J. Fan, Y. Ren, H. Shi, J. L. Drewniak and R. E. DuBroff, “DC Power-Bus Noise Isolation With Power-Plane Segmentation,” IEEE Trans. Electromag. Compat., vol. 45, no. 2, pp.436 – 443, May 2003. [8] T. H. Hubing, J. L. Drewniak, T. P. Van Doren, and D. M. Hockanson, “Power bus decoupling on multiple prined circuit boards,” IEEE Tran. Electromag. Compat., vol. 37, pp. 155-166, May 1995. [9] X. Minjia, T. H. Hubing, J. Chen, T. P. Van Doren, J. L. Drewniak, and R. E. DuBroff, “Power-bus decoupling with embedded capacitance in printed circuit board design,” IEEE Trans. Electromag. Compat., vol. 45, pp. 22-30, Feb. 2003. [10] D. F. Sievenpiper, “High-impedance electromagnetic surfaces,”Ph.D. dissertation, Dept. Elect. Eng., Univ. California at Los Angeles, Los Angeles, CA, 1999. [11] D. Sievenpiper, L. Zhang, R. F. Jimenez Broas, N. G. Alex´opolous, and E. Yablonovitch, “High-Impedance Electromagnetic Surfaces with a Forbidden Frequency Band”, IEEE Trans. Microwave Theory and Tech., vol.47, no. 11, pp.2059-2074, Nov. 1999. [12] F. Yang and Y. Rahmat-Samii, “Mutual coupling reduction of microstrip antennas using electromagnetic band-gap structure,” in IEEE AP-S/URSI Symp. Dig., vol. 2, Jul. 2001, pp. 478–481. [13] F. Yang and Y. Rahmat-Samii, “Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications,” IEEE Trans. Antennas Propag., vol. 51, no. 10, pp. 2691–2703, Oct. 2003. [14] J. D. Joannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals: Modeling of the Flow of Light, Princeton University Press, Princeton, N.J., 1995. [15] L. Brillouin, Wave Propagation in Periodic Structure; Electric Filters and Crystal Lattices. New York: McGraw-Hill, 1946. [16] R. Abhari, and G. V. Eleftheriades, “Metallo-dielectric electromagnetic bandgap structures for suppression and isolation of the parallel-plate noise in high-speed circuits,” IEEE Trans. Microwave Theory and Tech., vol. 51, pp. 1629-1639, June 2003. [17] T. Kamgaing, and O. M. Ramahi, “A novel power plane with integrated simultaneous switching noise mitigation capability using high impedance surface,” IEEE Microwave and Wireless Components Letters, vol. 13, pp. 21-23, January 2003. [18] S. D. Rogers, “Electromagnetic-Bandgap Layers for Broad-Band Suppression of TEM Modes in Power Planes”, IEEE Trans. Microwave Theory and Tech., vol.53, no. 8, Aug. 2005. [19] C.-L. Wang, G.-H. Shiue, W.-D. Guo, and R.-B. Wu, “A Systematic Design to Suppress Wideband Ground Bounce Noise in High-Speed Circuits by Electromagnetic-Bandgap-Enhanced Split Powers”, IEEE Trans. Microwave Theory and Tech., vol. 54, no.12, pp. 4209-4217, Dec. 2006. [20] J. Lee, H. Kim and J. Kim, “High Dielectric Constant Thin Film EBG Power/Ground Network for Broad-band Suppression of SSN and Radiated Emissions”, IEEE Microwave and Wireless Components Letters, vol. 15, no.8, pp. 505-507, Aug. 2005. [21] J. Park, A. C., W. Lu, K. M. Chua, Lai L. Wai, J. Lee, and J. Kim, “Double-Stacked EBG Structure for Wideband Suppression of Simultaneous Switching Noise in LTCC-Based SiP Applications”, IEEE Microwave and Wireless Components Letters, vol. 15, no.8, pp. 505-507, Aug. 2005. [22] T.-L. Wu, Y.-H. Lin, T.-K.Wang, C.-C. Wang, and S.-T. Chen, “Electromagnetic Bandgap Power/Ground Planes for Wideband Suppression of Ground Bounce Noise and Radiated Emission in High-Speed Circuits”, IEEE Trans. Microwave Theory and Tech., vol. 53, no.9, pp. 2935-2942, Sept. 2005. [23] T.-L. Wu, Y.-. Lin, and S.-T. Chen, “A Novel Power Plane With Super-Wideband Elimination of Ground Bounce Noise on High Speed Circuits”, IEEE Microwave and Wireless Components Letters, vol. 15, no.3, pp. 174-176, March 2005. [24] J. Choi, V. Govind, and M. Swaminathan, “A novel electromagnetic bandgap (EBG) structure for mixed-signal system applications,” 2004 IEEE Radio and Wireless Conference (RAWCON), pp.243-246, Atlanta, GA, September 2004. [25] K. H. Kim, and J. E. Schutt-Aine, “Analysis and Modeling of Hybrid Planar-Type Electromagnetic-Bandgap Structures and Feasibility Study on Power Distribution Network Applications,” IEEE Trans. Microwave Theory and Tech, vol. 56, no.1, pp. 178-186, Jan. 2008. [26] J. Qin and O. M. Ramahi, “Ultra-wideband mitigation of simultaneous switching noise using novel planar electromagnetic bandgap structures,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 9, pp. 487–489, Sep. 2006. [27] T.-K. Wang, T.-W. Han, and T.-L. Wu, “A novel EBG power plane with stopband enhancement using artificial substrate,” IEEE Trans. Microwave Theory and Tech, vol. 56, no.5, pp. 1164-1171, Sept. 2008. [28] T. L. Wu and S. T. Chen, “A Photonic Crystal Power/Ground Layer for Eliminating Simultaneously Switching Noise in High-Speed Circuit”, IEEE Trans. Microwave Theory and Tech., vol. 54, no.8, pp. 3398-3406, Aug 2006. [29] M.-S. Zhang, Y.-S. Li, C. Jia, and L.-P. Li, “A Power Plane With Wideband SSN Suppression Using a Multi-Via Electromagnetic Bandgap Structure”, IEEE Microwave and Components Letters, vol. 17, no. 4, Apr. 2007. [30] M. Pozar, Microwave Engineering, 2nd ed., New York: Wiley, 1998. [31] J. Kim and M. Swaminathan,“Modeling of multilayered power distribution planes using transmission matrix method,” IEEE Trans. Adv. Packag., vol. 25, no. 2, pp.189-199, May 2002. [32] B. Razavi, RF Microelectronics. Prentice Hall, 1998. [33] J. Park, J. Kim, A. C. W. Lu, Y. Shim, and J. Kim, “Noise Isolation in LTCC-Based X/Ku-Band Transceiver SiP Using Double-Stacked Electromagnetic Bandgap Structure,” IEEE International Electromagnetic Compatibility Symposium, pp.1 - 6, July 2007. [34] T. Kamgaing and O. M. Ramahi, “Design and modeling of high impedance electromagnetic surfaces for switching noise suppression in power planes,” IEEE Trans. Electromagn. Compat., vol. 47, no. 3, pp. 479–489, Aug. 2005. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42430 | - |
| dc.description.abstract | 一種新型的電磁能係結構(Electromagnetic Bandgap Structure)電源層利用多連通柱的接地平面缺陷晶格(Multiple Via Ground Surface Perturbation Lattice)已被提出。此種電磁能係結構電源層提供寬頻的濾波效果用來抑制電源封裝系統中的接地彈跳雜訊(Simultaneous Switching Noise)耦合之傳遞。此種新型的電磁能係結構電源層是利用多連通柱的接地平面缺陷晶格與共平面式電磁能係結構電源層所組成。多連通柱的接地平面缺陷晶格是為週期性排列之金屬片以多根連通柱連接到共平面式電磁能係結構電源層之接地層,達到有效增加共平面式電磁能係結構電源層的效果。此電磁能係結構電源層能夠在不加額外元件下在提供140%比例頻寬。針對此結構,一個一維的等效電路也被提出用來快速預測其頻帶。此一維等效電路的有效性已由實驗與模擬做驗證,並用來建立參數設計曲線。為了研究電磁能係結構在混合信號系統的可行性,一個C 頻帶的低雜訊放大器已被設計用來作為一個研究案例。在模擬與量測中,此電磁能係結構電源層已被驗證在提供低雜訊放大器偏壓時能有效阻隔接地彈跳雜訊對放大器信號品質的干擾。在低雜訊放大器的輸出頻譜內約50%的雜訊干擾可以被抑制。 | zh_TW |
| dc.description.abstract | A novel EBG power/ground planes using LPC-EBG with multiple via ground surface perturbation lattice (MV-GSPL) is proposed. The proposed structure is used to provide superior stopband to suppress the simultaneous switching noise (SSN) coupling within typical power/ground planes. The MV-GSPL is periodically distributed metal patches shorting to the continuous ground plane and can be embedded in a coplanar type EBG structure to enhance its stopband. This structure is able to provide almost 140 fractional bandwidth without any additional component in a compact unit cell area. An efficient 1-D analysis model is also proposed. The 1-D model is able to consider the via effect of MV-GSPL on the stopband. In the application aspect, a test C-band low noise amplifier (LNA) fabricated by the TSMC 0.18um 1P6M process is packaged on the LPC-EBG with MV-GSPL substrate for noise immunity test. Both the chip-package co-simulation and experimental results show excellent power noise isolation capability of the RF package for the C-band LNA. The proposed EBG structure is confirmed possessing up to 50 % spurious noise reduction in output spectrum of the LNA. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:13:39Z (GMT). No. of bitstreams: 1 ntu-98-R96942013-1.pdf: 3330110 bytes, checksum: 59fa6f4deab71725d4d95279ed5937e9 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
1.1 Research Motivations 1 1.2 Simultaneous Switching Noises (SSNs) in Power Distribution Networks 2 1.3 SSN Coupling in Mixed-Signal Systems 5 1.4 Proposed Research and Dissertation Outline 6 Chapter 2 Literature Survey for Solving SSN Coupling 8 2.1 Power Plane Segmentation 8 2.2 Discrete and Embedded Decoupling Capacitor 9 2.3 Electromagnetic Bandgap Structure 10 2.3.1 Mushroom Type EBG Structure 11 2.3.2 Coplanar Type EBG Structure 16 2.3.3 Photonic Crystal Type EBG structure 19 2.4 Summary 20 Chapter 3 LPC- EBG Structure with Multiple Via Ground Surface Perturbation Lattice for Stopband Enhancement 21 3.1 Design Concept of LPC-EBG with MV-GSPL 21 3.2 Proposed One Dimensional Equivalent Circuit Model 26 3.2.1 ABCD Matrix and Periodic Boundary Condition (PBC) 26 3.2.2 Proposed One Dimensional Equivalent Circuit 31 3.3 Fabrication and Measurements 42 3.4 Parameter Analysis 46 3.5 Summary 50 Chapter 4 Application Study for EBG Power/Ground Planes in Mixed Signal System 52 4.1 A Low Noise Amplifier in a Mixed-signal System 53 4.2 Design and Fabrication of Power Distribution Networks (PDN) 56 4.3 Power Integrity Analysis of PDN 59 4.4 Measurement Results of LNA under SSN coupling 66 4.5 Summary 71 Chapter 5 Conclusion 72 Reference 73 | |
| dc.language.iso | zh-TW | |
| dc.subject | 電磁能係結構(Electromagnetic Bandgap Structure) | zh_TW |
| dc.subject | 接地彈跳雜訊(Simultaneous Switching Noise) | zh_TW |
| dc.subject | 混合信號系統(mixed-signal system) | zh_TW |
| dc.subject | simultaneous switching noise(SSN) | en |
| dc.subject | mixed-signal system | en |
| dc.subject | Electromagnetic bandgap (EBG) | en |
| dc.title | 具有隔絕寬頻電源雜訊抑制效果之新型電磁能隙結構電源層:其模型與在射頻系統單晶片封裝之應用 | zh_TW |
| dc.title | A Power Bus with Novel Electromagnetic Bandgap (EBG) Structure for Broadband Noise Isolation: Modeling and Application in RF-SiP | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭士康,駱韋仲,洪志斌,洪子聖 | |
| dc.subject.keyword | 接地彈跳雜訊(Simultaneous Switching Noise),電磁能係結構(Electromagnetic Bandgap Structure),混合信號系統(mixed-signal system), | zh_TW |
| dc.subject.keyword | simultaneous switching noise(SSN),Electromagnetic bandgap (EBG),mixed-signal system, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-29 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 3.25 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
