Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42411
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor歐陽彥正(Yen-Jen Oyang)
dc.contributor.authorMei-Ju Chenen
dc.contributor.author陳玫如zh_TW
dc.date.accessioned2021-06-15T01:13:19Z-
dc.date.available2014-07-30
dc.date.copyright2009-07-30
dc.date.issued2009
dc.date.submitted2009-07-29
dc.identifier.citation1. Watson, J.D., Molecular biology of the gene. 6th ed. Vol. xxxii. 2008, San Francisco: Pearson. 841.
2. Lewin, B., GENES VIII. International ed. 2004: Pearson Prentice Hall.
3. Kato, M., et al., Identifying combinatorial regulation of transcription factors and binding motifs. Genome Biology, 2004. 5(8): p. -.
4. Harbison, C.T., et al., Transcriptional regulatory code of a eukaryotic genome. Nature, 2004. 431(7004): p. 99-104.
5. Spellman, P.T., et al., Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell, 1998. 9(12): p. 3273-97.
6. Pilpel, Y., P. Sudarsanam, and G.M. Church, Identifying regulatory networks by combinatorial analysis of promoter elements. Nature Genetics, 2001. 29(2): p. 153-159.
7. Banerjee, N. and M.Q. Zhang, Identifying cooperativity among transcription factors controlling the cell cycle in yeast. Nucleic Acids Research, 2003. 31(23): p. 7024-7031.
8. Balaji, S., et al., Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast. Journal of Molecular Biology, 2006. 360(1): p. 213-227.
9. Chang, Y.H., Y.C. Wang, and B.S. Chen, Identification of transcription factor cooperativity via stochastic system model. Bioinformatics, 2006. 22(18): p. 2276-2282.
10. Datta, D. and H. Zhao, Statistical methods to infer cooperative binding among transcription factors in Saccharomyces cerevisiae. Bioinformatics, 2008. 24(4): p. 545-52.
11. Tsai, H.K., H.H. Lu, and W.H. Li, Statistical methods for identifying yeast cell cycle transcription factors. Proc Natl Acad Sci U S A, 2005. 102(38): p. 13532-7.
12. Eisen, M.B., et al., Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A, 1998. 95(25): p. 14863-8.
13. Burnette, W.N., 'Western blotting': electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem, 1981. 112(2): p. 195-203.
14. Gasch, A.P., et al., Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell, 2000. 11(12): p. 4241-57.
15. Ren, B., et al., Genome-wide location and function of DNA binding proteins. Science, 2000. 290(5500): p. 2306-9.
16. Buck, M.J. and J.D. Lieb, ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics, 2004. 83(3): p. 349-60.
17. Lee, T.I., et al., Transcriptional regulatory networks in Saccharomyces cerevisiae. Science, 2002. 298(5594): p. 799-804.
18. MacIsaac, K.D., et al., An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinformatics, 2006. 7: p. 113.
19. Chen, C.Y., et al., Discovering gapped binding sites of yeast transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2008. 105(7): p. 2527-2532.
20. Zhu, J. and M.Q. Zhang, SCPD: a promoter database of the yeast Saccharomyces cerevisiae. Bioinformatics, 1999. 15(7-8): p. 607-11.
21. Wingender, E., et al., TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res, 1996. 24(1): p. 238-41.
22. Hannenhalli, S., Eukaryotic transcription factor binding sites--modeling and integrative search methods. Bioinformatics, 2008. 24(11): p. 1325-31.
23. Tuncbag, N., et al., A survey of available tools and web servers for analysis of protein-protein interactions and interfaces. Brief Bioinform, 2009. 10(3): p. 217-32.
24. Breitkreutz, B.J., et al., The BioGRID Interaction Database: 2008 update. Nucleic Acids Res, 2008. 36(Database issue): p. D637-40.
25. Chatr-Aryamontri, A., et al., MINT: the molecular INTeraction database. Nucleic Acids Research, 2007. 35: p. D572-D574.
26. Guldener, U., et al., MPact: the MIPS protein interaction resource on yeast. Nucleic Acids Research, 2006. 34: p. D436-D441.
27. Kerrien, S., et al., IntAct - open source resource for molecular interaction data. Nucleic Acids Research, 2007. 35: p. D561-D565.
28. Salwinski, L., et al., The Database of Interacting Proteins: 2004 update. Nucleic Acids Research, 2004. 32: p. D449-D451.
29. Zhu, C., et al., High-resolution DNA-binding specificity analysis of yeast transcription factors. Genome Res, 2009. 19(4): p. 556-66.
30. Wu, W.S., W.H. Li, and B.S. Chen, Identifying regulatory targets of cell cycle transcription factors using gene expression and ChIP-chip data. Bmc Bioinformatics, 2007. 8: p. -.
31. McCord, R.P., et al., Inferring condition-specific transcription factor function from DNA binding and gene expression data. Molecular Systems Biology, 2007. 3: p. -.
32. Lemmens, K., et al., Inferring transcriptional modules from ChIP-chip, motif and microarray data. Genome Biol, 2006. 7(5): p. R37.
33. Chang, Y.H., Y.C. Wang, and B.S. Chen, Identification of transcription factor cooperativity via stochastic system model. Bioinformatics, 2006. 22(18): p. 2276-82.
34. Manke, T., R. Bringas, and M. Vingron, Correlating protein-DNA and protein-protein interaction networks. Journal of Molecular Biology, 2003. 333(1): p. 75-85.
35. Goldovsky, L., et al., BioLayout(Java): versatile network visualisation of structural and functional relationships. Appl Bioinformatics, 2005. 4(1): p. 71-4.
36. Zhu, G., et al., Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature, 2000. 406(6791): p. 90-4.
37. Primig, M., H. Winkler, and G. Ammerer, The DNA binding and oligomerization domain of MCM1 is sufficient for its interaction with other regulatory proteins. EMBO J, 1991. 10(13): p. 4209-18.
38. Pic, A., et al., The forkhead protein Fkh2 is a component of the yeast cell cycle transcription factor SFF. EMBO J, 2000. 19(14): p. 3750-61.
39. Olson, K.A., et al., Two regulators of Ste12p inhibit pheromone-responsive transcription by separate mechanisms. Mol Cell Biol, 2000. 20(12): p. 4199-209.
40. Kumar, R., et al., Forkhead transcription factors, Fkh1p and Fkh2p, collaborate with Mcm1p to control transcription required for M-phase. Curr Biol, 2000. 10(15): p. 896-906.
41. Koranda, M., et al., Forkhead-like transcription factors recruit Ndd1 to the chromatin of G2/M-specific promoters. Nature, 2000. 406(6791): p. 94-8.
42. Koch, C., et al., A role for the transcription factors Mbp1 and Swi4 in progression from G1 to S phase. Science, 1993. 261(5128): p. 1551-7.
43. Doolin, M.T., et al., Overlapping and distinct roles of the duplicated yeast transcription factors Ace2p and Swi5p. Mol Microbiol, 2001. 40(2): p. 422-32.
44. Costanzo, M., O. Schub, and B. Andrews, G1 transcription factors are differentially regulated in Saccharomyces cerevisiae by the Swi6-binding protein Stb1. Mol Cell Biol, 2003. 23(14): p. 5064-77.
45. Banerjee, N. and M.Q. Zhang, Identifying cooperativity among transcription factors controlling the cell cycle in yeast. Nucleic Acids Res, 2003. 31(23): p. 7024-31.
46. Salwinski, L., et al., The Database of Interacting Proteins: 2004 update. Nucleic Acids Res, 2004. 32(Database issue): p. D449-51.
47. Yu, X., et al., Genome-wide prediction and characterization of interactions between transcription factors in Saccharomyces cerevisiae. Nucleic Acids Res, 2006. 34(3): p. 917-27.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42411-
dc.description.abstract轉錄調控機制發生於轉錄因子與其目標基因之上游啟動子結合之後,因此轉錄因子於轉錄調控上擔當重任。而就經驗觀察上,轉錄因子通常不是單獨調控目標基因之表現,而必須與其他轉錄因子合作,故研究與預測共同合作之「轉錄因子群」為當今重要研究之一。而近期高通量工具技術的進步,例如:染色體免疫沉澱晶片和微陣列晶片等,生物學家將這些技術大舉應用於酵母菌基因體之生物實驗,提供給我們豐富材料而可進行轉錄調控模組相關研究。許多生物資訊研究,無論是單獨使用染色體免疫沉澱晶片,或是結合染色體免疫沉澱晶片與微陣列晶片兩種資料,逐步發展了多種研討「轉錄因子合作現象」的計算方法。然而,基於如是利用基因表現資料的方法論,容易因高度仰賴微陣列晶片的可得性與資料品質優劣而大幅受限;因此,本論文欲探討,針對單獨使用染色體免疫沉澱晶片的方法論而言,能否藉由合併「轉錄因子之結合區特徵探勘及其分析程序」進一步增進此類之現存方法論的預測精準度。於此將所提之新的預測方法描述如下:首先利用染色體免疫沉澱晶片提供之轉錄因子及其目標基因結合資料,辨識每個轉錄因子所屬的目標基因,然後利用本實驗室先前所開發的「序列特徵探勘演算法」,為每一轉錄因子尋找前十名之可能結合區特徵;而後,針對至少共有一個相同目標基因的「轉錄因子對」,計算兩個轉錄因子各自擁有的前十名結合區特徵,總計10x10 = 100組的相似度,再篩選出擁有至少一組相似的結合區特徵配對的「轉錄因子對」;最後,將所預測的「轉錄因子對」依據「兩轉錄因子共有基因程度之評估數值」排序。為了評定方法的成效,我們建構了一組從各種蛋白質資料庫及文獻整理收集的「蛋白質-蛋白質交互作用」和「具有協同作用的轉錄因子對」的答案資料集。而後利用此答案資料集評估各項方法,發現我們所建議之方案優於其他以序列為基礎的方法論;此外,由於本論文之建議方案可同時保留轉錄因子的配對資料與相關的結合區特徵,而可搭起轉錄調控模組與結合區特徵的橋樑,可更為利於建構基因調控網絡。zh_TW
dc.description.abstractTranscriptional regulation typically happens after the binding of transcription factors (TFs) to the specific promoter regions of their target genes. TFs frequently regulate gene expression by cooperating with other TFs. Recent advances in high-throughput tools, e.g. Chromatin immunoprecipitation chip (ChIP-chip) and microarray expression data, provides us with considerable information to investigate transcription regulatory modules (TRMs), or groups of cooperative TFs. Many recent studies have developed computational methods to study TF cooperativity by utilizing ChIP-chip data alone or integrating information from both ChIP-chip and microarray data. Since methods employing gene expression information highly rely on the availability and quality of microarray data, this thesis proposes a method named simTFBS, which uses ChIP-chip data alone but incorporating pattern discovery and analysis procedures when finding potential cooperative TF pairs. The proposed method first identifies potential target genes for each TF based on the ChIP-chip data. After that, a previously developed algorithm for predicting TF binding sites (TFBSs) is applied on each TF to derive a top-10 list of potential TFBSs. For a pair of TFs with at least one common target gene, we check whether their top-10 pattern lists share at least one pair of similar TFBSs which suggest cooperativity. Finally, each TF pair is given a score representing the degree of cooperativity defined by the mutual information score between respective target gene lists. In this thesis, the answer set for evaluation is built by collecting known protein-protein interactions (PPI) from databases and annotated synergy relationships from literatures. The results reveal that the proposed approach performs better than many existing methods and also helps to associate a potential TRM with the related TFBSs when constructing gene regulatory networks.en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:13:19Z (GMT). No. of bitstreams: 1
ntu-98-R96945021-1.pdf: 3248642 bytes, checksum: 7b60b436dc98164a43baae14a93aac3f (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents論文口試委員審定書 i
ACKNOWLEDGMENTS ii
中文摘要 iv
ABSTRACT vi
TABLE OF CONTENTS viii
LIST OF FIGURES xi
LIST OF TABLES xvi
CHAPTER 1 INTRODUCTION 1
1.1 Cooperativity among Transcription factors 2
1.2 Motivation 4
1.3 Summary of chapters 5
CHAPTER 2 LITERATURE SURVEY 6
2.1 Materials and data resources from biologists. 6
2.1.1 Microarray 6
2.1.2 Chromatin immunoprecipitation chip (ChIP-chip) 7
2.1.3 Transcription factor binding sites (TFBSs) 7
2.1.4 Protein-protein interaction 8
2.2 Related work of discovering TF cooperativity 8
2.2.1 Determining target gene set for a TF 9
2.2.2 Detecting potential cooperative TF pairs 10
CHAPTER 3 MATERIALS AND METHODS 12
3.1 Datasets 12
3.2 The proposed method: simTFBS: 12
3.3 Identification of highly associated TF groups (HAG) 14
CHAPTER 4 RESULTS AND DISCUSSION 16
4.1 Comparison of different methods utilizing ChIP-chip alone 18
4.1.1 Answer set 18
4.1.2 Evaluation 21
4.1.3 Previously proposed ideas 21
4.1.4 Evaluation of Methods (1)-(5) 23
4.1.5 Comparison of simTFBS with Methods (1) and (2) 27
4.2 Comparison with other similar studies 33
4.2.1 Comparison with Harbison, Chang and Tsai 33
4.2.2 Comparison with Motif-PIE provided by Yu et al. 35
4.3 Identifying highly associated TF groups 38
CHAPTER 5 CONCLUSION 40
REFERENCE: 42
APPENDIX 46
dc.language.isoen
dc.subject轉錄因子合作zh_TW
dc.subject模序探勘zh_TW
dc.subject染色體免疫沉澱晶片zh_TW
dc.subject轉錄因子結合位zh_TW
dc.subject轉錄調控zh_TW
dc.subject轉錄調控模組zh_TW
dc.subject酵母菌zh_TW
dc.subjectChromatin immunoprecipitation chipen
dc.subjectSaccharomyces Cerevisiaeen
dc.subjecttranscriptional regulationen
dc.subjecttranscription factor cooperativityen
dc.subjecttranscription regulatory moduleen
dc.subjectmotif discoveryen
dc.subjecttranscription factor binding siteen
dc.title以序列特徵為基礎預測酵母菌轉錄因子間之合作關係zh_TW
dc.titleIncorporating Motif Discovery in Investigation of Transcription Factor Cooperativity in Saccharomyces Cerevisiaeen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳倩瑜(Chien-Yu Chen),蔡懷寬(Huai-Kuang Tsai),張天豪(Tien-Hao Chang)
dc.subject.keyword酵母菌,轉錄調控,轉錄因子合作,轉錄調控模組,轉錄因子結合位,模序探勘,染色體免疫沉澱晶片,zh_TW
dc.subject.keywordSaccharomyces Cerevisiae,transcriptional regulation,transcription factor cooperativity,transcription regulatory module,motif discovery,transcription factor binding site,Chromatin immunoprecipitation chip,en
dc.relation.page43
dc.rights.note有償授權
dc.date.accepted2009-07-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
3.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved