Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥學專業學院
  4. 藥學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42428
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈麗娟
dc.contributor.authorYu-Fen Liangen
dc.contributor.author梁玉芬zh_TW
dc.date.accessioned2021-06-15T01:13:37Z-
dc.date.available2014-09-15
dc.date.copyright2009-09-15
dc.date.issued2009
dc.date.submitted2009-07-29
dc.identifier.citation1. H. Eagle. Nutrition needs of mammalian cells in tissue culture. Science. 122:501-514 (1955).
2. H. Eagle. Amino acid metabolism in mammalian cell cultures. Science. 130:432-437 (1959).
3. J. F. Morgan, H. J. Morton, and A. E. Pasieka. The arginine requirement of tissue cultures. I. Interrelationships between arginine and related compounds. J Biol Chem. 233:664-667 (1958).
4. G. Wu and S. M. Morris, Jr. Arginine metabolism: nitric oxide and beyond. Biochem J. 336 ( Pt 1):1-17 (1998).
5. M. A. Grillo and S. Colombatto. Arginine revisited: minireview article. Amino Acids. 26:345-351 (2004).
6. E. I. Closs and G. E. Mann. Identification of carrier systems in plasma membranes of mammalian cells involved in transport of L-arginine. Methods Enzymol. 301:78-91 (1999).
7. W. C. Rose. The amino acid requirements of adult man. Nutr Abstr Rev Ser Hum Exp. 27:631-647 (1957).
8. A. Barbul. Arginine: biochemistry, physiology, and therapeutic implications. JPEN J Parenter Enteral Nutr. 10:227-238 (1986).
9. N. E. Flynn, C. J. Meininger, T. E. Haynes, and G. Wu. The metabolic basis of arginine nutrition and pharmacotherapy. Biomed Pharmacother. 56:427-438 (2002).
10. G. Wu, C. J. Meininger, D. A. Knabe, F. W. Bazer, and J. M. Rhoads. Arginine nutrition in development, health and disease. Curr Opin Clin Nutr Metab Care. 3:59-66 (2000).
11. M. B. Witte and A. Barbul. Arginine physiology and its implication for wound healing. Wound Repair Regen. 11:419-423 (2003).
12. D. N. Wheatley, L. Scott, J. Lamb, and S. Smith. Single amino acid (arginine) restriction: growth and death of cultured HeLa and human diploid fibroblasts. Cell Physiol Biochem. 10:37-55 (2000).
13. S. J. Bach and I. Lasnitzki. Some aspects of the role of arginine and arginase in mouse carcinoma 63. Enzymologia. 12:198-205 (1947).
14. M. G. Ormerod, R. M. Orr, and J. H. Peacock. The role of apoptosis in cell killing by cisplatin: a flow cytometric study. Br J Cancer. 69:93-100 (1994).
15. T. J. Yeatman, G. L. Risley, and M. E. Brunson. Depletion of dietary arginine inhibits growth of metastatic tumor. Arch Surg. 126:1376-1381; discussion 1381-1372 (1991).
16. J. Lamb and D. N. Wheatley. Single amino acid (arginine) deprivation induces G1 arrest associated with inhibition of cdk4 expression in cultured human diploid fibroblasts. Exp Cell Res. 255:238-249 (2000).
17. L. Scott, J. Lamb, S. Smith, and D. N. Wheatley. Single amino acid (arginine) deprivation: rapid and selective death of cultured transformed and malignant cells. Br J Cancer. 83:800-810 (2000).
18. A. B. Pardee. A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci U S A. 71:1286-1290 (1974).
19. D. N. Wheatley. Arginine deprivation and metabolomics: important aspects of intermediary metabolism in relation to the differential sensitivity of normal and tumour cells. Semin Cancer Biol. 15:247-253 (2005).
20. D. N. Wheatley, R. Kilfeather, A. Stitt, and E. Campbell. Integrity and stability of the citrulline-arginine pathway in normal and tumour cell lines. Cancer Lett. 227:141-152 (2005).
21. G. Caso, M. A. McNurlan, N. D. McMillan, O. Eremin, and P. J. Garlick. Tumour cell growth in culture: dependence on arginine. Clin Sci (Lond). 107:371-379 (2004).
22. D. N. Wheatley. Controlling cancer by restricting arginine availability--arginine-catabolizing enzymes as anticancer agents. Anticancer Drugs. 15:825-833 (2004).
23. T. Shibatani, T. Kakimoto, and I. Chibata. Crystallization and properties of L-arginine deiminase of Pseudomonas putida. J Biol Chem. 250:4580-4583 (1975).
24. X. Lu, L. Li, R. Wu, X. Feng, Z. Li, H. Yang, C. Wang, H. Guo, A. Galkin, O. Herzberg, P. S. Mariano, B. M. Martin, and D. Dunaway-Mariano. Kinetic analysis of Pseudomonas aeruginosa arginine deiminase mutants and alternate substrates provides insight into structural determinants of function. Biochemistry. 45:1162-1172 (2006).
25. J. L. Weickmann and D. E. Fahrney. Arginine deiminase from Mycoplasma arthritidis. Evidence for multiple forms. J Biol Chem. 252:2615-2620 (1977).
26. T. Ohno, O. Ando, K. Sugimura, M. Taniai, M. Suzuki, S. Fukuda, Y. Nagase, K. Yamamoto, and I. Azuma. Cloning and nucleotide sequence of the gene encoding arginine deiminase of Mycoplasma arginini. Infect Immun. 58:3788-3795 (1990).
27. H. Takaku, M. Takase, S. Abe, H. Hayashi, and K. Miyazaki. In vivo anti-tumor activity of arginine deiminase purified from Mycoplasma arginini. Int J Cancer. 51:244-249 (1992).
28. H. Takaku, M. Matsumoto, S. Misawa, and K. Miyazaki. Anti-tumor activity of arginine deiminase from Mycoplasma argini and its growth-inhibitory mechanism. Jpn J Cancer Res. 86:840-846 (1995).
29. M. De Angelis, L. Mariotti, J. Rossi, M. Servili, P. F. Fox, G. Rollan, and M. Gobbetti. Arginine catabolism by sourdough lactic acid bacteria: purification and characterization of the arginine deiminase pathway enzymes from Lactobacillus sanfranciscensis CB1. Appl Environ Microbiol. 68:6193-6201 (2002).
30. J. E. Kim, D. W. Jeong, and H. J. Lee. Expression, purification, and characterization of arginine deiminase from Lactococcus lactis ssp. lactis ATCC 7962 in Escherichia coli BL21. Protein Expr Purif. 53:9-15 (2007).
31. D. Linstead and M. A. Cranshaw. The pathway of arginine catabolism in the parasitic flagellate Trichomonas vaginalis. Mol Biochem Parasitol. 8:241-252 (1983).
32. N. Yarlett, D. G. Lindmark, B. Goldberg, M. A. Moharrami, and C. J. Bacchi. Subcellular localization of the enzymes of the arginine dihydrolase pathway in Trichomonas vaginalis and Tritrichomonas foetus. J Eukaryot Microbiol. 41:554-559 (1994).
33. L. A. Knodler, P. J. Schofield, A. A. Gooley, and M. R. Edwards. Giardia intestinalis: purification and partial amino acid sequence of arginine deiminase. Exp Parasitol. 85:77-80 (1997).
34. H. Gong, F. Zolzer, G. von Recklinghausen, J. Rossler, S. Breit, W. Havers, T. Fotsis, and L. Schweigerer. Arginine deiminase inhibits cell proliferation by arresting cell cycle and inducing apoptosis. Biochem Biophys Res Commun. 261:10-14 (1999).
35. H. Gong, F. Zolzer, G. von Recklinghausen, W. Havers, and L. Schweigerer. Arginine deiminase inhibits proliferation of human leukemia cells more potently than asparaginase by inducing cell cycle arrest and apoptosis. Leukemia. 14:826-829 (2000).
36. K. Beloussow, L. Wang, J. Wu, D. Ann, and W. C. Shen. Recombinant arginine deiminase as a potential anti-angiogenic agent. Cancer Lett. 183:155-162 (2002).
37. P. G. Clarke. Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl). 181:195-213 (1990).
38. S. M. Gorski, S. Chittaranjan, E. D. Pleasance, J. D. Freeman, C. L. Anderson, R. J. Varhol, S. M. Coughlin, S. D. Zuyderduyn, S. J. Jones, and M. A. Marra. A SAGE approach to discovery of genes involved in autophagic cell death. Curr Biol. 13:358-363 (2003).
39. C. Y. Lee, E. A. Clough, P. Yellon, T. M. Teslovich, D. A. Stephan, and E. H. Baehrecke. Genome-wide analyses of steroid- and radiation-triggered programmed cell death in Drosophila. Curr Biol. 13:350-357 (2003).
40. R. H. Kim, J. M. Coates, T. L. Bowles, G. P. McNerney, J. Sutcliffe, J. U. Jung, R. Gandour-Edwards, F. Y. Chuang, R. J. Bold, and H. J. Kung. Arginine deiminase as a novel therapy for prostate cancer induces autophagy and caspase-independent apoptosis. Cancer Res. 69:700-708 (2009).
41. K. Miyazaki, H. Takaku, M. Umeda, T. Fujita, W. D. Huang, T. Kimura, J. Yamashita, and T. Horio. Potent growth inhibition of human tumor cells in culture by arginine deiminase purified from a culture medium of a Mycoplasma-infected cell line. Cancer Res. 50:4522-4527 (1990).
42. B. J. Dillon, V. G. Prieto, S. A. Curley, C. M. Ensor, F. W. Holtsberg, J. S. Bomalaski, and M. A. Clark. Incidence and distribution of argininosuccinate synthetase deficiency in human cancers: a method for identifying cancers sensitive to arginine deprivation. Cancer. 100:826-833 (2004).
43. C. Y. Yoon, Y. J. Shim, E. H. Kim, J. H. Lee, N. H. Won, J. H. Kim, I. S. Park, D. K. Yoon, and B. H. Min. Renal cell carcinoma does not express argininosuccinate synthetase and is highly sensitive to arginine deprivation via arginine deiminase. Int J Cancer. 120:897-905 (2007).
44. P. W. Szlosarek, A. Klabatsa, A. Pallaska, M. Sheaff, P. Smith, T. Crook, M. J. Grimshaw, J. P. Steele, R. M. Rudd, F. R. Balkwill, and D. A. Fennell. In vivo loss of expression of argininosuccinate synthetase in malignant pleural mesothelioma is a biomarker for susceptibility to arginine depletion. Clin Cancer Res. 12:7126-7131 (2006).
45. T. L. Bowles, R. Kim, J. Galante, C. M. Parsons, S. Virudachalam, H. J. Kung, and R. J. Bold. Pancreatic cancer cell lines deficient in argininosuccinate synthetase are sensitive to arginine deprivation by arginine deiminase. Int J Cancer. 123:1950-1955 (2008).
46. C. M. Ensor, F. W. Holtsberg, J. S. Bomalaski, and M. A. Clark. Pegylated arginine deiminase (ADI-SS PEG20,000 mw) inhibits human melanomas and hepatocellular carcinomas in vitro and in vivo. Cancer Res. 62:5443-5450 (2002).
47. F. Izzo, P. Marra, G. Beneduce, G. Castello, P. Vallone, V. De Rosa, F. Cremona, C. M. Ensor, F. W. Holtsberg, J. S. Bomalaski, M. A. Clark, C. Ng, and S. A. Curley. Pegylated arginine deiminase treatment of patients with unresectable hepatocellular carcinoma: results from phase I/II studies. J Clin Oncol. 22:1815-1822 (2004).
48. P. A. Ascierto, S. Scala, G. Castello, A. Daponte, E. Simeone, A. Ottaiano, G. Beneduce, V. De Rosa, F. Izzo, M. T. Melucci, C. M. Ensor, A. W. Prestayko, F. W. Holtsberg, J. S. Bomalaski, M. A. Clark, N. Savaraj, L. G. Feun, and T. F. Logan. Pegylated arginine deiminase treatment of patients with metastatic melanoma: results from phase I and II studies. J Clin Oncol. 23:7660-7668 (2005).
49. H. G. Windmueller and A. E. Spaeth. Source and fate of circulating citrulline. Am J Physiol. 241:E473-480 (1981).
50. L. J. Shen, W. C. Lin, K. Beloussow, and W. C. Shen. Resistance to the anti-proliferative activity of recombinant arginine deiminase in cell culture correlates with the endogenous enzyme, argininosuccinate synthetase. Cancer Lett. 191:165-170 (2003).
51. L. J. Shen, K. Beloussow, and W. C. Shen. Modulation of arginine metabolic pathways as the potential anti-tumor mechanism of recombinant arginine deiminase. Cancer Lett. 231:30-35 (2006).
52. A. Fire, S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver, and C. C. Mello. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391:806-811 (1998).
53. B. J. Reinhart, F. J. Slack, M. Basson, A. E. Pasquinelli, J. C. Bettinger, A. E. Rougvie, H. R. Horvitz, and G. Ruvkun. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 403:901-906 (2000).
54. S. M. Elbashir, J. Martinez, A. Patkaniowska, W. Lendeckel, and T. Tuschl. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 20:6877-6888 (2001).
55. R. K. Leung and P. A. Whittaker. RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol Ther. 107:222-239 (2005).
56. Y.-C. Chang, F.-L. L. Wu, Y.-F. Liang, and L.-J. Shen. Effect of RNAi of argininosuccinate synthetase on recombinant arginine deiminase (rADI)- resistant cancer cells. The AAPS Journal. 10: (2008).
57. S. Yang, S. Tutton, E. Pierce, and K. Yoon. Specific double-stranded RNA interference in undifferentiated mouse embryonic stem cells. Mol Cell Biol. 21:7807-7816 (2001).
58. S. M. Elbashir, J. Harborth, K. Weber, and T. Tuschl. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods. 26:199-213 (2002).
59. T. Holen, M. Amarzguioui, M. T. Wiiger, E. Babaie, and H. Prydz. Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Res. 30:1757-1766 (2002).
60. A. P. McCaffrey, L. Meuse, T. T. Pham, D. S. Conklin, G. J. Hannon, and M. A. Kay. RNA interference in adult mice. Nature. 418:38-39 (2002).
61. M. A. McAnuff, G. R. Rettig, and K. G. Rice. Potency of siRNA versus shRNA mediated knockdown in vivo. J Pharm Sci. 96:2922-2930 (2007).
62. D. H. Kim, M. A. Behlke, S. D. Rose, M. S. Chang, S. Choi, and J. J. Rossi. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol. 23:222-226 (2005).
63. D. Siolas, C. Lerner, J. Burchard, W. Ge, P. S. Linsley, P. J. Paddison, G. J. Hannon, and M. A. Cleary. Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol. 23:227-231 (2005).
64. T. Tuschl. Expanding small RNA interference. Nat Biotechnol. 20:446-448 (2002).
65. P. J. Paddison, A. A. Caudy, E. Bernstein, G. J. Hannon, and D. S. Conklin. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16:948-958 (2002).
66. H. Boulaiz, J. A. Marchal, J. Prados, C. Melguizo, and A. Aranega. Non-viral and viral vectors for gene therapy. Cell Mol Biol (Noisy-le-grand). 51:3-22 (2005).
67. V. Mittal. Improving the efficiency of RNA interference in mammals. Nat Rev Genet. 5:355-365 (2004).
68. D. R. Sorensen, M. Leirdal, and M. Sioud. Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol. 327:761-766 (2003).
69. M. T. McManus, B. B. Haines, C. P. Dillon, C. E. Whitehurst, L. van Parijs, J. Chen, and P. A. Sharp. Small interfering RNA-mediated gene silencing in T lymphocytes. J Immunol. 169:5754-5760 (2002).
70. T. Kishida, H. Asada, S. Gojo, S. Ohashi, M. Shin-Ya, K. Yasutomi, R. Terauchi, K. A. Takahashi, T. Kubo, J. Imanishi, and O. Mazda. Sequence-specific gene silencing in murine muscle induced by electroporation-mediated transfer of short interfering RNA. J Gene Med. 6:105-110 (2004).
71. H. Rumpold, A. M. Wolf, K. Gruenewald, G. Gastl, E. Gunsilius, and D. Wolf. RNAi-mediated knockdown of P-glycoprotein using a transposon-based vector system durably restores imatinib sensitivity in imatinib-resistant CML cell lines. Exp Hematol. 33:767-775 (2005).
72. M. Yang and J. Mattes. Discovery, biology and therapeutic potential of RNA interference, microRNA and antagomirs. Pharmacol Ther. 117:94-104 (2008).
73. I. M. Verma and M. D. Weitzman. Gene therapy: twenty-first century medicine. Annu Rev Biochem. 74:711-738 (2005).
74. E. O. Freed. HIV-1 replication. Somat Cell Mol Genet. 26:13-33 (2001).
75. L. Naldini, U. Blomer, F. H. Gage, D. Trono, and I. M. Verma. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci U S A. 93:11382-11388 (1996).
76. L. Naldini, U. Blomer, P. Gallay, D. Ory, R. Mulligan, F. H. Gage, I. M. Verma, and D. Trono. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science. 272:263-267 (1996).
77. H. Miyoshi, U. Blomer, M. Takahashi, F. H. Gage, and I. M. Verma. Development of a self-inactivating lentivirus vector. J Virol. 72:8150-8157 (1998).
78. R. Zufferey, T. Dull, R. J. Mandel, A. Bukovsky, D. Quiroz, L. Naldini, and D. Trono. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol. 72:9873-9880 (1998).
79. K. Chu, K. G. Cornetta, and M. J. Econs. Efficient and stable gene expression into human osteoclasts using an HIV-1-based lentiviral vector. DNA Cell Biol. 27:315-320 (2008).
80. C. V. Santhosh, M. C. Tamhane, R. H. Kamat, V. V. Patel, and R. Mukhopadhyaya. A lentiviral vector with novel multiple cloning sites: stable transgene expression in vitro and in vivo. Biochem Biophys Res Commun. 371:546-550 (2008).
81. A. M. Lever. HIV RNA packaging and lentivirus-based vectors. Adv Pharmacol. 48:1-28 (2000).
82. A. M. Lever. Lentiviral vectors: progress and potential. Curr Opin Mol Ther. 2:488-496 (2000).
83. U. Blomer, L. Naldini, T. Kafri, D. Trono, I. M. Verma, and F. H. Gage. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol. 71:6641-6649 (1997).
84. R. G. Amado and I. S. Chen. Lentiviral vectors for gene therapy of HIV-induced disease. Curr Top Microbiol Immunol. 261:229-243 (2002).
85. R. G. Amado and I. S. Chen. Lentiviral vectors--the promise of gene therapy within reach? Science. 285:674-676 (1999).
86. A. M. Lever, P. M. Strappe, and J. Zhao. Lentiviral vectors. J Biomed Sci. 11:439-449 (2004).
87. T. R. Brummelkamp, R. Bernards, and R. Agami. A system for stable expression of short interfering RNAs in mammalian cells. Science. 296:550-553 (2002).
88. D. S. An, Y. Xie, S. H. Mao, K. Morizono, S. K. Kung, and I. S. Chen. Efficient lentiviral vectors for short hairpin RNA delivery into human cells. Hum Gene Ther. 14:1207-1212 (2003).
89. M. De Palma, M. A. Venneri, and L. Naldini. In vivo targeting of tumor endothelial cells by systemic delivery of lentiviral vectors. Hum Gene Ther. 14:1193-1206 (2003).
90. W. Huang da, B. T. Sherman, and R. A. Lempicki. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44-57 (2009).
91. Y.-C. Chang. Effect of RNAi of argininosuccinate synthetase on recombinant arginine deiminase (rADI)-resistant cancer cell lines. Graduate Institute of Pharmacy College of Medicine National Taiwan University Master Thesis (2008).
92. M. Di Fulvio, K. M. Henkels, and J. Gomez-Cambronero. Short-hairpin RNA-mediated stable silencing of Grb2 impairs cell growth and DNA synthesis. Biochem Biophys Res Commun. 357:737-742 (2007).
93. G. E. Mortimore, A. R. Poso, and B. R. Lardeux. Mechanism and regulation of protein degradation in liver. Diabetes Metab Rev. 5:49-70 (1989).
94. E. F. Blommaart, J. J. Luiken, and A. J. Meijer. Regulation of hepatic protein degradation. Contrib Nephrol. 121:101-108 (1997).
95. M. J. Abedin, D. Wang, M. A. McDonnell, U. Lehmann, and A. Kelekar. Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ. 14:500-510 (2007).
96. X. H. Liang, S. Jackson, M. Seaman, K. Brown, B. Kempkes, H. Hibshoosh, and B. Levine. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 402:672-676 (1999).
97. R. H. Kim, R. J. Bold, and H. J. Kung. ADI, autophagy and apoptosis: metabolic stress as a therapeutic option for prostate cancer. Autophagy. 5:567-568 (2009).
98. E. Shvets, E. Fass, and Z. Elazar. Utilizing flow cytometry to monitor autophagy in living mammalian cells. Autophagy. 4:621-628 (2008).
99. H. A. Ferguson, P. M. Marietta, and C. L. Van Den Berg. UV-induced apoptosis is mediated independent of caspase-9 in MCF-7 cells: a model for cytochrome c resistance. J Biol Chem. 278:45793-45800 (2003).
100. T. J. Kottke, A. L. Blajeski, X. W. Meng, P. A. Svingen, S. Ruchaud, P. W. Mesner, Jr., S. A. Boerner, K. Samejima, N. V. Henriquez, T. J. Chilcote, J. Lord, M. Salmon, W. C. Earnshaw, and S. H. Kaufmann. Lack of correlation between caspase activation and caspase activity assays in paclitaxel-treated MCF-7 breast cancer cells. J Biol Chem. 277:804-815 (2002).
101. C. C. Chou, Y. C. Wu, Y. F. Wang, M. J. Chou, S. J. Kuo, and D. R. Chen. Capsaicin-induced apoptosis in human breast cancer MCF-7 cells through caspase-independent pathway. Oncol Rep. 21:665-671 (2009).
102. E. J. Noh, S. W. Kang, Y. J. Shin, S. H. Choi, C. G. Kim, I. S. Park, D. N. Wheatley, and B. H. Min. Arginine deiminase enhances dexamethasone-induced cytotoxicity in human T-lymphoblastic leukemia CCRF-CEM cells. Int J Cancer. 112:502-508 (2004).
103. H. Park, J. B. Lee, Y. J. Shim, Y. J. Shin, S. Y. Jeong, J. Oh, G. H. Park, K. H. Lee, and B. H. Min. Arginine deiminase enhances MCF-7 cell radiosensitivity by inducing changes in the expression of cell cycle-related proteins. Mol Cells. 25:305-311 (2008).
104. F. Wang, L. Chen, Z. B. Mao, J. G. Shao, C. Tan, and W. D. Huang. Lentivirus-mediated short hairpin RNA targeting the APRIL gene suppresses the growth of pancreatic cancer cells in vitro and in vivo. Oncol Rep. 20:135-139 (2008).
105. S. S. Liau, S. W. Ashley, and E. E. Whang. Lentivirus-mediated RNA interference of HMGA1 promotes chemosensitivity to gemcitabine in pancreatic adenocarcinoma. J Gastrointest Surg. 10:1254-1262; discussion 1263 (2006).
106. A. L. Beaudet, W. E. O'Brien, H. G. Bock, S. O. Freytag, and T. S. Su. The human argininosuccinate synthetase locus and citrullinemia. Adv Hum Genet. 15:161-196, 291-162 (1986).
107. K. Engel, W. Hohne, and J. Haberle. Mutations and polymorphisms in the human argininosuccinate synthetase (ASS1) gene. Hum Mutat. 30:300-307 (2009).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42428-
dc.description.abstract精胺酸扮演多元且重要的角色,其做為許多生化合成的前驅物,包含一氧化氮與多元胺等等。對於某些癌症細胞,精胺酸的缺乏攸關其存亡。因此可利用精胺酸缺乏做為可能有效的抗癌方式,其中精胺酸去亞胺酉每(arginine deiminase;ADI)可達到精胺酸缺乏的目的,其可有效將精胺酸轉化成瓜胺酸和胺類。然而某些癌細胞中的精胺琥珀合成酉每(argininosuccinate synthetase;AS)與精胺琥珀水解酉每(argininosuccinate lyase;AL)卻可以將瓜胺酸再度轉化成精胺酸,而產生抗藥性;其中AS為關鍵酵素,為反應過程中的速率決定步驟。因此為了增加癌細胞對ADI的抗藥性,利用核醣核酸干擾技術(RNA interference;RNAi)使該AS基因永久沉默,設計合適的核醣核酸序列,藉由高感染性的慢病毒帶入細胞內,以達到穩定表現的效果。而本研究所使用的細胞株為人類乳癌細胞株(MCF-7),其對ADI具有抗性且有內生性AS的表現。
首先,我們製造慢病毒並測試其感染力以做為決定慢病毒感染量的依據。同時考慮到慢病毒感染對於細胞生長的影響,故檢驗其生長情形,發現到無論感染慢病毒與否,其生長情形類似而無明顯變異。而在利用嘌呤黴素(puromycin)篩選出被慢病毒感染的細胞之後,AS之短髮夾核醣核酸干擾(ASshRNA)將穩定表現於細胞株中。為了確立慢病毒帶入ASshRNA的效力及效能,AS的訊息核醣核酸與蛋白質層次將利用聚合酉每連鎖反應(polymerase chain reaction;PCR)與免疫印跡法(immunoblotting)檢驗之。而本研究的結果也顯示在被具有ASshRNA的慢病毒感染後的細胞,無論是訊息核糖核酸或是蛋白質的表現都可以有效抑制到原先表現量的一成以下。
而在確立穩定AS基因沉默的細胞株建立之後, 給予基因重組精胺酸去亞胺酉每(recombinant arginine deiminase;rADI)後,發現細胞存活率僅剩下二成左右,同時以流式細胞儀檢驗而發現有超過一半的細胞為SubG1,意謂著細胞中的去氧核醣核酸斷裂,而發生自我凋亡的作用。利用微陣列分析,則指出細胞在加入rADI治療後,影響細胞週期之基因表現。
總結,我們建立了穩定AS基因沉默的細胞株,給予rADI後可將原先對rADI具抗藥性之細胞株轉為敏感性之細胞株,此抗癌策略可能具有潛力發展。然而如何將目標鎖定於腫瘤細胞,以及在對於一般細胞有何影響,都需要更進一步的研究。
zh_TW
dc.description.abstractArginine is an important and versatile amino acid, serving as a precursor in many biosynthesis, such as proteins, nitric oxide, and polyamines. For some cancer cells, arginine is critical for their survival. One of strategies for cancer therapy is arginine deprivation; recombinant arginine deiminase (rADI), which can convert arginine to citrulline and ammonia, has been used for arginine deprivation. However, arginine can be regenerated from citrulline by argininosuccinate synthetase (AS) and argininosuccinate lyase (AL) in some rADI-resistant cancer cells. The former, AS, is the rate-limiting enzyme and plays a crucial role in the citrulline-arginine regeneration pathway. In order to inhibit AS expression, we established a permanent AS gene knockdown cell line via transduction of lentiviruses carrying shRNA against AS mRNA. The cell model we chose was MCF-7 which was resistant to rADI treatment with high amount of endogenous AS expression.
At the first, lentiviruses were produced and the virus titer was measured to evaluate the appropriate amount of virus for transduction. No influence of lentiviruses transduction on cell growth was observed because cell growth rates were similar in the presence and absence of lentiviruses transduction. After puromycin selection for infected cells, ASshRNA was stable expression in ASshRNA-transduced MCF-7. It was required to determine the efficacy and efficiency of AS gene silencing, so AS mRNA and protein expression were measured by PCR and immunoblotting, respectively. Our results showed that both of AS mRNA and protein expression were significantly decreased and lower than 10% in ASshRNA-transduced MCF-7.
The viable cells were significantly reduced when stablized ASshRNA-transduced MCF-7 cells were treated with rADI. The result was indicated that rADI would significantly decrease cell survival in ASshRNA-transduced MCF-7. The ASshRNA-transduced MCF-7 had only 22.78% cell viability while untranduced MCF-7 was still resistant to rADI treatment at concentration of 1 mU/mL. Furthermore, to understand the death pathway induced by rADI in ASshRNA-transduced MCF-7 cells, more than 50% of subG1 part was found in cell cycle using flow cytometry. It represented that cells had been DNA damaged and processed to apoptosis. In addition, the microarray data showed that the rADI regulated genes in cell cycle in AS silenced MCF-7.
AS silencing could be a strategy to overcome the resistance, when cells were resistant to rADI due to AS protein expression. It may provide a potential method for the cancer therapy in the future. However, how to target to the cancer cells or how the effect on the normal cells should be further studied.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:13:37Z (GMT). No. of bitstreams: 1
ntu-98-R96423008-1.pdf: 2808416 bytes, checksum: 6184a60ac05d5fc9d97b1344a42afde0 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents中文摘要 I
ABSTRACT III
縮寫表 XI
第 1 章 緒論 1
1.1. 精胺酸在生理作用上扮演重要且不可取代的角色 1
1.2. 精胺酸缺乏為有效的抗癌策略 2
1.3. 應用精胺酸去亞胺酉每(ADI)治療部分腫瘤細胞 3
1.4. AS的表現為腫瘤細胞對ADI具有抗性的主因 5
1.5. 利用核醣核酸干擾技術合併ADI治療腫瘤細胞 6
1.6. 提高核醣核酸干擾效果並且尋找合適之基因載體 7
1.7. 慢病毒可有效攜帶治療基因進入細胞並且穩定表現該基因功能 8
第 2 章 實驗目的 10
第 3 章 實驗材料與方法 11
3.1. 實驗材料 11
3.1.1. 細胞培養 11
3.1.2. 精胺酸缺乏試驗 12
3.1.3. 大腸桿菌培養 12
3.1.4. 抽取質體 13
3.1.5. 定序 13
3.1.6. 慢病毒製造 13
3.1.7. 慢病毒力價測試 14
3.1.8. 去氧核醣核酸萃取 14
3.1.9. 核醣核酸萃取 14
3.1.10. 洋菜凝膠電泳分析 14
3.1.11. 反轉錄聚合酉每連鎖反應 15
3.1.12. 聚合酉每連鎖反應 15
3.1.13. 蛋白質萃取 16
3.1.14. 蛋白質濃度測定 16
3.1.15. 西方墨點法 16
3.1.16. 重組精胺酸去亞胺酉每活性測試 17
3.1.17. 細胞存活分析 18
3.1.18. 精胺酸與瓜胺酸測定 18
3.1.19. 流式細胞儀分析 18
3.2. 細胞培養 19
3.3. 精胺酸缺乏試驗 19
3.4. 由大腸桿菌萃取質體 20
3.4.1. 大腸桿菌培養 20
3.4.2. 挑選適當菌株 20
3.4.3. 萃取質體 21
3.4.4. 去氧核醣核酸定序 21
3.5. 慢病毒製造 21
3.6. 慢病毒力價測試 22
3.7. 慢病毒感染 23
3.8. 去氧核醣核酸的萃取、定量與聚合酉每連鎖反應 23
3.8.1. 去氧核醣核酸的萃取 23
3.8.2. 去氧核醣核酸的定量 24
3.8.3. 聚合酉每連鎖反應 24
3.9. 核醣核酸的萃取、定量、品質分析 24
3.9.1. 核醣核酸的萃取 24
3.9.2. 核醣核酸的定量 25
3.9.3. 核醣核酸的定性:洋菜凝膠電泳分析 25
3.10. 反轉錄聚合酉每連鎖反應 26
3.11. 聚合酉每連鎖反應 26
3.12. 萃取細胞中的蛋白質 26
3.13. 蛋白質濃度測試:Bicinchoninic acid(BCA) assay 27
3.14. 西方墨點轉漬法 27
3.14.1. 硫酸十二酯聚丙烯醯胺凝膠電泳法 27
3.14.2. 轉印 28
3.14.3. 免疫轉漬法 28
3.15. 基因重組精胺酸去亞胺酉每活性測試 29
3.16. 細胞存活分析:MTT assay 29
3.17. 細胞週期分析 29
3.17.1. 細胞收集及固定 30
3.17.2. 流式細胞儀分析 30
3.18. 精胺酸與瓜胺酸測定 30
3.18.1. 收集細胞溶解物 30
3.18.2. 去除細胞培養液的蛋白質 31
3.18.3. 胺基酸衍生化反應 31
3.18.4. 高速液相層析法 31
3.18.5. 微陣列分析 32
3.19. 統計分析 32
第 4 章 實驗結果 34
4.1. 精胺酸缺乏對細胞的影響 34
4.2. 穩定基因擊倒細胞株之建立 34
4.2.1. 慢病毒製造與力價測試 34
4.2.2. 嘌呤黴素篩選試驗-利用增強型綠色螢光蛋白 34
4.2.3. 確立精胺琥珀酸合成酉每短髮夾核醣核酸之效果評估 35
4.2.4. 慢病毒感染後細胞株的外觀與生長情形 36
4.2.5. 長久穩定表現精胺琥珀酸合成酉每基因沉默之試驗 36
4.3. 精胺酸去亞胺酉每治療效果 37
4.3.1. 細胞存活分析 37
4.3.2. 精胺琥珀酸合成酉每的影響 38
4.3.3. 細胞週期變化 38
4.3.4. 精胺酸再度給予的影響 39
4.3.5. 精胺酸與瓜胺酸之變化 39
4.3.6. rADI合併自噬作用抑制劑的效果 41
4.3.7. 微陣列分析(Microarray) 41
第 5 章 實驗討論 44
5.1. rADI可以抑制在長期穩定表現ASshRNA細胞株的生長 44
5.2. 精胺酸去亞胺酉每引起自我凋亡的死亡途徑 46
5.3. 使用慢病毒攜帶shRNA的具有穩定表現及高度基因沉默效果 49
5.4. 實驗限制 51
5.5. 展望 52
第 6 章 結論 53
參考文獻 54
dc.language.isozh-TW
dc.subject精胺酸zh_TW
dc.subject基因合成精胺酸去亞胺酉每zh_TW
dc.subject細胞凋亡zh_TW
dc.subject慢病毒zh_TW
dc.subject短髮夾核醣核酸zh_TW
dc.subject微陣列分析zh_TW
dc.subject精胺琥珀合成酉每zh_TW
dc.subjectmicroarray analysisen
dc.subjectrecombinant arginine deiminaseen
dc.subjectarginineen
dc.subjectargininosuccinate synthetaseen
dc.subjectshRNAen
dc.subjectlentivirusen
dc.subjectapoptosisen
dc.title精胺琥珀合成(酉每)的短髮夾核醣核酸(shRNA)於對基因合成精胺酸去亞胺(酉每)具有抗性之癌細胞株的效果zh_TW
dc.titleEffect of shRNA of argininosuccinate synthetase on a recombinant arginine deiminase-resistant cancer cell lineen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許麗卿,俞松良,孔繁璐,楊家榮
dc.subject.keyword基因合成精胺酸去亞胺酉每,精胺酸,精胺琥珀合成酉每,短髮夾核醣核酸,慢病毒,細胞凋亡,微陣列分析,zh_TW
dc.subject.keywordrecombinant arginine deiminase,arginine,argininosuccinate synthetase,shRNA,lentivirus,apoptosis,microarray analysis,en
dc.relation.page127
dc.rights.note有償授權
dc.date.accepted2009-07-29
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥學研究所zh_TW
顯示於系所單位:藥學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.74 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved