請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42422完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王明光 | |
| dc.contributor.author | Chih-Fu Chen | en |
| dc.contributor.author | 陳致甫 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:13:31Z | - |
| dc.date.available | 2011-08-06 | |
| dc.date.copyright | 2009-08-06 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-29 | |
| dc.identifier.citation | 第六章、參考文獻
Akitt, J.W., and A. Farthing. 1978. New 27Al NMR studies of the hydrolysis of the aluminum (Ⅲ) cation. J. Magn. Reson. 32:345-352. Akitt, J.W., N.N. Greenwood, B.L. Khandelwal, and G.D. Lester. 1972. 27Al nuclear magnetic resonance studies of the hydrolysis and polymerization of the hexa-aquo-aluminum (Ⅲ) cation. J. Chem. Soc. Dalton. 604-610. Allen, S. E. 1989. Chemical Analysis of Ecological Materials. 2nd edition. Blackwell Scientific Publications, New York. Allouche, L., and F. Tauelle. 2003. Fluorination of the ε-Kegging Al13 polycation. Chem. Commum. 2084-2085. Allouche, L., C. Gerardin, T. Loiseau, G. Ferey, and F. Taulelle. 2000. Al30 : A giant aluminum polycation. Angew. Chem. Int. Ed. 39 :511-514. Aveston, J. 1965. Hydrolysis of the aluminum ion: Ultracentrifugation and acidity measurements. J. Chem. Soc. 14:4438-4443. Bersillon, J.L., P.H. Hsu, and F. Fiessinger. 1980. Characterization of hydroxyl-aluminum solutions. Soil Sci. Soc. Am. J. 44:630-634. Bertsch, P.M. 1987. Conditions for Al13 polymer formation in partially neutralized aluminum solutions. Soil Sci. Am. J. 51:825-828. Bertsch, P.M. 1989. In: G. Sposito (Ed), The Environmental Chemistry of Aluminum. CRC Press, Boca Raton, Florida, p. 87. Bertsch, P.M., W.J. Layton, and R.I. Barnhisel. 1986b. Speciation of hydroxyl-aluminum solutions by wet chemical and aluminum-27 NMR methods. Soil. Sci. Soc. Am. J. 50:1449-1454. Bertsch, P.M., R.I. Barnhisel, G.W. Thomas, W.J. Layton, and S.L. Smith. 1986a. Quantitative determination of aluminum 27 by high resolution nuclear magnetic resonance spectrometry. Anal. Chem. 58:2583-2585. Bi, S., C. Wang, Q. Cao, and C. Zhang. 2004. Studies on the mechanism of hydrolysis and polymerization of aluminum salts in aqueous solution: correlations between the “Core-links” model and “Cage-like” Keggin-Al13 model. Coord. Chem. Rev. 248:441-455. Bottero, J.Y., J.M. Cases, F. Flessinger, and J.E. Polrler. 1980. Studies of hydrolyzed aluminum chloride solutions. 1. nature of aluminum species and composition solutions. J. Phys. Chem. 84:2933-2939. Bottero, J.Y., D. Tchoubar, J.M. Cases, and F. Flessinger. 1982. Investigation of the hydrolysis of aqueous solutions of aluminum chloride. 2. nature and structure by small-angle x-ray scattering. J. Phys. Chem. 86:3667-3673. Brosset, C. 1952. On the reactions of the aluminum ion with water. Acta Chem. Scand. 6:910-940. Brosset, C., G. Biedermann, and L.G. Sillen. 1954. Studies on the hydrolysis of metal ions XI. The aluminum ion, Al3+. Acta Chem. Scand. 8:1917-1926. Casey, W.H. 2005. Large aqueous aluminum hydroxide molecules. Chem. Rev. 106 :1-16. Chen, Z., Z. Luan, J. Fan, Z. Zhang, X. Peng, and B. Fan. 2007. Effect of thermal treatment on the formation and transformation of Keggin Al13 and Al30 species in hydrolytic polymeric aluminum solutions. Colloids Surf., A. 292:110-118. Demichelis, R., B. Civalleri, Y. Noel, A. Meyer, and R. Dovesi. 2008. Structure and stability of aluminum trihydroxides bayerite and gibbsite: A quantum mechanical ab initio study with the Crystal06 code. Chem. Phys. Lett. 465:220-225. Denney, D.Z., and P.H. Hsu. 1986. 27Al nuclear magnetic resonance and ferron kinetic studies of partially neutralized AlCl3 solutions. Clays Clay Miner. 34:604-607. Feng, C., B. Shi, D. Wang, G. Li, and H. Tang. 2006. Characteristics of simplified ferron colorimetric solution and its application in hydroxy-aluminum speciation. Colloids Surf., A. 287:203-211. Feng, C., Q. Wei, S. Wang, B. Shi, and H. Tang. 2007a. Speciation of hydroxyl-Al polymers formed through simultaneous hydrolysis of aluminum salts and urea. Colloids Surf., A. 303:241-248. Feng, C., H. Tang, and D. Wang. 2007b. Differentiation of hydroxyl-aluminum species at lower OH/Al ratios by combination of 27Al NMR and ferron assay improved with kinetic resolution. Colloids Surf., A. 305:76-82. Frink, C.R., and M. Peech. 1963. Hydrolysis of the aluminum ion in dilute aqueous solutions. Inorg. Chem. 2:473-478. Hek, H.D., R.J. Stol, and P.L. Bruyn. 1978. Hydrolysis-precipitation studies of aluminum (Ⅲ) solutions. 3. The role of the sulfate ion. J. Colloid Interface Sci. 64:72-89. Hemingway, B.S., and G. Sposito. 1989. In: G. Spositio (Ed), The Environmental Chemistry of Aluminum. CRC Press, Boca Raton, Florida, p.57. Hodges, S.C. 1987. Aluminum speciation: A comparison of five method. Soil Sci. Soc. Am. J. 51:57-64. Hsu, P.H. 1979. Effect of phosphate and silicate on the crystallization of gibbsite from OH/Al solutions. Soil Sci. 127:219-226. Hsu, P.H. 1988. Mechanisms of gibbsite crystallization from partially neutralized aluminum chloride solutions. Clays Clay Miner. 36:25-30. Hsu, P.H. 1997. Effect of temperature on the degradation of Al13 complex. Clays Clay Miner. 45:286-289. Hsu, P.H., and T.F. Bates. 1964. Foremation of X-ray amorphous and crystalline aluminum hydroxides. Miner. Mag. 33:749-768. Hsu, P.H., and D. Cao. 1991. Effects of acidity and hydroxylamine on the determination of aluminum with ferron. Soil Sci. 152:210-219. Johansson, G. 1960. On the crystal structure of some basic aluminum salts. Acta Chem. Scand. 14:771-773. Johansson, G. 1962. The crystal structures of [Al2(OH)2(H2O)8](SO4)2•2H2O and [Al2(OH)2(H2O)8¬¬](SeO4)2•2H2O. Acta Chem. Scand. 16:403-420. Johansson, G. 1963a. The crystal structure of a basic aluminum selenate. Ark. Kemi. 20:305-319. Johansson, G. 1963b. On the crystal structure of the basic aluminum sulfate 13Al2O36SO3•xH2O. Ark. Kemi. 20:321-342. Martins, P.M., and F.A. Rocha. 2008. Kinetic studies on the influence of temperature and growth rate history on crystal growth. Cryst. Res. Technol. 43:1258-1267. Mason, B. 1966. Principle of Geochemistry. 3rd ed. Johnson Wiley and Sons, New York. Mesmer, R.E., and C.F. Baes. 1971. Acidity measurement at elevated temperatures. Ⅴ. Aluminum ion hydrolysis. Inorg. Chem. 10:2290-2296. Parker, D.R., and P.M Bertsch. 1992. Identification and quantification of the “Al13” tridecameric polycation using ferron. Environ. Sci. Technol. 26:908-914. Parker, D.R., L.W. Zwlazny, and T.B. Kinraide. 1988. Comparison of three spectrophotometric methods for differentiating mono-and polynuclear hydroxyl-aluminum complexes. Soil Sci. Soc. Am. J. 52:67-75. Rausch, M.V., and H.D. Bale. 1964. Small-angle X-ray scattering from hydrolyzed Al nitrate solutions. J. Chem. Phys. 40:3391-3395. Ross, G.J., and R.C. Turner. 1971. Effect of different anions on the crystallization of aluminum hydroxide in partially neutralized aqueous aluminum salt systems. Soil Sci. Soc. Am. Proc. 35:389-392. Rowsell, J., and L.F. Nazar. 2000. Speciation and thermal transformation in alumina sols: structures of the polydroxyoxoaluminum cluster [Al30O8(OH)56(H2O)26]18+ and its δ-Keggin moiete. J. Am. Chem. Soc. 122:3777-3778. Schutz, A., W.E.E. Stone, G. Poncelet, and J.J. Fripiat. 1987. Preparation and characterization of bidimensional zeolitic structures obtained from synthetic beidellite and hydroxyl-aluminum solutions. 35:251-261. Shi, B., G. Li, D. Wang, and H. Tang. 2007. Separation of Al13 from polyaluminum chloride by sulfate precipitation and nitrate metathesis. Sep. Purif. Technol. 54:88-95. Sillen, L.G. 1954a. On equilibria in systems with polynuclear complex formation. Ⅰ. Methods for deducing the composition of the complexes from experimental data. “Core+Links” complexes. Acta Chem. Scand. 8:299-317. Sillen, L.G. 1954b. On equilibria in systems with polynuclear complex formation. Ⅱ. Testing simple mechanisms which give “Core+Links” complexes of composiyions. Acta Chem Scand. 8:318-335. Smith, R.W. 1971. Relations among equilibrium and nonequilibrium aqueous species of aluminum hydroxyl complexes. Adv. Chem. Ser. 106:250-279. Stol, R.J., A.K. Van Helden, and P.L. De Bruyn. 1976. Hydrolysis-precipitation studies of aluminum (Ⅲ) solutions 2. A kinetic study and model. J. Colloid Interface Sci. 57:115-131. Tang, H.X., D.S. Wang, and Y. Xu. 2004. Optimization of the concepts for poly-aluminum species. In H.H. Hahn, E. Hoffmann, and H. ødegaard (Ed), Chemical water and wastewater treatment Ⅷ. IWA, London, p.139-149. Tatiana, E.I. 2009. Molecular dynamics study of the role of material properties on nanoparticles formed by rapid expansion of a heated target. Appl. Surf. Sci. 225:5107-5111. Thompson, A.R., A.C. Kunwar, H.S. Gutowsky, and E. Oldfield. 1987. Oxygen-17 and aluminum-27 nuclear magnetic resonance spectroscopic investigations of aluminum (Ⅲ) hydrolysis products. J. Chem. Soc., Dalton Trans. 2317-2322. Tsai, P.P., and P.H. Hsu. 1984. Studies of aged OH-Al solutions using kinetics of Al-ferron reactions and sulfate precipitation. Soil Sci. Soc. Am. J. 48:59-65. Tsai, P.P., and P.H. Hsu. 1985. Aging of partially neutralized aluminum solutions of sodium hydroxide/aluminum molar ratio=2.2. Soil Sci. Soc. Am. J. 49:1060-1065. Turner, R.C. 1971. Kinetic of reactions of 8-quinolinol and acetate with hydroxyaluminum species in aqueous solutions. Ⅱ. Initial solid phases. Can. J. Chem. 49:1688-1690. Wang, W.Z. and P.H. Hsu. 1994. The nature of polynuclear OH-Al complexes in laboratory-hydrolyzed and commercial hydroxyaluminum solutions. Clays and Clay Miner. 42:356-368. Wang, S.L., M.K. Wang, and Y.M. Tzou. 2003. Effect of temperature on formation and transformation of hydrolytic aluminum in aqueous solutions. Colloids Surf., A. 231:143-157. Wang, D., W. Sun, Y. Xu, H. Tang, and J. Gregory. 2004. Speciation stability of inorganic polymer flocculant-PACl. Colloids Surf., A. 243:1-10. Wang, C.X., and G.W. Yang. 2005. Thermodynamics of metastable phase nucleation at the nanoscale. Mater. Sci. Eng., R. 49:157-202. Wu, X., X. Ge, D. Wang, and H. Tang. 2007. Distinct coagulation mechanism and model between alum and high Al13-PACl. Colloids Surf., A. 305:89-96. Xu, Y., D. Wang, H. Liu, L. Yiqiang, H. Tang. 2003. Optimization of the separation and purification of Al13. Colloids Surf., A. 231:1-9. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42422 | - |
| dc.description.abstract | 本研究利用Ferron比色法、硫酸根沉澱法、鋁-27核磁共振光譜法 (27Al NMR)以及X光繞射分析等方法,研究不同合成與老化溫度下之過氯酸鋁溶液,在水解反應過程中物種型態的生成與轉變。根據Ferron法的分析結果,隨著OH/Al莫耳比的增加,單體鋁的部份會因鹼溶液的加入促使聚合反應的進行而減少,造成聚合鋁的增加;在27Al NMR中所測定到的Al13也與Ferron法之聚合鋁部分有相同的變化趨勢;而硫酸根沉澱法的結果也顯示出無法沉澱的單體或低聚合態部分的含量會隨著OH/Al莫耳比的增加而減低,可以被沉澱的高聚合態鋁則增加。另外,藉由改變合成與老化的溫度,觀察不同條件下鋁水解過程可能發生的變化,結果顯示低溫合成的樣品隨著老化的進行會有較高的濁度,而粒徑分析與硫酸根沉澱後固體的SEM結果顯示,在低溫下合成的樣品較高溫合成樣品會生成較大的結晶核,隨著老化的進行會較快生成三水鋁石 (gibbsite)沉澱,有較短的靜止期(Induction period),高溫合成下的樣品則因生成的結晶核粒子小,水解過程較緩慢,有較長的Induction period,須在較高的老化溫度或高的OH/Al莫耳比才會有gibbsite沉澱生成;因此合成溫度會影響溶液中鋁物種的結晶生成,而升高老化溫度或增加OH/Al莫耳比則可加速三水鋁石的結晶成長。 | zh_TW |
| dc.description.abstract | The effect of synthesized and aged temperatures on the formation and transformation of hydrolytic Al species were investigated. The Al speciation in Al(ClO4)3 solution was determined using ferron colorimetric, sulfate precipitation, 27Al nuclear magnetic resonance spectroscopy (27Al NMR), and X-ray diffraction methods. In ferron assay, upon increasing the OH/Al molar ratio, the content of monomeric Al were decreased while that of polymeric Al increased, the formation of Al13 were also increased by 27Al NMR, with sulfate precipitation method, the content of monomeric Al or small polymeric species can not be precipitate by sulfate were decreased, and the high polymeric or colloidal Al can be precipitated by sulfate ion were increased.
