Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42403
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱錦洲,張建成
dc.contributor.authorChia-Wei Changen
dc.contributor.author張家瑋zh_TW
dc.date.accessioned2021-06-15T01:13:12Z-
dc.date.available2012-07-30
dc.date.copyright2009-07-30
dc.date.issued2009
dc.date.submitted2009-07-29
dc.identifier.citation1. M.J.P. Arthur. Reversibility of liver fibrosis and
cirrhosis following treatment for hepatitis C.
Gastroenterology, 2002. 122(5): p. 1525-1528.
2. H. Yoshiji, et al.. Angiotensin-II type 1 receptor
interaction is a major regulator for liver fibrosis
development in rats. Hepatology, 2001. 34(4).
3. R.J. Fontana, A.S.F. Lok. Noninvasive monitoring of
patients with chronic hepatitis C. Hepatology, 2002.
36(5 Suppl 1): p. S57-64.
4. W.C. Yeh. Ultrasonic Tissue Characterization of Liver.
National Taiwan University Graduate Institute of
Electrical Engineering, 2005.
5. W.C. Yeh, S.W. Huang, P.C. Li. Liver fibrosis grade
classification with B-mode ultrasound. Ultrasound in
Medicine and Biology, 2003. 29(9): p. 1229-1236.
6. K.K. Shung, G.A. Thieme. Ultrasonic scattering in
biological tissues. CRC Press ,1993.
7. S. Satomura. A study on examining the heart with
ultrasonics. I Principles; II Instrument. Jpn Circ J,
1956. 20: p. 227.
8. J.J. Wild, J.M. Reid. Further pilot echographic studies
on the histologic structure of tumors of the living
intact human breast. The American Journal of Pathology,
1952. 28(5): p. 839.
9. G. Kossoff. Display techniques in ultrasound pulse echo
investigations: a review. Journal of Clinical
Ultrasound, 1974. 2(1).
10. Y. Saijo, et al.. Ultrasonic tissue characterization of
infarcted myocardium by scanning acoustic microscopy.
Ultrasound in Medicine and Biology, 1997. 23(1): p.
77-86.
11. P. He. Acoustic attenuation estimation for soft-tissue
from ultrasound echo envelope peaks. IEEE Transactions
on Ultrasonics Ferroelectrics and Frequency Control,
1989. 36(2): p. 197-203.
12. P.M. Shankar. A general statistical model for
ultrasonic backscattering from tissues. IEEE
transactions on ultrasonics, ferroelectrics, and
frequency control, 2000. 47(3): p. 727-736.
13. G. Cao, P. Shi, B. Hu. Liver fibrosis identification
based on ultrasound images captured under varied
imaging protocols. Journal of Zhejiang University.
Science. B, 2005. 6(11): p. 1107.
14. S.L. Friedman. Liver fibrosis - from bench to bedside.
Journal of Hepatology, 2003. 38: p. S38-S53.
15. P. Gines, et al.. Management of cirrhosis and ascites.
New England Journal of Medicine, 2004. 350(16): p.
1646-1654.
16. R. Bataller, D.A. Brenner. Liver fibrosis. 2005, Am Soc
Clin Investig. p. 209-218.
17. G.L. Davis, et al.. Projecting future complications of
chronic hepatitis C in the United States. Liver
Transplantation, 2003. 9(4).
18. H. Popper, S. Uenfriend. Hepatic fibrosis. Correlation
of biochemical and morphologic investigations. The
American journal of medicine, 1970. 49: p. 707.
19. M.T. Soyer, R. Ceballos, J.S. Aldrete. Reversibility of
severe hepatic damage caused by jejunoileal bypass
after re-establishment of normal intestinal continuity.
Surgery, 1976. 79(5): p. 601.
20. S.L. Friedman, et al.. Hepatic lipocytes: the principal
collagen-producing cells of normal rat liver.
Proceedings of the National Academy of Sciences, 1985.
82(24): p. 8681-8685.
21. R. Issa, et al.. Spontaneous recovery from micronodular
cirrhosis: evidence for incomplete resolution
associated with matrix cross-linking. Gastroenterology,
2004. 126(7): p. 1795-1808.
22. M. Meziri, et al.. In vitro chronic hepatic disease
characterization with a multiparametric ultrasonic
approach. Ultrasonics, 2005. 43(5): p. 305-313.
23. T. Lin, J. Ophir, G. Potter. Correlations of sound
speed with tissue constituents in normal and diffuse
liver disease. Ultrasonic imaging, 1987. 9: p. 29-40.
24. T. Lin, J. Ophir, G. Potter. Correlation of ultrasonic
attenuation with pathologic fat and fibrosis in liver
disease. Ultrasound Med Biol, 1988. 14: p. 729-734.
25. Z.F. Lu, J.A. Zagzebski, F.T. Lee. Ultrasound
backscatter and attenuation in human liver with diffuse
disease. Ultrasound in medicine & biology, 1999. 25(7):
p. 1047.
26. M.F. Insana, et al.. Pattern recognition methods for
optimizing multivariate tissue signatures in diagnostic
ultrasound. Ultrasonic imaging, 1986. 8(3): p. 165.
27. D. Nicholas, et al.. Tissue characterization from
ultrasound B-scan data. Ultrasound in medicine &
biology, 1986. 12(2): p. 135.
28. C.M. Wu, Y.C. Chen, K.S. Hsieh. Texture features for
classification of ultrasonic liver images. IEEE
transactions on medical imaging, 1992. 11(2): p.
141-152.
29. Y.M. Kadah, et al.. Classification algorithms for
quantitative tissue characterizationof diffuse liver
disease from ultrasound images. IEEE transactions on
medical imaging, 1996. 15(4): p. 466-478.
30. A. Mojsilovic, M. Popovic, D. Sevic. Classification of
the ultrasound liver images with the 2N× 1-Dwavelet
transform. 1996.
31. A. Mojsilovic, et al.. Characterization of visually
similar diffuse diseases from B-scanliver images using
nonseparable wavelet transform. IEEE transactions on
medical imaging, 1998. 17(4): p. 541-549.
32. K. Ogawa, et al.. Computer-aided diagnostic system for
diffuse liver diseases withultrasonography by neural
networks. IEEE Transactions on Nuclear Science, 1998.
45(6 Part 2): p. 3069-3074.
33. W.C. Yeh, et al.. Elastic modulus measurements of human
liver and correlation with pathology. Ultrasound in
medicine & biology, 2002. 28(4): p. 467.
34. L. Sandrin, et al.. Transient elastography: a new
noninvasive method for assessment of hepatic fibrosis.
Ultrasound in medicine & biology, 2003. 29(12): p.
1705-1713.
35. J.M. Reid, R. Sigelmann, M. Nasser, D. Baker. The
scattering of ultrasound by human blood. Proceedings of
the eighth international conference on medical and
biological engineerin, 1969.
36. C.B. Burckhardt. Speckle in ultrasound B-mode scans.
IEEE Transactions on Sonics and Ultrasonics, 1978.
25(1): p. 1-6.
37. J.W. Goodman. Laser speckle and related phenomena.
Statistical Properties of Laser Speckle Patterns, 1975.
9: p. 9-75.
38. T.A. Tuthill, R.H. Sperry, K.J. Parker. Deviations from
Rayleigh statistics in ultrasonic speckle. Ultrasonic
imaging, 1988. 10(2): p. 81.
39. E. Jakeman, et al.. A model for non-Rayleigh sea echo.
IEEE Transactions on Antennas and Propagation, 1976.
24(6): p. 806-814.
40. L. Weng, et al.. Ultrasound speckle analysis based on
the K distribution. The Journal of the Acoustical
Society of America, 1991. 89: p. 2992.
41. P.M. Shankar, et al.. Use of non-Rayleigh statistics
for the identification of tumors inultrasonic B-scans
of the breast. IEEE transactions on medical imaging,
1993. 12(4): p. 687-692.
42. V.M. Narayanan, P.M. Shankar, J.M. Reid. Non-Rayleigh
statistics of ultrasonic backscattered signals. IEEE
Transactions on Ultrasonics, Ferroelectrics and
Frequency Control, 1994. 41(6): p. 845-852.
43. R.C. Molthen, P.M. Shankar, J.M. Reid. Characterization
of ultrasonic B-scans using non-Rayleigh statistics.
Ultrasound in medicine & biology, 1995. 21(2): p. 161.
44. P.M. Shankar, et al.. Studies on the use of
non-Rayleigh statistics for ultrasonic tissue
characterization. Ultrasound in medicine & biology,
1996. 22(7): p. 873-882.
45. R.C. Molthen, et al.. Comparisons of the Rayleigh and
K-distribution models using in vivo breast and liver
tissue. Ultrasound in medicine & biology, 1998. 24(1):
p. 93.
46. P.M. Shankar, et al.. Classification of ultrasonic
B-mode images of breast masses usingNakagami
distribution. IEEE Transactions on Ultrasonics,
Ferroelectrics and Frequency Control, 2001. 48(2): p.
569-580.
47. P.M. Shankar. A compound scattering pdf for the
ultrasonic echo envelope and its relationship to K and
Nakagami distributions. IEEE Transactions on
Ultrasonics, Ferroelectrics and Frequency Control,
2003. 50(3): p. 339-343.
48. P.M. Shankar. et al.. Application of the compound
probability density function for characterization of
breast masses in ultrasound B scans. Physics in
Medicine and Biology, 2005. 50(10): p. 2241-2248.
49. P.H. Tsui, C.C. Chang. Imaging local scatterer
concentrations by the Nakagami statistical model.
Ultrasound in medicine & biology, 2007. 33(4): p.
608-619.
50. P.H. Tsui, et al.. Feasibility study of using
high-frequency ultrasonic Nakagami imaging for
characterizing the cataract lens in vitro. Physics in
Medicine and Biology, 2007. 52(21): p. 6413-6426.
51. P.H. Tsui, et al.. Classification of breast masses by
ultrasonic Nakagami imaging: a feasibility study.
Physics in Medicine and Biology, 2008. 53(21): p.
6027-6044.
52. M. Hagiwara, et al.. Advanced Liver Fibrosis: Diagnosis
with 3D Whole-Liver Perfusion MR Imaging--Initial
Experience. Radiology, 2008. 246(3): p. 926.
53. M. Romero-Gomez, et al.. Optical analysis of computed
tomography images of the liver predicts fibrosis stage
and distribution in chronic hepatitis C. Hepatology
(Baltimore, Md.), 2008. 47(3): p. 810.
54. K.K. Shung, M.B. Smith, B.M.W. Tsui. Principles of
medical imaging. 1992: Academic Pr.
55. L. Wang, D.C. He. A new statistical approach for
texture analysis. Photogrammetric Engineering and
Remote Sensing, 1990. 56(1): p. 61-66.
56. R.M. Haralick. Statistical and structural approaches to
texture. Proceedings of the IEEE, 1979. 67(5): p.
786-804.
57. R.M. Haralick, K. Shanmugam, I.H. Dinstein. Textural
features for image classification. IEEE Transactions on
systems, man and cybernetics, 1973. 3(6): p. 610-621.
58. J.S. Weszka, C.R. Dyer, A. Rosenfeld. A comparative
study of texture measures for terrain
classification(photointerpretation based on Fourier
power spectra and gray level statistics). IEEE
Transactions on Systems, Man, and Cybernetics, 1976.
59. R.W. Conners, C.A. Harlow. A theoretical comparison of
texture algorithms. IEEE Transactions on Pattern
Analyses and Machine Intelligence, 1980. 2: p. 204-222.
60. J.M.H. Du Buf, M. Kardan, M. Spann. Texture feature
performance for image segmentation. Pattern
Recognition, 1990. 23(3-4): p. 291-309.
61. A. Baraldi, F. Parmiggiani, M. Imga-Cnr. An
investigation of the textural characteristics
associated withgray level cooccurrence matrix
statistical parameters. IEEE Transactions on Geoscience
and Remote Sensing, 1995. 33(2): p. 293-304.
62. N.H. Afdhal, D. Nunes. Evaluation of liver fibrosis: a
concise review. The American journal of
gastroenterology, 2004. 99(6): p. 1160-1174.
63. E.M. Brunt. Grading and staging the histopathological
lesions of chronic hepatitis: the Knodell histology
activity index and beyond. Hepatology, 2000. 31(1): p.
241-246.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42403-
dc.description.abstract肝臟纖維化是一緩慢且長期的過程,若置之不理有很高機率會導致肝硬化。但現在的醫學發展,除了侵入式的病理切片檢驗外,尚無有效診斷出纖維化程度的定量技術。超音波是一種非侵入式的診斷工具,它具有即時影像的優點,目前在纖維化檢測中已成為第一線的臨床診斷工具。然而傳統超音波灰階影像是一種定性影像,對於纖維化的特徵描述並不明顯,需要有經驗的醫生才能判讀,而初期的纖維化甚至連醫生都無法察覺。考量以上因素,於是本研究決定朝著發展超音波定量影像的方向進行,並以統計參數來描述組織特性,達到診斷肝臟纖維化的目的。
超音波經由探頭發送訊號至組織內部,並接收回波的隨機逆散射訊號,藉此分析其中隱含的組織訊息。我們引入Nakagami統計分佈來描述組織特性,發現其Nakagami參數m值可定量纖維化程度,而Nakagami影像也較傳統灰階影像更能夠分辨纖維化。在動物實驗中,我們將老鼠注射DMN藥物,誘發肝臟纖維化,並計算每個纖維化階段之m值,同時與病理切片分數做比較。結果顯示,纖維化程度與m值呈現正相關,即使病理分數同為0分的肝臟,m值仍隨著纖維化程度上升而增加,意味著m值的靈敏度比病理切片分數為高,並且能成功辨識初期的纖維化與否, 符合臨床診斷的需求。
我們同時引入紋理分析來描述肝臟纖維化,並計算4種影像參數與m參數做比較,分別是:對比值、相關性、能量均勻性和均質性,發現不論趨勢或動態範圍,紋理分析參數皆不如m參數描述來的完整,因此利用m參數來判別纖維化程度是合理且適當的。
zh_TW
dc.description.abstractLiver fibrosis is a tardy and long-time process, and it has high probability to induce liver cirrhosis if we pay no attention on it. However, the development of medicine nowadays lacks an effective quantitative technique to diagnose fibrosis stages except biopsy, an invasive examination. Ultrasound is a non-invasive diagnose tool. It has the advantage of real-time and has became the front-line diagnose tool on detecting fibrosis stage. But the traditional ultrasound gray-scale image is a qualitative image. It cannot describe the characteristic of fibrosis clearly and always need the experienced doctor to judge. In fact, even experienced doctors cannot perceive the initial stage of fibrosis with traditional images. Consider the above reasons, so we decide to develop the quantitative ultrasonic image and use statistic parameters to describe fibrosis stages, and finally achieve the purpose of fibrosis diagnosis.
The ultrasound transducer emits signals into tissues, and receives the random backscatter signals of echoes. We can obtain the hidden information of tissue by analyzing these random signals. To describe the characteristic of tissues, we introduce Nakagami statistic distribution, and find the Nakagami parameter – m can quantitate fibrosis stages. Besides, Nakagami images are more effective to distinguish fibrosis stages than traditional gray-scale images, too. In animal experiments, we injected DMN to rats to induce liver fibrosis, and calculated the value of m at each fibrosis stage, and compared m with the biopsy scores. The result shows that fibrosis stages are positive related with the value of m. Even some biopsy scores are the same of zero, the value of m still increases with the fibrosis become serious step by step. It means the sensitivity of m is higher than biopsy score. And the value of m conforms the need of clinical diagnose with detecting initial stage of fibrosis successfully.
At the same time, we also introduce the texture analysis to describe fibrosis stages and calculate four types of texture parameters to compare with the value of m. They respectively are contrast, correlation, energy, homogeneity. We find that no matter trend or dynamic ranges, the description of texture parameters about fibrosis is less complete than the value of m. So we use the value of m to distinguish liver fibrosis stages is reasonable and adequate.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:13:12Z (GMT). No. of bitstreams: 1
ntu-98-R96543075-1.pdf: 5662197 bytes, checksum: 6219a19201ead0a00666363ae43c9b9e (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents致謝.......................................................I
中文摘要..................................................II
Abstract.................................................III
目錄.......................................................V
圖目錄..................................................VIII
表目錄....................................................IX
第一章 緒論................................................1
1.1 前言..................................................1
1.2 研究背景..............................................3
1.2.1 醫用超音波之發展....................................3
1.2.2 肝臟纖維化之演變....................................4
1.3 文獻回顧..............................................6
1.3.1 生醫超音波於肝臟纖維化之發展........................6
1.3.2 超音波逆散射訊號統計模型............................7
1.4 研究目的.............................................11
第二章 理論基礎...........................................12
2.1 超音波原理及簡介.....................................12
2.1.1 聲波基本原理.......................................12
2.1.2 衰減...............................................15
2.1.3 反射、折射與散射...................................17
2.1.4 超音波換能器與聲場.................................18
2.2 超音波散射分析.......................................21
2.2.1 散射現象...........................................21
2.2.2 單一散射子之分析...................................22
2.2.3 解析體中多散射子之分析.............................23
2.3 逆散射訊號統計模型...................................25
2.3.1 Rayleigh統計分佈...................................25
2.3.2 Rician統計分佈.....................................26
2.3.3 K統計分佈..........................................27
2.3.4 Nakagami統計分佈...................................28
2.4 紋理分析.............................................31
2.4.1 紋理簡介...........................................31
2.4.2 Gray Level Co-occurrence Matrix....................31
2.4.3 紋理分析之統計量化.................................34
2.5 肝臟纖維化的病理機制.................................36
第三章 實驗材料與方法.....................................40
3.1 超音波掃描系統.......................................40
3.1.1 硬體架構...........................................40
3.1.2 馬達掃描方式.......................................43
3.1.3 軟體操作介面.......................................44
3.2 動物實驗.............................................45
3.2.1 動物...............................................45
3.2.2 注射藥物方式與實驗流程.............................45
3.2.3 病理切片-染色影像與分析...........................47
3.3 實驗數據處理.........................................50
3.3.1 逆散射訊號擷取與分析...............................50
3.3.2 參數計算與Nakagami影像成像.........................52
第四章 實驗結果與討論.....................................54
4.1 B-mode影像與Nakagami影像之比較.......................54
4.2 病理切片染色影像.....................................63
4.2.1 H&E染色影像........................................63
4.2.2 Masson's trichrome染色影像.........................65
4.3 多重參數分析.........................................67
4.4 結果討論.............................................76
第五章 結論與未來工作.....................................77
5.1 結論.................................................77
5.2 未來工作及展望........................................78
參考文獻..................................................79
dc.language.isozh-TW
dc.subject紋理分析zh_TW
dc.subject超音波zh_TW
dc.subject肝臟纖維化zh_TW
dc.subject逆散射訊號zh_TW
dc.subjectNakagami統計分佈zh_TW
dc.subjectultrasounden
dc.subjecttexture analysisen
dc.subjectNakagami statistic distributionen
dc.subjectbackscatter signalen
dc.subjectliver fibrosisen
dc.title使用超音波參數影像與紋理分析評分肝臟纖維化程度zh_TW
dc.titleLiver fibrosis scoring using ultrasound parametric images and texture analysisen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee崔博翔,黃執中,郭光輝
dc.subject.keyword超音波,肝臟纖維化,逆散射訊號,Nakagami統計分佈,紋理分析,zh_TW
dc.subject.keywordultrasound,liver fibrosis,backscatter signal,Nakagami statistic distribution,texture analysis,en
dc.relation.page83
dc.rights.note有償授權
dc.date.accepted2009-07-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
5.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved