Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42429
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor譚義績(Yih-Chi Tan)
dc.contributor.authorChun-Chieh Huangen
dc.contributor.author黃俊傑zh_TW
dc.date.accessioned2021-06-15T01:13:38Z-
dc.date.available2010-08-19
dc.date.copyright2009-08-19
dc.date.issued2009
dc.date.submitted2009-07-29
dc.identifier.citation1. Basin, Montana. II. Aquifer test analysis, Journal of Hydrology, 308, 242-257.
2. Butler, J. J., Jr., and W. Z. Liu, 1991, Pumping tests in non-uniform aquifers- The linear strip case, J. Hydrol., 128, 69-99.
3. Carrera, J. and Neuman, S.P., 1986, Estimation of aquifer parameters under transient and steady state conditions: 2. Uniqueness, stability and solution algorithms, Water Resource Research, 22, 211-77.
4. Cheng, J.M. and Yeh, W.W.G., 1992, A proposed quasi-Newton method for parameter identification in a flow and transport system, Advances in Water Resources , 15 239-249
5. Cooper, H. H., Jr., and C. E. Jacob 1946, A generalized graphical method for evaluating formation constants and summarizing well-field history, Trans. Amer. Geophysical Union, v. 27, pp. 526-534.
6. Darcy, H., and H. Bazin 1865, Recherches Hydrauliques, Enterprises par M. H. Darcy, Imprimerie Nationale, Paris.
7. Desbarats, A.J. 1992, Spatial averaging of transmissivity in heterogeneous fields with flow toward a well. Water Resources Research, 28(3):757–767
8. Eppstein, M.J., Dougherty, D.E., 1996, Simultaneous estimation of transmissivity values and zonation, Water Resources Research. 32 (11), 3321–3336.
9. Gutjahr, A.L., Wilson, J.L., 1989, Co-kriging for stochastic flow models, Transport in Porous Media, 4 (6), 585–598.
10. Heilweil VM, Hsieh PA. 2006, Determining anisotropic transmissivity using asimplified Papadopulos model. Ground Water 44(5): 749–753.
11. Indelman, P., Fiori, A., Dagan, G., 1996, Steady flow toward wells in heterogeneous formations: Mean head and equivalent conductivity, Water Resources Research, 32(7), 1975-1983.
12. Indelman, P., 2003, Transient pumping well flow in weakly heterogeneous formations, Water Resources Research, 39(10), 1287, doi:10.1029/2003WR002036
13. Lin, H.T., Yu, H.-L., Tan, Y.C., and Chen, C.H., April 13-18 2008, “Effective hydrogeological parameter estimation with a novel modified Tabu search algorithm”, European Geophysical Union (EGU) General Assembly, Vienna, Austria.
14. Meier, P.M., Carrera, J., Sanchez-Vila, X., 1999, A numerical study on the relationship between transmissivity and specific capacity in heterogeneous aquifers. Ground Water. 37 (4), 611–617.
15. Neuman, S. P., 1980a, Adjoint-state finite element equation for parameters estimation, in Proceedings of Third International Congress on Finite Elements in Water Resources, University of Mississippi.
16. Neuman, S. P., 1980b, A statistical approach to the inverse problem of aquifer hydrology, 3. Improved solution method and added perspective, Water Resources Research, 16(2), 331-346.
17. Oliver, D.S., 1993, The influence of non-uniform transmissivity and storativity on drawdown. Water Resources Research, 29(1):169–178
18. Painter, S.L., Woodbury, A.D., Jiang, Y.F., 2007, Transmissivity estimation for highly heterogeneous aquifers: comparison of three methods applied to the Edwards Aquifer, Texas, USA, Hydrogeology Journal, 15(2), 315-331.
19. Papadopulos IS. 1965, Nonsteady flow to a well in an infinite anisotropic aquifer.Proceedings of Dubrovnik Symposium on the Hydrology of Fractured Rocks,International Association of Scientific Hydrology, Dubrovnik, Yugoslavia; 21–31.
20. Rhode, K.L., Osiensky, J.L., Miller, S.M., 2007, Numerical evaluation of volumetric weighted mean transmissivity estimates in laterally heterogeneous aquifers, Journal of Hydrology, 347,381-390.
21. Sánchez-Vila, X., P. M. Meier, and J. Carrera, 1999, Pumping test in heterogeneous aquifers: an analytical study of what can be obtained from their interpretation using Jacob’s method, Water Resources Research, 35(4), 943-952 .
22. Streltsova TD (1988) Well testing in heterogeneous formations. Wiley, New York
23. Sun N Z and Yeh W W-G 1985, Identification of parameter structure in groundwater inverse problems, Water Resources Research, 21, 869-83.
24. Sun, N.Z., and Yeh, W.W.G.., 1990a ,Coupled inverse problem in groundwater modeling, 1, sensitivity analysis and parameter identification, Water Resources Research, 26(10), 2507-2525.
25. Sun, N.Z., and Yeh, W.W.G.., 1990b ,Coupled inverse problem in groundwater modeling, 2, Identifiability and experimental design, Water Resources Research, 26(10), 2527-2540.
26. Tan, C.C., Tung, C.P., Chen, C.H., and Yeh, W.W.G.., 2008, An integrated optimization algorithm for parameter structure identification in groundwater modeling, Advances in Water Resources, 31(3), 545-560.
27. Tartakovsks, D.M., Guadagnini, A., Guadagnini, L., 2000, Effective hydraulic conductivity and transmissivity for heterogeneous aquifers, Mathematical Geology, 32(6), 751-759.
28. Tartakovsky, D.M., Guadagnini. A., Ballio, F., Tartakovsky, A.M., 2002, Localization of mean flow and apparent transmissivity tensor for bounded randomly heterogeneous aquifers, Transport in Porous Media, 49(1), 41-58.
29. Theis, C. V. 1935, The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage, Trans. Amer. Geophysical Union, v. 16, pp. 519-524.
30. Toth, J., 1966, Groundwater, geology, movement, chemistry and resources, near Olds, Alberta. Research Council of Alberta Bulletin 17, Edmonton, pp126.
31. Tumlinson, L.G., Osiensky, J.L., Fairley, J.P., 2006, Numerical evaluation of pumping well transmissivity estimates in laterally heterogeneous formations. Hydrogeology Journal, 14 (1–2), 21–26.
32. Tung, C.P., Chou, C.A., 2004, Pattern classification using tabu search to identify the spatial distribution of groundwater pumping, Hydrogeology Journal, 12 (5), 488–496.
33. Warren, J.E., and Price, H.S., 1961, Flow in heterogeneous media, Soc. Pet. Eng. J., 1, 153-169
34. Weeks, E.P., 2004, Hydrologic properties of coal-beds in the Powder River
35. Wu, C.M., Yeh, T.C., Zhu, J., Lee, T.H., Hsu, N.S., Chen, C.H., and Sancho, C.H., 2005, Traditional analysis of aquifer tests: Comparing apples to oranges?, Water Resources Research, VOL. 41, W09402, doi:10.1029/2004WR003717.
36. Wu, S.C.,Tan, Y.C., Chen, C.H., Lin, S.T., Ke K.Y., 2008, A two-dimensional inverse model to identify transmissivity in an anisotropic aquifer, Hydrological Processes, DOI: 10.1002/hyp.7134
37. Yeh WWG. 1986, Review of parameter identification procedures in groundwater hydrology: The inverse problem. Water Resources Research 22(2): 95–108.
38. Yeh, W.W.G.., and Sun, N.Z.,1990, Variational sensitivity analysis, data requirement , and parameter identification in a leaky aquifer system, Water Resources Research, 26(9), 1927-1938.
39. Yeh, W. W. -G.., and Y. S. Yoon, 1986, A system identification procedure for the identification of inhomogeneous aquifer parameters”, in Advances in Groundwater Hydrology, edited by Z. A. Saleen, pp. 72-82, Am. Water Resour. Assoc., Middleburg, Va.
40. Yu, H. L., and Christakos, G., 2006, Porous media upscaling in terms of mathematical epistemic cognition, Siam Journal on Applied Mathematics, 66(2), 433-446.
41. Zheng, C., Wang, P., 1996, Parameter Structure Identification Using Tabu Search and Simulated Annealing, Advances in Water Resources, Vol. 19, No. 4, 215-224.
42. Zheng C, Wang P. 1999, An integrated global and local optimization approach forremediation system design. Water Resource Research 35(1): 137–148
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42429-
dc.description.abstract抽水試驗是現地實驗中推估水文地質參數相當常見的方法。已有許多研究探討及推估均質等向性含水層中之水文參數,但僅有少部分研究著重在非等向異質性含水層中之水文特性。
實際上,地下含水層參數均為異質性,但卻利用均質且等向的方式『有效參數』來描述異質含水層參數。本研究主要探討在抽水試驗中,由觀測水位資訊,來推估非等向性含水層之有效參數。因此本研究利用VSAFT2模式產生異質性含水層之場址,進行抽水試驗模擬,利用下述方法推估非等向性有效參數並加以比較:(1)Papadopulos解析解-曲線法(2)權重平均(3)達西定律及(4)洩降空間矩分析。由結果得知,利用Papadopulos解析解推估參數,長時間的抽水試驗分析所得的流通係數是代表在抽水井有效半徑內所有流通係數的某種平均值;此平均值與抽水井和觀測井附近的地下水參數數值有很大的關係,而且可能受到有效半徑內地質異質性的影響。利用權重幾何平均的方式對異質性地層做參數推估比較,權重算術平均的方式會有較好的代表性。利用達西定律得到的非等向性情況下之水文地質參數與利用Papadopulos解析解方法求出之非等向性情況下水文地質參數有很大的差異。應用修正空間洩降矩分析推估在任意時間內隨機場中之有效參數,如有效流通係數張量或有效儲水係數。
zh_TW
dc.description.abstractPumping test is the most common way to estimate hydro-geological parameters in the field experiment. There are a lot of investigations to estimate hydraulic parameters of homogenous aquifer, but merely fewer researches focus on the hydro-geological characteristics of the anisotropic and heterogeneous aquifer.
Actually, the hydro-geological parameters of aquifer are heterogeneous in the field, but many people use the effective parameters which are anisotropic and homogeneous in heterogeneous aquifers to describe the parameters of heterogeneous aquifer. In this paper, we will use the groundwater level observed from pumping test to estimate the effective parameters of the anisotropic aquifer. At first, we use the numerical model, VSAFT2, to generate a heterogeneous study aquifer. And then, we proceed the pumping test on this study area. Finally, we use the four methods, Papadopulos analytical solution, weighting average, Darcy’s law and spatial moment analysis, to indentify the anisotropic effective parameters and analyze the results.
Results show that the effective transmissivities identified by the Papadopulos analytical solution represent an averaged value of all transmissivities within the effective cone of depression. This value is strongly related to the hydro-geological parameters near the pumping well and observation well, and the hydro-geological heterogeneity within the effective cone of depression. The optimums of heterogeneous aquifer by the geometric weighted mean method are better than ones by the arithmetic weighted mean method. The hydro-geological parameters of anisotropic aquifer estimated by Darcy’s law are very different to ones by Papadopulos analytical solutions. It is successful to apply spatial moment analysis to estimate the effective parameters, such as the effective transmissivity coefficient tensor or effective storage coefficient in any duration for any data from the curve of drawdown versus time.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:13:38Z (GMT). No. of bitstreams: 1
ntu-98-R96622021-1.pdf: 6401232 bytes, checksum: 5565c1fa8abc764354650ecd4040d497 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents目錄
口試委員會審定書
謝誌
摘要…………………………………………………………………….....I
Abstract…………………………………………………………...…….. II
目錄………………………………………………………...……...........IV
圖目錄……………………………………………………………..........VI
表目錄………………………………………………………………….VII
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究方法 3
1.4 研究流程 4
1.5 論文架構 5
第二章 文獻回顧 6
2.1 有效地下水文參數推估 6
2.2 異質含水層 8
第三章 異質性含水層有效參數推估之理論分析 11
3.1 Papadopulos抽水試驗及解析解 11
3.2 數值模式-有限差分法 20
3.3 洩降分佈的空間矩分析 26
第四章 數值模式建立與模擬結果分析 34
4.1 模擬場址設計與結果 34
4.1.1 模式一 場址網格變化 34
4.1.2 模式二 觀測井之數量變化 41
4.2 權重法 46
4.2.1 算數權重平均流通係數 46
4.2.2 幾何權重平均流通係數 49
4.3 Darcy定律探討有效參數 55
4.4 空間矩分析模擬模式驗證 62
4.5 Relative Root Mean-Squared Error(RRMSE) 64
第五章結論與建議 67
5.1 研究結論 67
5.2 研究建議 68
參考文獻 69


圖目錄
圖1.4.1 研究流程圖 4
圖3-1 Theis曲線法觀測資料與井函數對圖關係示意圖 19
圖3-2 (左圖)均勻網格建置模式無法精確描述邊界情況,導致求解之精確性降低。(右圖)非均勻網格建置模式,以致求解精確性提高。 20
圖3-3 有限控制體示意圖 21
圖3-4 隱性法求解示意圖 23
圖3-5 地下水模式主矩陣之九帶寬矩陣示意圖 25
圖4.1.1 流通係數Txx值隨機分布 35
圖4.1.2 流通係數Tyy值隨機分布 36
圖4.1.3儲水係數S值隨機分布 37
圖4.1.4 場址分割圖 38
圖4.1.5 Theis曲線法觀測資料與井函數對圖關係示意圖 39
圖4.1.6 Papadopulos方法所求出之水文地質參數值 40
圖4.1.7 流通係數Txx值隨機分布 41
圖4.1.8 流通係數Tyy值隨機分布 42
圖4.1.9 儲水係數S值隨機分布 42
圖4.1.10 六口觀測井之分布位置圖 44
圖4.2.1 Txx權重算術平均-時間對數圖 47
圖4.2.2 Tyy權重算術平均-時間對數圖 48
圖4.2.3 Txx權重幾何平均-時間對數圖 49
圖4.2.4 Tyy權重幾何平均-時間對數圖 50
圖4.2.5 利用權重幾何平均求出之洩降與三口觀測井求出之洩降之RRMSE 51
圖4.2.6 利用權重算術平均求出之洩降與三口觀測井求出之洩降之RRMSE 52
圖4.2.7 利用權重幾何平均求出之洩降與全區域每個網格求出之洩降之RRMSE 53
圖4.2.8 利用權重算術平均求出之洩降與全區域每個網格求出之洩降之RRMSE 54
圖4.3.1 區域邊界水頭設定圖 56
圖4.3.2 比較利用Darcy公式與Papadopulos解析解所求出之Txx 57
圖4.3.3 比較利用Darcy公式與Papadopulos解析解所求出之Tyy 58
圖4.3.4 比較利用Darcy公式與Papadopulos解析解所求出之Txy 59
圖4.3.5 異質情況與均質情況流速Vxx比較圖 60
圖4.3.6異質情況與均質情況流速Vyy比較圖 61
圖4.4.1 洩降矩求出之水文地質參數圖 63
圖4.5.1 各種方式求出水文地質參數代入求出其洩降之RRMSE 65
表目錄
表4.1.1 VSAFT2相關參數設定值 35
表4.1.2 九個區域之水文地質參數表 39
表4.1.3 任取三口觀測井之洩降值求解得到水文地質參數值 45
表4.3.1 Darcy公式所求出九區域之水文地質參數 57
表4.3.2 異質情況所求出之流速 60
表4.3.3 異質情況所求出之流速 60
表4.4.1 利用洩降矩求出之水文地質參數 63
表4.5.1 利用type-curve對圖法求出洩降之RRMSE表 64
表4.5.2 利用權重算術平均求出洩降之RRMSE表 64
表4.5.3 利用權重幾何平均求出洩降之RRMSE表 64
表4.5.4 利用算術平均求出洩降之RRMSE表 65
表4.5.5 利用幾何平均求出洩降之RRMSE表 65
dc.language.isozh-TW
dc.subject流通係數張量式zh_TW
dc.subject非等向異質性含水層zh_TW
dc.subject有效參數zh_TW
dc.subjectVSAFT2zh_TW
dc.subject空間矩分析zh_TW
dc.subjectVSAFT2en
dc.subjectanisotropic aquiferen
dc.subjecttransmissivity coefficient tensor.en
dc.subjectspatial moment analysisen
dc.subjecteffective parameteren
dc.title異質性含水層中水文地質參數之有效推估zh_TW
dc.titleEstimated effective parameters for an anisotropic aquiferen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.coadvisor陳主惠(Chu-Hui Chen)
dc.contributor.oralexamcommittee陳建謀(Jiann-Mou Chen),余化龍(Hwa-Lung Yu)
dc.subject.keyword非等向異質性含水層,有效參數,VSAFT2,空間矩分析,流通係數張量式,zh_TW
dc.subject.keywordanisotropic aquifer,effective parameter,VSAFT2,spatial moment analysis,transmissivity coefficient tensor.,en
dc.relation.page72
dc.rights.note有償授權
dc.date.accepted2009-07-29
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
6.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved