請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42409完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱士維(Shi-Wei Chu) | |
| dc.contributor.author | Zong-Xian Liu | en |
| dc.contributor.author | 劉宗憲 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:13:18Z | - |
| dc.date.available | 2014-08-19 | |
| dc.date.copyright | 2011-08-19 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-16 | |
| dc.identifier.citation | 1.S. Fine and W. P. Hansen, 'Optical Second Harmonic Generation in Biological Systems,' Appl Optics 10, 2350-2353 (1971).
2.R. D. B. Fraser and T. P. MacRae, 'The crystalline structure of collagen fibrils in tendon,' Journal of Molecular Biology 127, 129-133 (1979). 3.P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, 'Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues,' Biophysical journal 82, 493-508 (2002). 4.I. Freund, M. Deutsch, and A. Sprecher, 'Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,' Biophysical journal 50, 693-712 (1986). 5.A. Deniset-Besseau, J. Duboisset, E. Benichou, F. o. Hache, P.-F. o. Brevet, and M.-C. Schanne-Klein, 'Measurement of the Second-Order Hyperpolarizability of the Collagen Triple Helix and Determination of Its Physical Origin,' The Journal of Physical Chemistry B 113, 13437-13445 (2009). 6.A. Zoumi, A. Yeh, and B. J. Tromberg, 'Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,' P Natl Acad Sci USA 99, 11014-11019 (2002). 7.T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, 'Second harmonic generation confocal microscopy of collagen type I from rat tendon cryosections,' Biophysical journal 91, 4665-4677 (2006). 8.J. Kastelic, A. Galeski, and E. Baer, 'The Multicomposite Structure of Tendon,' Connective Tissue Research 6, 11-23 (1978). 9.L. E. Myers and W. R. Bosenberg, 'Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,' Ieee J Quantum Elect 33, 1663-1672 (1997). 10.L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, 'Quasi-Phase-Matched Optical Parametric Oscillators in Bulk Periodically Poled Linbo3,' J Opt Soc Am B 12, 2102-2116 (1995). 11.L. Tian, J. L. Qu, Z. Y. Guo, Y. Jin, Y. Y. Meng, and X. Y. Deng, 'Microscopic second-harmonic generation emission direction in fibrillous collagen type I by quasi-phase-matching theory,' J Appl Phys 108(2010). 12.J. Martorell and N. M. Lawandy, 'Observation of Inhibited Spontaneous Emission in a Periodic Dielectric Structure,' Phys Rev Lett 65, 1877-1880 (1990). 13.G. D'Aguanno, M. Centini, M. Scalora, C. Sibilia, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, 'Group velocity, energy velocity, and superluminal propagation in finite photonic band-gap structures,' Phys Rev E 6303, - (2001). 14.M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, and A. S. Manka, 'Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,' J Appl Phys 83, 2377-2383 (1998). 15.Y. Dumeige, P. Vidakovic, S. Sauvage, I. Sagnes, J. A. Levenson, C. Sibilia, M. Centini, G. D'Aguanno, and M. Scalora, 'Enhancement of second-harmonic generation in a one-dimensional semiconductor photonic band gap,' Appl Phys Lett 78, 3021-3023 (2001). 16.G. D'Aguanno, M. Centini, M. Scalora, C. Sibilia, Y. Dumeige, P. Vidakovic, J. A. Levenson, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, 'Photonic band edge effects in finite structures and applications to chi((2)) interactions,' Phys Rev E 64(2001). 17.G. D'Aguanno, M. Centini, C. Sibilia, M. Bertolotti, M. Scalora, M. J. Bloemer, and C. M. Bowden, 'Enhancement of chi((2)) cascading processes in one-dimensional photonic bandgap structures,' Opt Lett 24, 1663-1665 (1999). 18.S. W. Chu, I. H. Chen, T. M. Liu, C. K. Sun, S. P. Lee, B. L. Lin, P. C. Cheng, M. X. Kuo, D. J. Lin, and H. L. Liu, 'Nonlinear bio-photonic crystal effects revealed with multimodal nonlinear microscopy,' J Microsc-Oxford 208, 190-200 (2002). 19.K. Clays, S. Van Elshocht, M. J. Chi, E. Lepoudre, and A. Persoons, 'Bacteriorhodopsin: a natural, efficient (nonlinear) photonic crystal,' J Opt Soc Am B 18, 1474-1482 (2001). 20.J. M. Bendickson, J. P. Dowling, and M. Scalora, 'Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,' Phys Rev E 53, 4107-4121 (1996). 21.M. Centini, C. Sibilia, M. Scalora, G. D'Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, 'Dispersive properties of finite, one-dimensional photonic band gap structures: Applications to nonlinear quadratic interactions,' Phys Rev E 60, 4891-4898 (1999). 22.C. Sibilia, I. S. Nefedov, M. Scalora, and M. Bertolotti, 'Electromagnetic mode density for finite quasi-periodic structures,' J Opt Soc Am B 15, 1947-1952 (1998). 23.M. G. Rozman, P. Reineker, and R. Tehver, 'Scattering by Locally Periodic One-Dimensional Potentials,' Phys Lett A 187, 127-131 (1994). 24.D. W. L. Sprung, H. Wu, and J. Martorell, 'Scattering by a Finite Periodic Potential,' Am J Phys 61, 1118-1124 (1993). 25.J. S. Walker and J. Gathright, 'Exploring One-Dimensional Quantum-Mechanics with Transfer-Matrices,' Am J Phys 62, 408-422 (1994). 26.M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, and J. W. Haus, 'Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,' Phys Rev A 56, 3166-3174 (1997). 27.G. S. He, T. C. Lin, and P. N. Prasad, 'New technique for degenerate two-photon absorption spectral measurements using femtosecond continuum generation,' Opt Express 10, 566-574 (2002). 28.D. H. Jundt, 'Temperature-dependent Sellmeier equation for the index of refraction, n(e), in congruent lithium niobate,' Opt Lett 22, 1553-1555 (1997). 29.J. Zhang and et al., 'The spectra character of photodegraded the pyridinoline cross-links by Hypocrellin B,' Journal of Physics: Conference Series 277, 012016 (2011). 30.X.-j. Wang, T. E. Milner, M. C. Chang, and J. S. Nelson, 'Group refractive index measurement of dry and hydrated type I collagen films using optical low-coherence reflectometry,' J Biomed Opt 1, 212-216 (1996). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42409 | - |
| dc.description.abstract | 在過去,許多研究顯示纖維狀膠原蛋白的二階非線性參數擁有波長的相依性。我們量測第一類膠原蛋白的二階非線性光譜並發現光譜有震盪的現象,因此我們想了解纖維狀的那一個層級結構造成二階非線性光譜的震盪。我們假設纖維狀膠原蛋白質是由水和膠原蛋白所組成周期性排列的結構,此結構類似光子能隙結構。我們利用一維光子能隙結構的理論試著去解釋光譜震盪的現象。在理論中,光子能隙結構的穿透率和態密度顯示出有震盪的現象。過去的研究發現在週期性結構中,材料本質的二階非線性參數會被增強,並且增強比例正比於此結構的態密度。如果我們用來量測二階非線性參數的波長遠離共振波長,此時材料本質的二階非線性係數可視為一個變化不大的常數。在這個前提下,我們猜測週期性結構的二階非線性光譜擁有和態密度相同的震盪週期。我們模擬纖維狀膠原蛋白在不同層級結構的穿透率和態密度,之後拿來比較我們的實驗結果。最後我們發現造成二階非線性的震盪可能來自fibril這個層級的週期性結構,而且我們模擬此層級結構的吸收光譜為217nm,這個結果很接近現實中膠原蛋白的吸收波長227nm。 | zh_TW |
| dc.description.abstract | In the past, several researches revealed the wavelength-dependent in the χ(2) spectra of collagen fiber. In our lab, we have found that the χ(2) spectra of type I collagen (by Chien-Min Liu) exhibits apparent spectral oscillation. We wonder which level organization cause oscillation in our χ(2) spectrum of collagen fiber. In a collagen fiber, we assume that the layered structure is composed of the water and fibrils, which was similar to the PBG structure. From the theory of one-dimensional PBG, the oscillation appears in the transmittance and density of mode (DOM). Previous investigations found the intrinsic χ(2) is enhanced proportionally to the DOM in a periodical structure. If the frequency of fundamental is far away the resonance band, the intrinsic χ(2) coefficient would be nearly a constant; therefore, the χ(2) has the oscillating phenomenon as DOM . We simulated the transmittance and DOM based on various structural hierarchical levels in collagen fiber, and then compared their oscillating period with experimental data. We found the oscillation phenomenon in our experimental data originates from the level of fibril (consists of sub-fibril and water) and its band gap is close to the absorption band (227nm) of collagen. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:13:18Z (GMT). No. of bitstreams: 1 ntu-100-R97222039-1.pdf: 1608147 bytes, checksum: fb8819e393350d6d02fc3f32bcb0815e (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Acknowledgement…………………………………………………………………….I
Chinese abstract………………………………………………………………………II English abstract………………………………………………………………………III I. Introduction………………………………………………………………………..1 II. Theory 2-1 Principle of nonlinear optics 2-1-1 Introduction of Second Harmonic Generation…………………………….5 2-1-2 Coherence length……………………………………………………….....8 2-1-3 Phase matching…………………………………………………………..10 2-1-4 Property of χ(2) and d………………………………………………….....13 2-2 Theory of the photonic band gap 2-2-1 Electromagnetic mode density in finite and 1-D PBG structure………..16 2-2-2 DOM and transmission coefficient for the unit cell……………………..17 2-2-3 Transmission coefficient and DOM of N-period potential………………18 2-2-4 High field localization…………………………………………………...20 2-3 Second harmonic generation in PBG structure 2-3-1 Effective index model and SHG enhancement…………………………..21 III. Experiment set-up I and II 3-1 The idea of experimental set-up I and set-up II………………………………..23 3-2 Prism based experimental set-up 3-2-1 Experiment set-up I………………………………………………………23 3-2-2 Get high transmittance…………………………………………………...24 3-2-3 Spectral resolution for light-splitting system…………………………….25 3-2-4 Collect SHG signal and resolution of system……………………………27 3-3 Experiment set-up II…………………………………………………………..32 3-4 Calibration…………………………………………………………………….32 3-4-1 Surface SHG and bulk SHG…………………………………………....33 3-4-2 Look for bulk SHG……………………………………………………..33 IV Results and discussion 4-1 Previous experimental data……………………………………………….37 4-2 Transmission and density of mode (DOM) properties in PBG structure...38 4-3 PBG structure in type I collagen fiber…………………………………….39 4-4 The optimal simulation result……………………………………………..47 4-5 Properties of optimal simulation result…………………………………...48 V Conclusion………………………………………………………………………51 Figure and table index……………………………………………………………..53 Reference………………………………………………………………………….56 | |
| dc.language.iso | en | |
| dc.subject | 光子能隙結構 | zh_TW |
| dc.subject | 二階非線性光譜 | zh_TW |
| dc.subject | 肌腱 | zh_TW |
| dc.subject | 膠原蛋白 | zh_TW |
| dc.subject | tendon | en |
| dc.subject | photonic band gap structure | en |
| dc.subject | type I collage | en |
| dc.subject | second-harmonic generation spectrum | en |
| dc.title | 利用二階非線性光譜研究肌腱和光子能隙結構的關聯性 | zh_TW |
| dc.title | Investugate the correlation between collagen fiber and photonic band gap structure by second order susceptibility | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 董成淵(Chen-Yuan Dong),詹明哲(Ming-Che Chan),林彥穎(Yen-Yin Lin) | |
| dc.subject.keyword | 二階非線性光譜,肌腱,膠原蛋白,光子能隙結構, | zh_TW |
| dc.subject.keyword | second-harmonic generation spectrum,tendon,type I collage,photonic band gap structure, | en |
| dc.relation.page | 58 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-16 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 1.57 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
