請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42423
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李慧梅 | |
dc.contributor.author | Ming-Chun Lai | en |
dc.contributor.author | 賴明俊 | zh_TW |
dc.date.accessioned | 2021-06-15T01:13:32Z | - |
dc.date.available | 2012-07-30 | |
dc.date.copyright | 2009-07-30 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-07-29 | |
dc.identifier.citation | Abdullah, M., K.C. Low, and R.W. Matthews, “Effects of Common Inorganic Anions on Rates of Photocatalytic Oxidation of Organic Carbon over Illuminated Titanium Dioxide,” Journal of Physical Chemistry, vol. 94, pp. 6820-6825 (1990).
Agency for Toxic Substances and Disease Registry ToxFAQs, Agency for Toxic Substances and Disease Registry (ATSDR), U.S. Department of Health and Human Services, http://www.atsdr.cdc.gov/toxfaq.html. Altshuller, A. P., and I. R. Cohen, “Application of Diffusion Cells to the Production of Known Concentrations of Gaseous Hydrocarbons,” Analytical Chemistry, vol. 38, pp. 802-810 (1960). Amama, P.B., K. Itoh, and M. Murabayashi, “Photocatalytic oxidation of trichloroethylene in humidified atmosphere,” Journal of Molecular Catalysis A: Chemical, vol. 176, pp. 165–172 (2001). Amama, P.B., K. Itoh, and M. Murabayashi, “Photocatalytic Degradation of Trichloroethylene in Dry and Humid Atmospheres: Role of Gas-phase Reactions,” Journal of Molecular Catalysis A: Chemical, vol. 217, pp. 109–115 (2004). Anderson, M.A., S. Yamazakinishida, C.M. Salvador, “Photodegradation of TCE in the Gas Phase Using TiO2 Porous Ceramic Membranes,” In: “Photocatalytic Purification and Treatment of Water and Air,” Elsevier Science Publisher, Amsterdam, pp. 405–418 (1993). Ao, C.H., S.C. Lee, J.Z. Yu, and J.H. Xu, “Photodegradation of Formaldehyde by Photocatalyst TiO2: Effects on the Presences of NO, SO2 and VOCs,” Applied Catalysis B, Environmental, vol. 54, pp. 41–50 (2004). Augugliaro V., M. Litter, L. Palmisano, and J. Soria, “The Combination of Heterogeneous Photocatalysis with Chemical and Physical Operations: A tool for Improving the Photoprocess Performance,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 7, pp. 127–144 (2006). Bahnemann, D, D. Bockelmann, and R. Goslich, “Mechanistic Studies of Water Detoxification in Illuminated TiO2 Suspensions,” Solar Energy Materials and Solar Cells, vol. 24, pp. 564-583 (1991). Bauer, S.H.R., and G. Kudielka,“Photocatalytic Oxidation of Gaseous Chlorinated Organics over Titanium Dioxide,”Chemsphere, vol. 41, pp. 1219-1225 (2000). Beltrán, F.J., “Ozone-UV Radiation – Hydrogen Peroxide Oxidation Technologies,” In: Tarr, M.A., (Ed.).“Chemical Degradation Methods for Wastes and Pollutants Environmental and Industrial Applications,”Marcel Dekker, Inc., New York, U.S.A., pp. 1-75 (2003). Beltrán, F.J.,”Ozone Reaction Kinetics for Water and Wastewater Systems,” Lewis Publishers, A CRC Press Company, Boca Raton London New York Washington, D.C. (2004). Bernstein J.A., N. Alexis, H. Bacchus, L. Bernstein, P. Fritz, E. Horner, N. Li, S. Mason, A. Nel, J. Oullette, K. Reijula, T. Reponen, J. Seltzer, A. Smith, and S.M. Tarlo, “The Health Effects of Nonindustrial Indoor Air Pollution,” Journal of Allergy and Clinical Immunology, vol. 121(3), pp. 585-591 (2008). Bhowmick, M., and M.J. Semmens, “Ultraviolet Photooxidation for the Destruction of VOCs in Air,” Water Research, vol. 28(11), pp. 2407-2415(1994). Blake, D.M., J. Webb, C. Turchi, and K. Magfin, “Kinetic and Mechanistic Overview of TiO2-photocatalyzed Oxidation Reactions in Aqueous Solution,” Solar Energy Materials, vol. 24, pp. 584-593 (1991). Brodkey, R.S., and H.C. Hershey, “Transport Phenomena – A Simplified Approach,” McGraw-Hill Interantional Editions Chemical Engineering Series, McGraw-Hill Book Company (1988). Chan W., S.-C. Lee, Y. Chen, B. Mak, K. Wong, C.-S. Chan, C. Zheng, , and X. Guo, “Indoor Air Quality in New Hotels’ Guest Rooms of the Major World Factory Region,” International Journal of Hospitality Management, vol. 28, pp. 26–32 (2009). Chen, W., and J.S. Zhang, “UV-PCO Device for Indoor VOCs Removal: Investigation on Multiple Compounds Effect,” Building and Environment, vol. 43, pp. 246–252 (2008). Dalton, J.S., P.A. Janes, N.G. Jonesm, J.A. Nicholson, K.R. Hallam, and G.C. Allen, “Photocatalytic Oxidation of NOx Gases Using TiO2: A Surface Spectroscopic Approach,” Environmental Pollution, vol. 120, pp. 415-422 (2002). Demeesterea, K., A.D. Visscher, J. Dewulf, V.M. Leeuwen, and H.V. Langenhove, “A New Kinetic Model for Titanium Dioxide Mediated Heterogeneous Photocatalytic Degradation of Trichloroethylene in Gas-phase,” Applied Catalysis B: Environmental, vol. 54, pp. 261–274 (2004). Den, W., V. Ravindran, and M. Pirbazari, “Photooxidation and Biotrickling Filtration for Controlling Industrial Emissions of Trichloroethylene and Perchloroethylene” Chemical Engineering Science, vol. 61, pp. 7909– 7923 (2006). d’Hennezel, O., and D.F. Ollis, “Trichloroethylene-promoted Photocatalytic Oxidation of Air Contaminants,” Journal of catalysis, vol. 167, pp. 118–126 (1997). Dodson, R.E., J.I. Levy, J.D. Spengler, J.P. Shine, and D.H. Bennett, “Influence of Basements, Garages, and Common Hallways on Indoor Residential Volatile Organic Compound Concentrations,” Atmospheric Environment, vol. 42, pp. 1569–1581 (2008). D’Oiivelra, J.C., A.S. Ghassan, and P. Pichat, “Photodegradation of 2- and 3-Chlorophenol in TiO2 Aqueous Suspensions,” Environmental Science and Technology, vol. 24(7), pp. 990-996 (1990). Driessen, M.D., T.M. Miller, and V.H. Grassian, “Photocatalytic Oxidation of Trichloroethylene on Zinc Oxide: Characterization of Surface-bound and Gas-phase Products and Intermediates with FT-IR Spectroscopy,” Journal of Molecular Catalysis A: Chemical, vol. 131, pp. 149–156 (1998). Durme, J.V., J. Dewulf, W. Sysmans, C. Leys, and H.V. Langenhove, “Abatement and Degradation Pathways of Toluene in Indoor Air by Positive Corona Discharge,” Chemosphere, vol. 68, pp. 1821–1829 (2007). Edwards, R. D., J. Jurvelin, K. Koistinen, K. Saarela, and M. Jantunen, “VOC Source Identification from Personal and Residential Indoor, Outdoor and Workplace Microenvironment Samples in EXPOLIS-Helsinki, Finland,” Atmospheric Environment, vol. 35, pp. 4829-4841 (2001). Eduardo, D.S., P. Boffetta, P. Brennan, H.D. Pellegrini, R. Alvaro and L.P. Gutie’rrez, “Occupational Exposures and Risk of Adenocarcinoma of the Lung,” Uruguay Cancer Causes and Control, vol. 16, pp. 851–856 (2005). EPA-454/K-03-002,“Air Quality Index - A Guide to Air Quality and Your Health,”United States Environmental Protection Agency (2003). Farin, D., J. Kiwi, and D. Avnir, “Size Effects in Photoprocesses on Dispersed Catalysts,” Journal of Physical Chemistry, vol. 93(15), pp. 5851-5854 (1989). Fanger, P.O., “Indoor Air Quality in the 21st Century: Search for Excellence,” Indoor Air, vol. 10, pp. 68-73 (2000). Fox, A. M., and M.T. Dulay, “Heterogeneous Photocatalysis,” Chemical Reviews, vol. 93, pp.341-357 (1993). Frank, S.N., and A.J. Brad, “Heterogeneous Photocatalytic Oxidation of Cyanide and Sulfite in Aqueous Solutions at Semiconductor Powders,” Journal of Physical Chemistry, vol. 81 (15), pp. 1484-1488 (1977). Fujishima, A., and K. Honda,“Electrochemical Photolysis of Water at a Semiconducter Electrode,”Nature, vol. 238, pp.37-38 (1972). Fujishima, A., T.N. Rao, and D.A. Tryk, “Titanium Dioxide Photocatalysis,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 1, pp. 1–21 (2000). Girrnan, J.R., G.E. Hadwen, L.E. Burton, S.E. Womble, and J.F. McCarth, “Individual Volatile Organic Compound Prevalence and Concentrations in 56 buildings of the Building Assessment Survey and Evaluation (BASE) Study,” Proceedings of the 8th International Conference on Indoor (1999). Gopal, K.M., O.K.Varghese, M. Paulose, K. Shankar, and C.A. Grimes, “A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications,” Journal of Solar Energy Materials & Solar Cells, vol. 90, pp. 2011–2075 (2006). Gratson, D.A., M.R. Nimlos, and E.J. Wolfrum, “Phtocatalytic Oxidation of Gas-phase BTEX-contaminated Waste Steams,” the Air and Waste Management Association, 88th Annual Meeting and Exhibition (1995). Guieysse, B., C. Hort, V. Platel, R. Munoz, M. Ondarts, and S. Revah, “ Biological Treatment of Indoor Air for VOC Removal: Potential and Challenges,” Journal of Biotechnology Advances, vol. 26, pp. 398–410 (2008). Hegedüs, M., and A. Dombi, “Comparative Study of Heterogeneous Photocatalytic Decomposition of Tetrachloroethene and Trichloroethene in the Gas Phase,” Journal of Applied Catalysis A: General, vol. 271, pp. 177–184 (2004). Hines, A.L., “Volatile Organic Pollutants,” In: “Indoor air : quality and control,” PTR Prentice Hall, New Jersey, U.S.A. (1993). Hoffmann, M.R., S.T. Martin, W. Choi, and D.W. Bahnemann, “Environmental Applications of Semiconductor Photocatalysis,” Chemical Reviews, vol. 95(1), pp. 69-96 (1995). Holcomb, L. C., and B. S. Seabrook, “Indoor Concentrations of Volatile Organic Compounds: Implications for Comfort, Health and Regulation,” Indoor Environment, vol. 4, pp.7-26 (1995). Hong, Q.I., Z.D. Sun, and G.Q. Chi, “Formaldehyde Degradation by UV/TiO2/O3 Process Using Continuous Flow Mode,” Journal of Environmental Sciences, vol. 19, pp. 1136–1140 (2007). Hubbard, H.F., B.K. Coleman, G. Sarwar, and R.L. Corsi, “Effects of an Ozone-generating Air Purifier on Indoor Secondary Particles in Three Residential Dwellings,” Indoor Air, vol. 15, pp. 432–444 (2005). Ibusuki, T., and K. Takeuchi, “Toluene Oxidation on Uvirradiated Titanium Dioxide With and Without O2, NO2, or H2O at Ambient Temperature,” Atmospheric Environment, vol. 20(9), pp. 1711–1715 (1986). Ireland, J.C., P. Klostermann, E.W. Rice, and R.M. Clark,“Inactivation of Escherichia coli by Titanium Dioxide Photocatalytic Oxidation,” Applied and Environmental Microbiology, vol. 59(5), pp.1668-1670 (1993). Itoh, N., S. Kutsuna, and T. Ibusuki, “A Product Study of the OH Radical Initiated Oxidation of Perchloroethylene and Trichloroethylene,” Chenmsphere, vol. 28(11), pp. 2029-2040 (1994). Jacoby, W. A., D.M. Blake, J.A. Fennell, J.E. Boulter, and L.M.Vargo, “Heterogeneous Photocatalysis for Control of Volatile Organic Compounds in Indoor Air,” Journal of the Air & Waste Management Association, vol. 46, pp. 891-898 (1996). Jeong, J., K. Sekiguchi, and K. Sakamoto, “Photochemical and Photocatalytic Degradation of Gaseous Toluene Using Short-Wavelength UV Irradiation with TiO2 Catalyst: Comparison of Three UV Sources”, Chemosphere, vol. 57, pp.663-671 (2004). Johansson, I., “Determination of Organic Compounds in Indoor Air with Potential Reference to Air Quality,” Atmospheric Environment, vol. 12, pp. 1371-1377 (1982). Jones, A. P., “Indoor Air Quality and Health,” Atmospheric Environment, vol. 33, pp. 4535-4564. (1999). Joung, S.-K., T. Amemiya, M. Murabayashi, R. Cai, and K. Itoh, “Chemical Adsorption of Phosgene on TiO2 and its Effect on the Photocatalytic Oxidation of Trichloroethylene,” Surface Science, vol. 598, pp. 174–184 (2005). Khalil, L.B., W.E. Mourad, and M.W. Rophael, “Photocatalytic Reduction of Environmental Pollutant Cr(VI) over Some Semiconductors under UV/visible Light Illumination,” Applied Catalysis B: Environmental, vol. 17, pp. 267-273 (1998). Kim, S.B., and S.C. Hong,“Kinetic Study for Photocatalytic Degradation of Volatile Organic Compounds in Air Using Thin Film TiO2 Photocatalyst,” Applied Catalysis B: Environmental, vol. 35, pp. 305–315 (2002). Klepeis, N., W.C. Nelson, W.R. Ott, J.P. Robinson, A.M. Tsang, P. Switzer, J.V. Behar, S.C. Hern, and W.H. Engelmann,“The National Human Activity Pattern Survey (NHAPS): A Resource for Assessing Exposure to Environmental Pollutants,”Journal of Exposure Analysis and Environmental Epidemiology, vol. 11, pp. 231-252 (2001). Lee, S. C., S. Lam, and K.H. Fai, “Characterization of VOCs, Ozone, and PM10 Emissions from Office Equipment in an Environmental Chamber,” Building and Environment, vol. 36, pp. 837-842 (2001). Leovic, K.W., L.S. Sheldon, D.A. Whitaker, R.G. Hetes, J.A. Calcagin, and J.N. Baskir, “Measurement of Indoor Air Emissions from Dry-process Photocopy Machines,” Journal of the Air & Waste Management Association, vol. 46, pp. 821-829 (1996). Lin, C.H., and C.S. Li, “Effectiveness of Titanium Dioxide Photocatalyst Filter for Controlling Bioaerosol,” Aerosol Science and Technology, vol. 37, pp. 162-170. (2003(a)). Lin, C.H., and C.S. Li, “Inactivation of Microorganisms on the Photocatalytic Surfaces in Air,” Aerosol Science and Technology, vol. 37, pp. 939–946 (2003(b)). Lin, W.Y., and K. Rajeshwar, “Photocatalytic Removal of Nickel from Aqueous Solutions Using Ultraviolet-Irradiated TiO2,” Journal of the Electrochemical Society, vol. 144(8), pp. 2751-2756 (1997). Mackay, D., 1979. “Finding Fugacity Feasible,” Environmental Science & Technology, vol. 13, pp. 1218-1223. Mackay, D., and S. Paterson, “Calculating Fugacity, ” Environmental Science & Technology, vol. 15, pp. 1006-1014 (1981). Magureanu, M., N.B. Mandache, P. Eloy, E.M. Gaigneaux, V.I. Parvulescu, “Plasma-assisted Catalysis for Volatile Organic Compounds Abatement,” Applied Catalysis B, Environmental, vol. 61, pp. 12-20 (2005). Matsunaga, T., R. Tomoda, T. Nakajima, and H.Wake,“Photo-electrochemical Sterilization of Microbial Cells by Semiconductor Powders,” FEMS Microbiology letters, vol. 29, pp.211 (1985). Matsunaga, T., R. Tomoda, T. Nakajima, N. Nakamura, and T. Komine, “Continuous-sterilization System That Uses Photosemiconductor Powders,” Applied and Environmental Microbiology, vol. 54, pp. 1330-1333 (1988). Minero, C., G. Mariella, V. Maurino, D.Vione, and E. Pelizzetti, “Photocatalytic Transformation of Organic Compounds in the Presence of Inorganic Ions. 2. Competitive Reactions of Phenol and Alcohols on a Titanium Dioxide − Fluoride System,” Langmuir, vol. 16(23), pp. 8964-8972 (2000). Mohseni, M., and A.David, “Gas Phase Vinyl Chloride (VC) Oxidation Using TiO2-based Photocatalysis,” Applied Catalysis B: Environmental, vol. 46, pp. 219–228 (2003). Mølhave, L., “Total Volatile Organic Compounds (TVOC) in Indoor Air Quality Investigations,” Environment International, vol. 8, pp. 117-127 (1982). Mølhave, L., G. Clausen, B. Berglund, J. Ceaurriz, A. Kettrup, T. Lindvall, M. Maroni, A. C. Pickering, U. Risse, H. Rothweiler, B. Seifert, and M. Younes, “Total Volatile Organic Compounds (TVOC) in Indoor Air Quality Investigations,” Indoor Air, vol. 7, pp. 225-240 (1997). Muggli, D.S., and J.L. Falconer, “Parallel Pathways for Photocatalytic Decomposition of Acetic Acid on TiO2,” J. Catal., vol. 187, pp. 230–237 (1999). Muggli, D.S., M.J. Odland, and L.R. Schmidt, “Effect of Trichloroethylene on the Photocatalytic Oxidation of Methanol on TiO2,” Journal of Catalysis, vol. 203, pp. 51–63 (2001(a)). Muggli, D.S., and L. Ding, “Photocatalytic Performance of Sulfated TiO2 and Degussa P-25 TiO2 During Oxidation of Organics,” Applied Catalysis B: Environmental, vol. 32, pp. 181–194 (2001(b)). Nagame, S., T. Oku, M. Kambara, and K. Konishi, “Antibacterial Effect of the Powdered Semiconductor TiO2 on the Viability of Oral Micro- Organisms,” J. Dental Resource, vol. 68, pp. 1696–1697 (1989). Navίo, J.A., G. Colonó, M. Trillas, J. Peral, X. Domènech, J.J. Testa, J. Padrón, D. Rodrίguez, and M.I. Litter, “Heterogeneous Photocatalytic Reactions of Nitrite Oxidation and Cr(VI) Reduction on Iron-doped Titania Prepared by the Wet Impregnation Method,” Applied Catalysis B: Environmental, vol. 16, pp. 187-196 (1998). Nawrot, T., A. Nemmar, and B. Nemery, “Update in Environmental and Occupational Medicine,” American Journal of respiratory and cirtical care medicine, vol.143, pp. 948-952 (2006). NIOSH. APPENDIX C Supplementary Exposure Limits. “NIOSH NIOSH Pocket Guide to Chemical Hazards.” National Institute for Occupational Safety and Health 30 Publication No. 2005-149 (2005). Nøjgaard, K. Jacob, K.B. Christensen, P. Wolkoff, “The Effect on Human Eye Blink Frequency of Exposure to Limonene Oxidation Products and Methacrolein,” Toxicology Letters, vol. 156, pp. 241–251 (2005). Rumchev, K., J. Spickett, M. Bulsara, M. Phillips, and S. Stick, “Association of Domestic Exposure to Volatile Organic Compounds with Asthma in Young Children,” Quality and Safety in Health Care, vol. 59, pp. 746-751 (2004). Obee, T.N., and R.T. Brown, “TiO2 Photocatalysis for Indoor Air Applications: Effect of Humidity and Trace Contaminant Levels on the Oxidation Rate of Formaldehyde, Toluene, and 1,3-butadiene,” Environmental Science & Technology, vol, 29(5), pp. 1223–1231 (1995). Okamoto, K, Y. Yamamoto, H. Tanaka, M. Tanaka, and A. Itaya, “Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder,” Bulletin of the Chemical Society of Japan, vol. 58(7), pp. 2015-2022 (1985). Olansandan, T. Amagai, and H. Matsushita, “A Passive Sampler–GC:ECD Method for Analyzing 18 Volatile Organohalogen Compounds in Indoor and Outdoor Air and its Application to a Survey on Indoor Pollution in Shizuoka, Japan” Journal of Talanta, vol. 50, pp. 851–863 (1999). Ollis, D.F., E. Pelizzetti, and N. Serpone, “Photocatalyzed Destruction of Water Contaminants,” Environmental Science & Technology, vol. 25(9), pp. 1522-1529 (1991). O'Regan, B., and M. Grätzel, “A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films,” Nature, vol. 353, 73-740 (1991). Ou, H.-H., and S.-L. Lo,“Photocatalysis of Gaseous Trichloroethylene (TCE) over TiO2: The Effect of Oxygen and Relative Humidity on the Generation of Dichloroacetyl Chloride (DCAC) and Phosgene,”Journal of Hazardous Materials, vol. 146, pp. 302-308 (2007). O’Keeffee, A. E., and G. C. Ortman, “Primary Standard for Trace Gas Analysis,” Analytical Chemistry, vol. 38, pp. 760-763 (1966). Park, J. S., and K. Ikeda, “Database System, AFoDAS/AVODAS, on Indoor Air Organic Compounds in Japan,” Indoor Air, vol.13(6), pp. 35-41 (2003). Peral, J., X. Dome`nech, and D.F. Ollis,“Heterogeneous Photocatalysis for Purification, Decontamination and Deodorization of Air,” Journal of Chemical Technology & Biotechnology, vol. 70, pp. 117-140 (1997). Peral, J., and D.F. Ollis,“Heterogeneous Photocatalytic Oxidation of Gas-phase Organics for Air Purification: Acetone, 1-butanol, Butyraldehyde, Formaldehyde and m-xylene Oxidation,” Journal of catalysis, vol. 136, pp. 554-565 (1992). Pichat, P.,“Photocatalytic Degradation of Pollutants in Water and Air: Basic Concepts and Applications,”In: Tarr, M.A., (Ed.).“Chemical Degradation Methods for Wastes and Pollutants Environmental and Industrial Applications,”Marcel Dekker, Inc., New York, U.S.A., pp. 77-120 (2003). Prengle, H.W., and C.E. Mauk, “New Technology: Ozone/UV Chemical Oxidation Waste Water Process for Metal Complexes, Organic Species and Disinfection,” AICHE Sym. Ser., vol. 74(178), pp. 228 (1978). Rajeshwar, K., “Photoelectrochemistry and the Environment,” Journal of Applied Electrochemistry, vol. 25, pp. 1067-1082 (1995). Saito, T., T. Iwase, J. Horie, and T. Morioka, “Mode of Photocatalytic Bactericidal Action of Powdered Semiconductor TiO2 on Streptococci Mutants,” Journal of Photochemical Photobiology, vol. 14, pp. 369–379 (1992). Sánchez, B., A.I. Cardona, M. Romero, P. Avila, and A. Bahamonde, “Influence of Temperature on Gas-phase Photo-assisted Mineralization of TCE Using Tubular and Monolithic Catalysts,” Catalysis Today, vol. 54, pp. 369–377 (1999). Sanden, G., B.S. Fields, J.M. Barbaree, and J.C. Feeley, “Viability of Legionella Pneumophila in Chlorine-free Waters at Elevated Temperatures,” Current Microbiology, vol. 18, pp. 61-65 (1989). Sarwar, G., and R.Corsi, “The Effects of Ozone/Limonene Reactions on Indoor Secondary Organic Aerosols,” Atmospheric Environment, vol. 41, pp. 959–973. (2007). Sauer, M.L., M.A. Hale, and D.F. Ollis, “Heterogeneous Photocatalytic Oxidation of Dilute Toluene-chlorocarbon Mixtures in Air,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 88, pp. 169-178 (1995). Schwarzenbach, R.P., P. M. Gschwend, D.M. lmboden, “Environmental Organic Chemistry,” Wiley-Interscienece, New York (1993). Seifert, B., and H.J. Abraham, “Indoor Air Concentrations of Benzene and Some Other Aromatic Hydrocarbons,” Ecotoxicology and Environmental Safety, vol. 6(2), pp. 190-192 (1982). Srivastava, A. and D. Sukumar, “Indoor Air Quality of Public Places in Mumbai, India in Terms of Volatile Organic Compounds, ” Environmental Monitoring and Assessment, vol. 133, pp. 127–138 (2007). Stumm, W., “Chemistry of the Solid-water Interface,” John Wiley & Sons, New York, USA (1992). Shen, Y.S., and Y. Ku, “Decomposition of Gas-phase Chloroethenes by UV/O3 Process,” Water Resource, vol. 32(9), pp. 2669-2679 (1998). Shen, Y.S., and Y. Ku, “Treatment of Gas-phase Volatile Organic Compounds (VOCs) by the UV/O3 Process,” Chemosphere, vol. 38(8), pp. 1855-1866 (1999). Shen, Y.S., and Y. Ku, “Decomposition of Gas-phase Trichloroethylene by the UV/TiO2 Process in the Presence of Ozone,” Chemsphere, vol. 46, pp. 101-107 (2002). Sundell, J., “On the History of Indoor Air Quality and Health,” Indoor Air, vol. 14(7), pp. 51–58 (2004). Suzuko, Y.N., C.M. Salvador, K.J. Nagano, M.A. Anderson, and K. Horil, “Experimental and Theoretical Study of the Reaction Mechanism of the Photoassisted Catalytic Degradation of Trichloroethylene in the Gas Phase,” The Journal of Physical Chemistry, vol. 99, pp. 15814-15821 (1995). Tanaka, K., K. Abe, and T. Hisanaga, “Photocatalytic Water Treatment on Immobilized TiO2 Combined with Ozonation,” Journal of Photochemistry and Photobiology A: Chemistry, vol 101, pp. 85-87 (1996). Tang, J.H., C.Y. Chan, X.M.Wang, L.Y. Chan, G.Y. Sheng, and J.M. Fu, “Volatile Organic Compounds in a Multi-shopping in Gungzhou, South China,” Atmospheric Environment, vol. 39, pp. 7374-7383 (2005). Uysal, N., and R.M. Schapira, “Effects of Ozone on Lung Function and Lung Diseases. Obstructive, Occupational, and Environmental Diseases,” Current Opinion in Pulmonary Medicine, vol. 9, pp. 144-150 (2003). Wallace, L.A., “The Total Exposure Assessment Methodology (TEAM) Study: Summary and Analysis, Volume I,” Office of Research and Development, U.S. Environmental Protection Agency, Washington, D.C. (1987). Wang, S., H.M. Ang, and M.O. Tade, “Volatile Organic Compounds in Indoor Environment and Photocatalytic Oxidation: State of the Art,” Environment International, vol. 33, pp. 694–705 (2007). World Health Organization, WHO, “Indoor Air Quality: Organic Pollutants,” WHO Regional Office for Europe (EURO Reports and Studies Ш), Copenhagen, Denmark, (1989). World Health Organization, WHO,“Air Quality Guidelines - Second Edition,”WHO Regional Office for Europe, Copenhagen, Denmark, Chapter 5.15., (2000). Weschler, C.J., “Ozone in Indoor Enviornments: Concentration and Chemistry,” Indoor Air, vol. 10, pp.269-288 (2000). Yu, K.-P., and G., W.-M. Lee, “Decomposition of Gas-phase Toluene by the Combination of Ozone and Photocatalytic Oxidation Process (TiO2/UV, TiO2/UV/O3, and UV/O3),” Journal of Applied Catalysis B: Environmental, vol. 75, pp. 29–38 (2007). Zhang, P.-Y., F.-Y. Liang, G. Yu, Q. Chen, and W.-P. Zhu, “A Comparative study on decomposition of gaseous toluene by O3/UV, TiO2/UV and O3/TiO2/UV,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 156, pp. 189–194 (2003). Zhang, P.-Y., and J. Liu, “Photocatalytic Degradation of Trace Hexane in the Gas Phase with and without Ozone Addition: Kinetic Study,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 167, pp. 87–94 (2004). Zhao, J., and X. Yang, “Photocatalytic Oxidation for Indoor Air Purification: a Literature Review,” Building and Environment, vol. 38, pp. 645 – 654 (2003). Zuo, G.-M., Z.-X. Cheng, M. Xu, X.-Q. Qiu, “Study on the Gas-phase Photolytic and Photocatalytic Oxidation of Trichloroethylene,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 161, pp. 51–56 (2003). 化工資訊,「化學品原料商情」,化工資訊月刊三月號,2002。 行政院勞工委員會,「96年度甲苯等五種職場危害性因子容許標準建議值研究」,行政院勞工委員會勞工安全衛生研究所,2008(a)。 行政院勞工委員會,「職場室內空氣品質政策先驅研究」,行政院勞工委員會勞工安全衛生研究所,2008(b)。 江柏毅,「多層結構奈米二氧化鈦電極/染料敏化太陽能電池的穩定性與效率」,元智大學化學工程系,碩士論文,2004。 行政院環保署,「推動公共場所室內空氣品質管理制度計畫期末報告」,行政院環境保護署,2008。 巫玉娟,「活性碳纖維塗覆二氧化鈦光觸媒去除揮發性有機物之可行性研究」,國立中山大學環境工程學研究所,碩士論文,2005。 呂宗昕,「圖解奈米科技與光觸媒」,商周出版,2003。 吳政峰,「溫度和濕度效應對光催化分解氣相揮發性有機物之影響」,國立中山大學環境工程研究所,博士論文,2005。 余國賓,「以紫外光/臭氧程序增進光觸媒對室內揮發性有機物去除效率之研究」,國立台灣大學博士論文,2006。 林巧燕,「熱脫附氣相層析儀對於高科技產業及室內空氣中半揮發性有機化合物之分析應用」,國立清華大學原子科學系,碩士論文,2006。 室內空氣品質建議值,http://aqp.epa.gov.tw/iaq/page4-1.htm,室內空氣品質資訊網,行政院環保署。 侯傑耀,「鍛燒對三辛基氧化膦包覆之二氧化鈦奈米晶粒物化特性影響研究」,國立交通大學環境工程研究所,碩士論文,2007。 馬志明,「以紫外線/二氧化鈦程序處理氣相三氯乙烯污染物反應行為之研究」,國立台灣科技大學/化學工程技術研究所,碩士論文,1997。 高濂、鄭珊、張青紅著�陳憲偉校訂,「奈米光觸媒」,五南圖書公司,第1-5章,2004。 陳志賢,「奈米可見光V/TiO2觸媒之合成與物性分析」,國立臺灣大學化學工程學研究所,碩士論文,2002。 黃欣栩,「UV/TiO2程序光催化降解水中單氯苯之研究」,國立中央大學環境工程研究所,博士論文,2008(a)。 黃國豪,「以紫外光/臭氧程序增進光觸媒對室內生物源揮發性有機物去除效率之研究」,國立臺灣大學環境工程學研究所,碩士論文,2008(b)。 廖偉筑,「結合觸媒氧化及高級氧化以處理含率揮發性有機污染物之研究」,國立臺灣大學環境工程學研究所,碩士論文,2007。 蔡文田、張慶源,「揮發性有機物(VOCs)催化燃燒處理」,環境工程會刊第四期, 41-58頁,1992。 劉仰哲,「以Sr、Cu改質TiO2光觸媒處理廚餘堆肥場臭氣氣體三甲基胺之研究」,國立成功大學環境工程學系,碩士論文,2006。 賴靈焜,「氣候異變下控制室內環境中臭氧與建材二次污染物關鍵因子之研究」,國立成功大學建築學系研究所,碩士論文,2008。 藤嶋昭、橋本和仁與渡部俊也,「光觸媒之奧秘」,日本實業出版社,2000。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42423 | - |
dc.description.abstract | 室內空氣污染之一的揮發性有機物(Volatile organic compounds, VOCs),與室內空氣品質不良有關,如對人體造成不良之健康影響與病態大樓症候群。本研究所選用之目標污染物為三氯乙烯,為微量存在於潤滑劑或修正液等常用物質中。使用光觸媒(Photocatalytic Oxidation, PCO)程序對於處理多數室內揮發性有機物相當有效,同時具室溫操作、完全礦化成水及二氧化碳最終產物等優點,而成為近年來廣泛使用之室內空氣清淨技術。過去研究指出添加臭氧至光觸媒反應,可避免中間產物造成光觸媒失活之可能性且具增進效應;然而,臭氧於室內環境有其建議值,其尾氣不得有影響人體健康之虞。因此,本研究之目的亦探討臭氧對於光觸媒於室內揮發性有機物轉化之中間產物控制之影響與臭氧之去除效率。
本實驗乃於一光反應器進行,內部為石英管組成(長45 cm、寬2.5 cm),並紫外光光源為15 W、波長254 nm之長型燈管,並選用Degussa P25 TiO2商用化光觸媒為研究對象。而本實驗所選擇之影響因子包含TCE進流濃度、濕度、氣體流率與臭氧濃度等,各實驗進行二重覆試驗,以確保實驗之再現性。 實驗結果顯示,氣體流率大於1,600 L/min 時,其氣相質傳效應可忽略,而此時光觸媒反應之動力模式符合雙分子之Langmuir-Hinshelwood (L-H) 模式。光觸媒反應之TCE轉化率與二氧化碳產出率隨TCE濃度增加而減少,但其氧化速率之趨勢則為相反。光觸媒反應之中間產物的殘餘量隨著進流之TCE濃度增加而增加。TCE之光觸媒反應常數介於10.7至11.3 μ-mole m-2s-1間,且與氫氧自由基反應常數(kOH•)呈線性關係。VOCs與水分子之 Langmuir 吸附常數分別介於 0.61至0.70 ppm-1 及8.33×10-3至1.67×10-2 ppm-1 之間。VOCs之Langmuir 吸附常數的倒數與亨利定律常數(Henry’s Law constant)相關密切;相反地,水分子之Langmuir吸附常數的倒數與亨利定律常數線性關係較低,乃因TCE轉化後之中間產物與水反應,使水分子消耗。 濕度對於光觸媒具有增進氫氧自由基生成之正效應及競爭吸附之負效應。實驗結果指出,相對濕度之增加,中間產物之控制能由約60%減少至40%。而值滯留時間愈長,中間產物能與水分子反應,獲得較充分之分解,因此,可微幅提升二氧化碳之產率。添加臭氧至UV/TiO2系統對去除TCE並無顯著提升,當添加濃度由100 ppb提升至500 ppb(亦即O3/TCE為0.1),可微幅提升中間產物之控制(約5%),但當添加濃度高於此一比值,即出現抑制效應。最終添加至1,000 ppb時,仍殘存約35%(UV/TiO2/O3)與40%(UV/O3)之中間產物殘餘率。 臭氧濃度對UV/O3與UV/TiO2/O3兩程序具抑制效應,添加量愈高則氧化速率隨之降低。此乃釋放之氯自由基(Cl•),與OH•發生一系列競爭反應,如TCE或臭氧分子,Cl•之反應速率則較臭氧與OH•高兩個數量級(128倍,8.7×10-12 vs. 6.8×10-14),顯示臭氧遭受破壞,此結果亦與臭氧增進效應指標為負值相呼應。而O3/TCE為一重要比值,當大於0.1即增進效應不再顯著。 總結來說,不論於何種程序下進行,皆會導致CO與CO2產生率提升(惟UV/O3不產生CO),顯示TCE分解為中間產物後,發生水解效應產生CO與CO2。然而,UV/O3程序則發生無CO產生,推論因CO產率過低,造成Q-trak無法偵測出其讀值。 | zh_TW |
dc.description.abstract | Volatile organic compounds (VOCs), one of indoor air pollutants, are related to aggravation of indoor air quality (IAQ), such as health effect to human and Sick Building Syndrome (SBS). This study selected trichloroethylene (TCE) as model pollutant with respect to the common substance in indoor environment, such as lubricants or correction fluids. The advantages of Photocatalytic Oxidation (PCO) listed as followed: available to several compounds, operation in room temperature, and to be mineralized to H2O or CO2. It has becoming tendency for this process applied to indoor air clean technology. The intermediates, which generated from the PCO process, may raise the concerns of photocatalyst deactivation. Previous studies indicated that the ozone addition has the enhancement effect on this process, however, the ozone concentration has a recommended value of indoor environment because of the negative effect to human health. Therefore, one of the objectives of this study is to investigate of ozone addition to PCO process, the intermediates control ability and ozone removal efficiency.
The experiments were conducted in a photoreactor, with a rectangular quartz plate (45 cm in legth and 2.5 cm in width). The UV light source was controlled at 254 nm and 15 W. Also, Degussa P25 TiO2 was chosen as the catalyst in this study. The influential factors including TCE concentration, relative humidity, gas flow rate and ozone concentration were evaluated and performed twice for reproductive assurances. The effect of gas-phase mass transfer was negligible when gas flow rate exceeded 1,600 ml/min. And the PCO kinetics fitted Langmuir-Hinshelwood model well for bimolecular competitive adsorption type. The TCE conversion and CO2 evolution decreased with increasing TCE concentrations. However, the TCE oxidation rate showed the opposite effect. The residual intermediates increased with increasing TCE concentrations. The PCO rate constants ranged from 10.7 to 11.3 μ-mole m-2s-1, and linear-correlated to the VOCs-hydroxyl radical rate constants (kOH•). The Langmuir adsorption constants of VOCs and water ranged from 0.61 to 0.70 ppm-1 and 8.33×10-3 to 1.67×10-2 ppm-1, respectively. A linear positive relationship was found between the reciprocal of Langmuir adsorption constants and Henry’s Law constants of TCE. However, the reciprocal of Langmuir adsorption constants of water showed a negative relationship with Henry’s Law constants of TCE. This might be due to the intermediates, converted form TCE, reacted with water, and caused the dissipation of water. Relative humidity has a enhancement effect to hydroxyl radicals and retardation effect because of competitive adsorption. Results indicated that the increase of water vapor, the intermediates could decrease from 60% to around 40%. Also, the longer the retention time, the higher the CO2 yield rate. The reason was the contact ability between intermediates and water. The ozone addition to the process of UV/TiO2 exhibited slightly enhancement. When the addition from 100 to 500 ppb of ozone, namely the ratio of O3/TCE is 0.1, the intermediates could slightly controlled around 5%. However, the ratio higher than 0.1, it started to retard. When the addition was 1000 ppb, it still remained about 35% (UV/TiO2/O3) and 40% (UV/O3) of residual intermediates, respectively. The ozone concentration showed retardation effects to UV/O3 and UV/TiO2/O3 processes. The oxidation rate decreased when the addition concentration increased. That was due to the released of Cl•and competed with OH•. These two radicals competed for TCE and water molecules. Owing to the higher reaction rate of Cl•with ozone than that of OH•with ozone by two magnitudes (128 times), ozone has devastated. This results also corresponded to the negative value of enhancement indices of ozone. Therefore, it seems that the enhancement effect was not found at the ratio of O3/TCE (0.1). In summary, under whether processes (UV/TiO2, UV/TiO2/O3 or UV/O3), the CO and CO2 yield rate increased (only under UV/O3 process gained no CO). It showed that TCE converted to residual intermediates and accompanied the reaction of hydrolysis. Therefore, the end products would be CO and CO2. However, the CO yield of UV/O3 was too low to be detected by the Q-trak. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T01:13:32Z (GMT). No. of bitstreams: 1 ntu-98-R96541105-1.pdf: 6153538 bytes, checksum: 055d7f15b63367f1f377b3e94e510e60 (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | 摘要 i
Abstract iii 目錄 I 圖目錄 IV 表目錄 VII 符號說明 IX 第一章 緒論 1 1-1 研究緣起 1 1-2 研究目的 3 1-3 研究內容與方法 3 1-3 研究流程 4 第二章 文獻回顧 5 2-1 揮發性有機物之定義、種類、來源與健康影響 5 2-1-1 揮發性有機物之定義、來源與種類 5 2-1-2 常見室內揮發性有機物之物種 8 2-1-3 室內揮發性有機物之風險及健康危害 10 2-1-4 三氯乙烯之來源、暴露途徑與健康影響 12 2-2 光觸媒催化反應原理、製備及應用 20 2-2-1 半導體概述 20 2-2-2 光觸媒催化反應之原理 20 2-2-3 TiO2光觸媒之優點與晶相 24 2-2-4 光觸媒之製備 25 2-2-5 TiO2光觸媒之應用 27 2-3 光觸媒(UV/TiO2)去除揮發性有機物 31 2-3-1 光催化反應速率及效率之影響因子 31 2-3-2 光催化反應動力 39 2-3-3 UV/TiO2去除氣相揮發性有機物 43 2-4 高級氧化程序(UV/O3)去除揮發性有機物之相關研究 48 2-4-1臭氧之物化特性、來源與其對健康危害 48 2-4-1-1臭氧之來源 49 2-4-1-2臭氧對人體之危害 50 2-4-2 臭氧與揮發性有機物反應之機制 52 2-4-2-1 臭氧之直接與間接分解 52 2-4-2-2 臭氧與烯類化合物之反應 55 2-4-2-3 臭氧與萜烯類反應產生之二次氣膠 56 2-4-3 UV/O3去除揮發性有機物 57 2-5 UV/TiO2/O3去除揮發性有機物 58 第三章 實驗設備與方法 62 3-1 實驗材料與設備 63 3-2 實驗系統 64 3-2-1 光觸媒批覆與光觸媒反應器系統 66 3-2-2 揮發性有機氣體產生、採樣與分析系統 67 3-2-2-1揮發性有機氣體產生 67 3-2-2-2揮發性有機氣體採樣 70 3-2-2-3揮發性有機氣體分析 71 3-2-3 臭氧產生與監測、環境因子及CO與CO2濃度之分析 73 3-2-3-1 臭氧產生與監測 73 3-2-3-2 環境因子及CO與CO2濃度之分析 74 3-3 實驗影響因子 74 3-4 實驗程序 76 第四章 結果與討論 79 4-1 TCE濃度之影響與模式參數度對TCE特性之影響 79 4-1-1 TCE濃度對光觸媒反應之影響 79 4-1-2 TCE濃度對UV/TiO2、UV/O3與UV/TiO2/O3之影響 84 4-1-3 Langmuir吸附常數與亨利定率常數之關係 87 4-1-4 光觸媒反應速率常數與TCE-OH•之反應常數關係 90 4-2 氣體流率之影響 96 4-2-1 光解效應與氣體流率之關係 96 4-2-2 氣體流率對光觸媒反應速率之影響 102 4-2-3 氣體流率對UV/TiO2、UV/O3與UV/TiO2/O3之影響 105 4-3 相對溼度之影響 107 4-3-1 相對溼度對光觸媒反應之影響 107 4-3-2 相對溼度對UV/TiO2、UV/O3與UV/TiO2/O3之影響 111 4-4 臭氧濃度之影響 114 4-4-1 臭氧濃度對光觸媒反應之影響 114 4-4-2 臭氧濃度對UV/TiO2、UV/O3與UV/TiO2/O3之影響 117 4-5 光觸媒反應對臭氧去除效率之影響 122 4-5-1 TCE濃度對臭氧去除效率之影響 122 4-5-2 停留時間濃度對臭氧去除效率之影響 124 4-5-3 相對濕度濃度對臭氧去除效率之影響 126 4-5-4 臭氧濃度對臭氧去除效率之影響 127 4-6 TCE之光觸媒反應動力整體模式 129 4-6-1 TCE之實驗值與預測值之比較 130 4-6-2 本實驗與其他文獻之比較 131 第五章 結論與建議 133 5-1 結論 133 5-2 建議 138 參考文獻 139 | |
dc.language.iso | zh-TW | |
dc.title | 以紫外光/臭氧程序增進光觸媒對室內揮發性有機物三氯乙烯去除效率之研究 | zh_TW |
dc.title | Enhancement Effects of O3 addition on the Effectiveness of Photocatalytic Oxidation for Removal of Indoor Volatile Organic Compounds – Trichloroethylene | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 羅金翔,李家偉,余國賓 | |
dc.subject.keyword | 光觸媒,臭氧,室內空氣,揮發性有機物,三氯乙烯, | zh_TW |
dc.subject.keyword | photocatalysis,ozone,indoor air,Volatile organic compounds,trichloroethylene, | en |
dc.relation.page | 150 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2009-07-29 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf 目前未授權公開取用 | 6.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。