The comparison of Al hydrolysis at different synthesized and aged temperature, particle size distribution and scanning electron micrographs (SEM) were indicated sample synthesized at low temperature with larger nuclei, upon aged, there had faster production rate of gibbsite, with shorter induction period, but synthesis at high temperature resulted in smaller nuclei formation, with lower degree hydrolysis and longer induction period, in order to production of gibbsite, have to increase aged temperature or OH/Al molar ratio. Thus, the temperature of synthesized was greatly influenced on the nuclei growth of Al species, increasing aged temperature and OH/Al molar ratio could enhance the growth of gibbsite. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:13:31Z (GMT). No. of bitstreams: 1 ntu-98-R96623022-1.pdf: 3935763 bytes, checksum: ad016a6e0ba4edf66add44170e8ccb8c (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 目錄
第一章 緒言………………………………………………………1 第二章 前人研究…………………………………………………5 第三章 材料與方法………………………………………………15 3-1 鋁樣品之合成……………………………………………………15 3-2 分析方法…………………………………………………………19 3-2-1未過濾之樣品…………………………………………19 Ⅰ. pH值測定………………………………………………19 Ⅱ. 濁度測定………………………………………………19 Ⅲ. 雷射光繞射粒徑分析..........................20 Ⅳ. 總鋁量測定……………………………………………20 3-2-2過濾後之樣品 (液體部分)…………………………20 Ⅰ. 27Al核磁共振光譜法…………………………………20 Ⅱ. Ferron比色法…………………………………………23 Ⅲ. 硫酸根沉澱法…………………………………………27 過濾後之樣品 (固體部分)………………………………28 X光繞射分析、掃描式電子顯微鏡分析…………………28 第四章 結果與討論……………………………………………29 4-1 水解鋁物種之分析………………………………………………29 4-1-1 Ferron法的適用性…………………………………29 4-1-2 Ferron比色法的測定結果…………………………30 4-1-3 核磁共振光譜法之鑑定……………………………40 4-1-4 硫酸根沉澱法之鑑定………………………………48 4-1-5 綜合比較……………………………………………55 4-2 合成溫度對水解物種分佈的影響……………………………60 4-2-1 濁度、pH值與Ksp之變化…………………………60 4-2-2 低溫與高溫合成物種分佈的差異…………………77 4-2-3 粒徑分析……………………………………………84 4-2-4 綜合討論……………………………………………95 第五章 結論………………………………………………………98 第六章 參考文獻…………………………………………………99 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鋁-27核磁共振光譜法 | zh_TW |
| dc.subject | Ferron比色法 | zh_TW |
| dc.subject | 硫酸根沉澱法 | zh_TW |
| dc.subject | ferron colorimetric | en |
| dc.subject | 27Al nuclear magnetic resonance spectroscopy | en |
| dc.subject | sulfate precipitation | en |
| dc.title | 不同合成與老化溫度對鋁物種生成轉變之影響 | zh_TW |
| dc.title | formation and transformation of hydroxyl Al species at different synthesized and aged temperatures | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 王尚禮 | |
| dc.contributor.oralexamcommittee | 張大偉,官文惠,吳嘉文 | |
| dc.subject.keyword | Ferron比色法,硫酸根沉澱法,鋁-27核磁共振光譜法, | zh_TW |
| dc.subject.keyword | ferron colorimetric,sulfate precipitation,27Al nuclear magnetic resonance spectroscopy, | en |
| dc.relation.page | 106 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-29 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 農業化學研究所 | zh_TW |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 3.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
