Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42412
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林宗賢(Tsung-Hsien Lin)
dc.contributor.authorChien-Jung Chouen
dc.contributor.author周健榮zh_TW
dc.date.accessioned2021-06-15T01:13:21Z-
dc.date.available2014-08-11
dc.date.copyright2009-08-11
dc.date.issued2009
dc.date.submitted2009-07-29
dc.identifier.citation[1] Q. Huang and M. Oberle, “A 0.5-mW passive telemetry IC for biomedical applications,” IEEE J. Solid-State Circuits, vol. 33, pp. 937-946, July. 1998.
[2] A. Rossi and G. Fucilli, “Nonredundant successive approximation register for A/D converters,” IEE Electron. Letters, vol. 32, no. 12, pp. 1055–1057, June 1996.
[3] M. Yildiz, F. N. Guler, A. Turkmen and D. Yilmaz, “Biopotential Instrumentation Set,” 2001 proceedings of the 23rd Annual EMBS International Conference, pp. 3269-3272, Oct 2001.
[4] J. G. Webster, Medical Instrumentation: Application and Design, 2nd ed. Boston, MA: Houghton Mifflin, 1992.
[5] G. J. Blake et al., “Blood Pressure, C-Reactive Protein, and Risk of Future Cardiovascular Events”, Circulation, vol. 108, pp. 2993-2999, 2003.
[6] H. D. Lee, C.-H. Kim, and S. Hong, “An SiGe BiCMOS transmitter module for IMT2000 applications,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 8, pp. 371–373, Aug. 2004.
[7] T. Yamaji, N. Kanou, and T. Itakura, “A temperature-stable CMOS variable-gain amplifier with 80-dB linearly controlled gain range,” IEEE J. Solid-State Circuits, vol. 37, no. 5, pp. 553–558, May 2002.
[8] J. K. Kwon, K. D. Kim, W. C. Song, and G. H. Cho, “Wideband high dynamic range CMOS variable gain amplifier for low voltage and low power wireless applications,” Electron. Lett., vol. 39, no. 10, pp. 759–760, Mar. 2003.
[9] C. C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of opamp imperfections: Autozeroing, correlated double sampling, and chopper stabilization,” Proc. IEEE, vol. 84, no. 11, pp. 1584–1614, Nov. 1996.
[10] C. C. Enz, E. A. Vittoz, and F. Krummenacher, “A CMOS chopper amplifier,” IEEE J. Solid-State Circuits, vol. SC-22, pp. 335–342, June 1987.
[11] C. Menolfi and Q. Huang, “A fully integrated, untrimmed CMOS instrumentation amplifier with submicrovolt offset,” IEEE J. Solid-State Circuits, vol. 34, no. 3, pp. 415–420, Mar. 1999.
[12] R. F. Yazicioglu, P. Merken, R. Puers, and C. Van Hoof, “A 60 uW60 nV/rtHz readout front-end for portable biopotential acquisition systems,” in IEEE ISSCC Dig. Tech. Papers, pp. 56–57, Feb. 2006.
[13] A. Bakker, K. Thiele, and J. H. Huijsing, “A CMOS nested-chopper instrumentation amplifier with 100-nV offset,” IEEE J. Solid-State Circuits,vol. 35, no. 12, Dec. 2000.
[14] M. J. Burke and D. T. Gleeson, “A micropower dry-electrode ECG preamplifier,” IEEE Trans. Biomed. Eng., vol. 47, no. 2, pp. 155–162, Feb. 2000
[15] E. M. Spinelli, R. Pallas-Areny, and M. A. Mayosky, “AC-coupled front-end for biopotential measurements,” IEEE Trans. Biomed. Eng., vol. 50, no. 3, pp. 391–395, Mar. 2003.
[16] C. J. Yen, W. Y. Chung, and M. C. Chi, “Micro-power low-offset instrumentation amplifier for biomedical system applications,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 4, pp. 691–699, Apr. 2004.
[17] E. M. Spinelli, N. Martinez, M. A. Mayosky, and R. Pallas-Areny, “A novel fully differential biopotential amplifier with DC suppression,” IEEE Trans. Biomed. Eng., vol. 51, no. 8, pp. 1444–1448, Aug. 2004.
[18] J. G. Webster, Medical Instrumentation: Application and Design, 3rded. New York: Wiley, 1998.
[19] A. Harb and M. Sawan, “Low-power CMOS interface for recording and processing very low amplitude signals,” Analog Integrated Circuits Signal Process, vol. 39, pp. 39–54, Apr. 2004.
[20] P. M. Van Petegem, I. Verbauwhede, and W. M. C. Sansen, “Micropower high-performance SC building block for integrated low-level signal processing,” IEEE J. Solid-State Circuits, vol. SC-20, no. 4, pp. 837–844, Aug. 1985.
[21] M. Degrauwe, E. Vittoz, and I. Verbauwhede, “A Micropower CMOS instrumentation amplifier,” IEEE J. Solid-State Circuits, vol. sc-20, pp. 805–807, Jun. 1985.
[22] R. Martins, S. Selberherr, and F. A. Vaz, “A CMOS IC for portable EEG acquisition systems,” IEEE Trans. Instrum. Meas., vol. 47, no. 5, pp. 1191–1196, Oct. 1998.
[23] R. F. Yazicioglu, P. Merken, and C. Van Hoof, “Integrated low-power 24-channel EEG front-end,” IEE Electron. Lett., vol. 41, no. 8, pp. 457–458, Apr. 2005.
[24] C-.H. Chen, R.-Z Hwang, L.-S Huang, S. Lin, H.-C. Chen, Y.-C. Yang, Y.-T. Lin, S.-A. Yu, Y.-H Wang, N.-K. Chou, S.-S. Lu, “A wireless Bio-mems sensor for creactive protein detection based nanomechanics,” ISSCC, pp. 562-563, February 2006.
[25] E. A. Vittoz, “Micropower techniques” in Design of Analog-Digital VLSI Circuits for Telecommunications and Signal Processing, Upper Saddle River, NJ: Prentice-Hall, 1994, pp. 53–96.
[26] C. Enz, F. Krummenacher, and E. A. Vittoz, “An analytical MOS transistor model valid in all regions of operation and dedicated to lowvoltage and low-current applications,” Analog Integrated Circuits Signal Processing, vol. 8, pp. 83–114, 1995.
[27] P. Mohseni and K. Najafi, “A fully integrated neural recording amplifier with DC input stabilization,” IEEE Trans. Biomed. Eng., vol. 51, no. 5, pp. 832–837, May 2004.
[28] A. Veeravalli, E. Sanchez-Sinencio, and J. Silva-Martinez, “Transconductance amplifier structures with very small transconductances: A comparative design approach,” IEEE J. Solid-State Circuits, vol. 37, pp. 770–775, June 2002.
[29] J. Silva-Martinez and J. Salcedo-Suner, “IC voltage to current transducers with very small transconductances,” J. Analog Integrated Circuits Signal Process., vol. 13, pp. 285–293, July 1997.
[30] U. Yodprasit and J. Ngarmnil, “Micropower transconductor for very-low frequency filters,” in Proc. IEEE APCCAS’98, pp. 5–8, Nov. 1998.
[31] M. Steyaert, P. Kinget, and W. Sansen, “Full integration of extremely large time constants in CMOS,” Electron. Lett., vol. 27, no. 10, pp. 790–791, 1991.
[32] J. Silva-Martínez and S. Solís-Bustos, “Design considerations for high performance very-low-frequency filters,” in Proc. IEEE Int. Symp. Circuits and Systems (ISCAS’99), vol. 2, pp. 648–651 1999.
[33] P. Garde, “Transconductance cancellation for operational amplifiers,” IEEE J. Solid-State Circuits, vol. 12, pp. 310–311, June 1977.
[34] R. Fried and C. C. Enz, “Bulk-drivenMOStransconductor with extended linear range,” Electron. Lett., vol. 32, pp. 638–640, 1996.
[35] A. Guzinski, M. Bialko, and J. C. Matheau, “Body-driven differential amplifier for application in continuous-time active-C filter,” in Proc. IEEE Eur. Conf. Circuit Theory and Design (ECCTD’87), pp. 315–319, 1987,.
[36] A. B. Williams and F. J. Taylor, Electronic Filter Design HandBook. New York: McGraw-Hill, Inc. 1995.
[37] K. M. Abdelfattah and A. M. Soliman, “Variable Gain Amplifier Based on a New Approximation Method to Realize the Exponential Function,” IEEE Trans. Circuits Syst., vol. 49, no. 9, Sep 2002.
[38] R. Harijani, “A Low-power CMOS VGA for 50 Mb/s Disk Drive Read Channels,” IEEE Trans. Circuits and Syst. vol. 42, no. 6, pp. 370-376, June, 1995.
[39] C. C Chang and S. L. Liu, “Current-mode pseudo-exponential circuit with tunable input range,” Electronic Letter, vol. 36, no. 16, pp 1335-1336, 3rd Aug, 2000.
[40] M. M. Green and S. Joshi, “A 1.5-V CMOS VGA based on pseudodifferential structures,” in Proc. IEEE Int. Symp. Circuits Syst. pp. IV-461–IV-464, May 2000.
[41] Q.-H. Duong and S.-G. Lee, “CMOS exponential current-to-voltage circuit based on newly proposed approximation method,” in Proc. IEEE Int. Symp. Circuits Syst., pp.866-868. May 2004.
[42] R. G. Carvajal, J. Ramfrez-Angulo, and F. M. Chavero, “The flipped voltage follower: A useful cell for low-voltage low-power circuits design,” IEEE Transaction on Circuits and Systems I, vol. 52, no. 7, pp. 1276-1291, July 2005.
[43] D. A. Johns and K. Martin, Analog Integrated Circuit Design, New York: John Wiley & Sons, 1997.
[44] F. Krummenacher and N. Joehl, “A 4-MHz CMOS continuous-time filter with on-chip automatic tuning,” IEEE J. Solid-Slate Circuits, vol. 23, pp. 750-757, 1988.
[45] M. Nakamura, N. Ishihara, Y. Akazawa, and H. Kimura, “An instantaneous response CMOS optical receiver IC with wide dynamic range and extremely high sensitivity using feedforward autobias adjustment,” IEEE J. Solid-State Circuits, vol. 30, pp. 991–997, Sept. 1995.
[46] S. Galal and B. Razavi, ”10-Gb/s Limiting amplifier and laser/modulator driver in 0.18-μm CMOS Technology,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp.2138-2146, Dec. 2003.
[47] Michiel A.P. Pertijs,W.J Kindt,”A 140dB-CMRR Current-Feedback
Instrumentation Amplifier Empolying Ping-Pong Auto-Zeroing and Chopping,”
IEEE ISSCC Dig. Tech.Papers, pp. 324-326, Feb. 2009.
[48] R. F. Yazicioglu, P. Merken, R. Puers, and C. Van Hoof, “A 60 μW 60 nV/√HzReadout Front-end for Portable Biopotential Acquisition Systems,” IEEE J.Solid-State Circuits, vol. 42, no. 5, pp. 1100–1110, May. 2007.
[49] K. A. Ng and P. K. Chan, “A CMOS analog front-end IC for portable EEG/ECG monitoring applications,” IEEE Trans. Circuits Sytem. I, Reg. Papers, vol. 52, no.11, Nov. 2005.
[50] A.T.K. Tang, “A 3 μV-Offset Operational Amplifier with 20nV/√Hz Input Noise PSD at DC Employing Both Chopping and Autozeroing,” IEEE ISSCC Dig. Tech.Papers, pp. 386-387, Feb. 2002
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42412-
dc.description.abstract隨著人口老化,低功率、小面積與可攜式之生醫偵測系統的需求日益增加,在此系統裡,其中一個關鍵部份是前端的類比信號讀取電路。本論文的重點在於設計一個應用於生醫系統的低功率低雜訊前端讀取電路。此外,本論文的另一項重點在應用於現今通訊系統中的可調變增益放大器設計。
本論文所提出的生醫系統讀取電路,是利用電流操作模式的儀表放大器架構來實現系統中的放大器,採用主動式電阻電容積分器消除放大器本身的直流偏移電壓,其中使用操作於次臨界的電晶體來當作高阻值的電阻。為了適用各種不同的生醫信號,使用一個可程式增益放大器來對系統的放大增益做調變。另外,利用巢式削波技巧來消除低頻的閃爍雜訊與提升整體電路的共模拒斥比。最後,採用一個三階的轉導電容低通濾波器來消除被輸入端削波調變至高頻的雜訊。本電路電路採用台積電0.18微米的製程設計,可達等效輸入電壓雜訊密度6 nV/rt(Hz)與共模拒斥比 125 dB,整體電路可程式增益範圍從46 dB到80 dB,在1.0伏特電源供應下消耗182微安培電流。
本論文的另一項重點在實現一個頻寬大於100 MHz的可調變增益放大器。此放大器採用串接三級的架構,利用一個新型的虛擬指數函數產生電路來控制其增益大小,使其增益調變的線性範圍大於傳統的可調變增益放大器。使用源級褪化技巧與前饋式偏壓消除電路,分別提升電路的線性度與消除直流偏移電壓。此可調變增益放大器採用台積電0.18微米的製程製造,模擬結果得到可調變增益範圍從-44 dB 到 30 dB,頻寬為166 MHz 到304 MHz,IIP3從-35 dBm 到 8.26 dBm,整個電路在1.5伏特電源供應下消耗950微瓦。
zh_TW
dc.description.abstractWith the population ageing, there is a growing demand for the low-power, small-size and ambulatory biomeical monitoring system. A crucial block in the biomedical system is the analog readout front-end. The thesis focuses on the design of low-power and low-noise readout circuitrs for the biomedical application. The other focus of the thesis is the design of variable gain amplifier (VGA) for the modern communuication systems.
The biomedical readout circuits are based on current-mode instrumentation amplifier (CMIA) topology to implemene the amplifiers. To remove the DC offset of CMIA, an active-RC integrator with the subthreshold-biased pMOS as high reisitance is used. A programmable gain amplifier (PGA) is adopted to set the overall gain to support various biomedical signals. Besides, the nested-chopper technique is used to reduce the flicker noise and increases common-mode rejection ratio (CMRR). Finally, a 3th –order elliptic Gm-C low-pass filter removes the high-frequency noise modulated by the input chopper. The readout circuits are fabricated in 0.18-
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:13:21Z (GMT). No. of bitstreams: 1
ntu-98-R94942130-1.pdf: 3061200 bytes, checksum: b5b0802d5ef4710ac765a63913e17438 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsChapter 1 Introduction 1
1.1 Motivation 1
1.2 Thesis Overview 4
Chapter 2 Fundamentals of Readout Front-End 5
2.1 Introduction 5
2.2 Offset and Noise in CMOS Amplifier 5
2.2.1 Basic CMOS Amplifier 5
2.2.2 Noise Spectrum Analysis 6
2.3 Circuit Techniques for Reducing Offset and Noise 7
2.3.1 Classification 7
2.3.2 Autozero Technique 7
2.3.3 Chopper Technique 9
2.4 Instrumentation Amplifier 16
Chapter 3 Biomedical Readout Circuits Design 19
3.1 Introduction 19
3.2 The architecture of Readout Circuits 19
3.3 Design and Implementation of Instrumentation Amplifier 21
3.3.1 Basic Principle of Instrumentation Amplifier 21
3.3.2 Low-Noise and Low-Voltage Design Considerations 23
3.3.3 Low-Power Design Methodology 24
3.3.4 DC Offset Rejection Circuit 27
3.3.5 Programmable Gain Amplifier 30
3.3.6 Chopper Modulator 32
3.3.7 Clock Generator 32
3.3.8 Frequency Divider 33
3.4 Design and Implementation of Low Pass Filter Design 33
3.4.1 Introduction 33
3.4.2 Design of Low-Gm Operational Transconductance Amplifier 34
3.4.3 Filter Approximation Type 38
3.4.4 Ladder Prototype of 3rd-order Elliptic Filter 39
3.4.5 Implementation of the Balanced Gm-C Filter 40
3.5 Simulation Results 41
3.5.1 Instrumentation Amplifier 41
3.5.2 Low-Pass Filter 45
3.6 Summary of the Simulation Results 46
Chapter 4 Wide Bandwidth Variable Gain Amplifier 47
4.1 Introduction 47
4.2 The Architecture of the Variable Gain Amplifier 48
4.3 Design and Implementation of Exponential Function Generator 49
4.3.1 Decibel Linear Function 49
4.3.2 Exponential Voltage-to-Current Converter 51
4.4 Design and Implementation of Variable Gain Amplifier 55
4.4.1 Basic Principle of Gain Tuning 55
4.4.2 Design Consideration for Linearity 57
4.4.3 DC Offset Cancellation 58
4.4.4 Active-Feedback Circuit 60
4.5 Simulation Results 62
4.6 Summary of Simulation Results 65
Chapter 5 Experimental Results 67
5.1 Chip Pin Configurations and Printed Circuit Board Design 67
5.1.1 Chip Pin Configurations 67
5.1.2 PCB Design 68
5.2 Measurement Setup 70
5.2.1 Frequency Response Measurement Setup 70
5.2.2 Noise Measurement Setup 71
5.3 Measurement Results 72
5.3.1 Frequency Response Measurement 72
5.3.2 Noise Measurement 76
5.4 Summary of Measured Results 81
Chapter 6 Conclusions and Future Works 85
6.1 Conclusions 85
6.2 Future Works 86
References 89
dc.language.isoen
dc.title應用於生醫系統之低功率低雜訊互補式金氧半讀取電路設計zh_TW
dc.titleCMOS Low-power and Low-noise Readout Circuits for Biomedical Applicationsen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳信樹(Hsin-Shu Chen),曾英哲
dc.subject.keyword前端讀取電路,儀表放大器,削波,可調變增益放大器,虛擬指數函數產生器,zh_TW
dc.subject.keywordreadout front-end,instrumentation amplifier,chopper,variable gain amplifier,pseudo-exponential function generator,en
dc.relation.page94
dc.rights.note有償授權
dc.date.accepted2009-07-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
2.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved