請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42388完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭宗記 | |
| dc.contributor.author | Chih-Hua Lin | en |
| dc.contributor.author | 林志華 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:12:59Z | - |
| dc.date.available | 2011-08-03 | |
| dc.date.copyright | 2009-08-03 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-07-29 | |
| dc.identifier.citation | 1. 黃煥常、王仕康。2005。雷射光鉗技術簡介及其應用。國家衛生研究院電子報第96期。
2. 施炫合。2007。經濟型掃瞄式電化學微探針系統的建立與紅血球介電泳的應用。國立台灣大學生物產業機電工程學系。 3. Araz, M. K. and A. Lal. 2005. Calibration of acoustic radiation pressure field inside microchannels using microparticle zeta potential measurement. In 'Ultrasonics Symposium, 2005 IEEE', 2293-2296. 4. Deckers, R., C. Rome and C. T. W. Moonen. 2008. The role of ultrasound and magnetic resonance in local drug delivery. J. Magn. Reson. Imaging 27:400-409. 5. Evander, M., A. Lenshof, T. Laurell and J. Nilsson. 2008. Acoustophoresis in wet-etched glass chips. Analytical Chemistry 80:5178-5185. 6. Grier, D. G. 2003. A revolution in optical manipulation. Nature 424:810-816. 7. Hardt, S., Schönfeld, Friedhelm 2007. Microfluidic Technologies for Miniaturized Analysis Systems. 8. Horak, D., E. Pollert, M. Trchova and J. Kovarova. 2009. Magnetic poly(glycidyl methacrylate)-based microspheres prepared by suspension polymerization in the presence of modified La0.75Sr0.25MnO3 nanoparticles. European Polymer Journal 45:1009-1016. 9. Hultstrom, J., O. Manneberg, K. Dopf, H. M. Hertz, H. Brismar and M. Wiklund. 2007. Proliferation and viability of adherent cells manipulated by standing-wave ultrasound in a microfluidic chip. Ultrasound in Medicine and Biology 33:145-151. 10. Kersaudy-Kerhoas, M., R. Dhariwal and M. P. Y. Desmulliez. 2008. Recent advances in microparticle continuous separation. Interent Nanobiotechnology 2:1-13. 11. Kroner, A., F. Rinaldi, R. Rosch and R. Michalzik. 2008. Optical particle manipulation by application-specific densely packed VCSEL arrays. Electronics Letters 44:353-354. 12. Kuznetsova, L. A. and W. T. Coakley. 2007. Applications of ultrasound streaming and radiation force in biosensors. Biosensors & Bioelectronics 22:1567-1577. 13. L.C. Chen, 2008. Electrochemistry for Biomedical Researchers. Taipei, Taiwan:Nation Taiwan University Press. 14. Laurell, T., F. Petersson and A. Nilsson. 2007. Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chemical Society Reviews 36:492-506. 15. Manneberg, O., S. M. Hagsater, J. Svennebring, H. M. Hertz, J. P. Kutter, H. Bruus and M. Wiklund. 2009. Spatial confinement of ultrasonic force fields in microfluidic channels. Ultrasonics 49:112-119. 16. Martin McDonnell, D. 2008. Moving particles with ultrasonic standing waves. Codex Issue 1. 17. Martin, S. P., R. J. Townsend, L. A. Kuznetsova, K. A. J. Borthwick, M. Hill, M. B. McDonnell and W. T. Coakley. 2005. Spore and micro-particle capture on an immunosensor surface in an ultrasound standing wave system. Biosensors & Bioelectronics 21:758-767. 18. Martyn, H., Jeremy, J.H., Nicholas, R.H., Martin,B.M. 2004. Resonant ultrasonic particle manipulators and their applications in Sensor Systems. Sens. Actuators B,vol 78: 213-222. 19. Mitome, H. 2001. Micro bubble and sonoluminescence. In 3484-3487. 20. Mitome, H. 2003. Action of ultrasound on particles and cavitation bubbles. WCU 21. MORGAN, D. G. 1987. Everything you never knew about magnetic separation. Waste AGE 111. 22. Muhammet, K. A., Chung, H.L., Amit, L. 2003. Ultrasonic separation in microfluidic capillaries. IEEE Ultrasonics Symposium-1066. 23. Neild, A., S. Oberti, F. Beyeler, J. Dual and B. J. Nelson. 2006. A micro-particle positioning technique combining an ultrasonic manipulator and a microgripper. Journal of Micromechanics and Microengineering 16:1562-1570. 24. Nick, H., Rosemary,B., Peter,G.J., Martyn,H. 2009. A novel binary particle fractionation technique. Ultrasonics Paper No.1111, Santiago, MI:Ultrasonics. 25. Nilsson, A., F. Petersson, H. Jonsson and T. Laurell. 2004. Acoustic control of suspended particles in micro fluidic chips. Lab on a Chip 4:131-135. 26. ONDA.2003.Tables of Acoustic Properties of Materials:ONDA corporation.Available at:http://www.ondacorp.com/tecref_acoustictable.html. Accessed 21 April 2009. 27. Ohtani, K., Y. Koike, S. Ueha and H. Yokoi. 2000. Novel wedge-shaped doubly inclined chamber for the flow-through separation of suspended particles. In 647-649. 28. Petersson, F., L. Aberg, A. M. Sward-Nilsson and T. Laurell. 2007. Free flow acoustophoresis: Microfluidic-based mode of particle and cell separation. Analytical Chemistry 79:5117-5123. 29. Rosemary, J. T. 2006. Modelling of a microfluidic ultrasonic partilce separator. NSTI Paper NO.194-197,USA,MI: NSTI. 30. Sodha, M. S., V. Rai, M. P. Verma, S. Konar and K. P. Maheshwari. 1993. Underwater optical-generation of sound oblique-incidence. Pramana-Journal of Physics 41:1-7. 31. Svennebring, J., O. Manneberg and M. Wiklund. 2007. Temperature regulation during ultrasonic manipulation for long-term cell handling in a microfluidic chip. Journal of Micromechanics and Microengineering 17:2469-2474. 32. Teeter, A. L. 2006. High Efficiency three-dimensional manipulation of sub-micron particles and DNA molecules. PhD dissertation. San Diego, CA.: San Diego State University. 33. Tsutsui, H. and C.-M. Ho. 2009. Cell Separation by non-inertial force fields in microfluidic systems. Mechanics Research Communications 36:92-103. 34. Ugelstad, J., A. Berge, T. Ellingsen, R. Schmid, T. N. Nilsen, P. C. Mork, P. Stenstad, E. Hornes and O. Olsvik. 1992. Preparation and application of new monosized polymer particles . Progress in Polymer Science 17:87-161. 35. Wiklund, M., C. Gunther, R. Lemor, M. Jager, G. Fuhr and H. M. Hertz. 2006. Ultrasonic standing wave manipulation technology integrated into a dielectrophoretic chip. Lab on a Chip 6:1537-1544. 36. Yasuda, K. and T. Kamakura. 1997. Acoustic radiation force on micrometer-size particles. Applied Physics Letters 71:1771-1773. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42388 | - |
| dc.description.abstract | 本研究旨在建構一套簡易型於顯微鏡下自由大量操控生物高分子或細胞的音波駐波操控系統,其組成包括市售音波產生器、可直接觀察微流道結構與可調控入射角導波塊,以及CCD光學顯微鏡。
微流道結構製作以長15cm的方型毛細管做為微流道,以及將鋁片裁成長100mm、寬80mm、厚1mm以及長80mm、寬20mm、厚1mm的兩片鋁片,方型毛細管夾於兩片鋁片之間,並在上方放置一載玻片做為傳導音波元件,最後以紫外光固定膠將此四個元件相互黏著固定。音波傳導元件則是將直徑24mm的鋁管以51度角切割成長約37mm的楔型導波塊。載玻片與導波塊間使用超音波傳導膠作為傳遞。 利用半徑25mm × 厚度1.22mm 的壓電晶片,施予24伏特的交流電壓,使其產生1.75MHz的音波,經由觀察發現音波傳導元件將音波傳遞至微流道,而不影響顯微鏡系統觀測路徑的形式較佳,並利用此系統產生音波駐波場操控直徑分別為1、2、3、4、6、7、8、9、10、12、14、16、18、20μm等14種顆粒大小不同的聚苯乙烯微粒(Polystyrene particles ),除了1μm微粒經過文獻的證實,並透過實驗測試,其顆粒大小不適用於音波操控,而其餘微粒將成功地聚集排列於流道之中。 | zh_TW |
| dc.description.abstract | A particle manipulation system using ultrasonic standing wave has been constructed for manipulating micro particles under microscopy. The system consists of a piezoelectric transducer with an angle-variable ultrasonic guiding block, rectangle micro-channel, and an optical microscope with a CCD video recorder.
A micro-channel in this system is constructed with a rectangle capillary (0.70*0.7 mm) about 15 mm in length lodged in a flat piece of aluminum (120mm×80mm×1mm). A glass slide was placed upon the flat piece of aluminum with a micro-channel to be an ultrasound transmission element. UV light curing adhesive was then utilized to solidify above three components. The guiding block made of an aluminum cylinder wedge was attached with the glass slide with various angles to the surface normal by ultrasonic conductive gel. The 1.75 MHz of ultrasound transducer was powered with AC 24V to induce a standing wave in the flow channel. The micro-channel chip was obliquely coupled an ultrasonic transducer consisting of a piezoelectric transducer attached by ultrasonic conductive gel to an aluminum wedge with an angle, θof 51° relative to its surface normal, in order to efficiently drive a ultrasonic standing wave into the fluid channel via wave refraction. Micro particles of polystyrene (1~20 μm) were effectively aligned to the center line of a micro-channel by radiation force of the ultrasonic standing wave. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:12:59Z (GMT). No. of bitstreams: 1 ntu-98-R96631010-1.pdf: 2525706 bytes, checksum: a8dc7522fca9c680f560b427c9109572 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 誌 謝 I
圖目錄 VI 表目錄 VIII 第一章 前言 1 第二章 文獻探討 4 2.1 分子篩選操控方法 4 2.1.1 光學鑷子(Optical tweezers) 4 2.1.2 磁性分離 (Magnetic separation) 5 2.1.3 介電泳 (Dielectrophoresis) 7 2.1.4 流體引導控制(Fluidic-only separation) 8 2.2 超音波駐波操控技術(ACOUSTIC PARTICLE MANIPULATION) 10 2.3 氣穴現象 12 2.4 超音波微粒操控技術之應用 13 2.4.1 增強沈降作用 13 2.4.2 強化感測能力 14 2.4.3 洗滌微粒-改變混合溶液的媒介 14 2.4.4 微粒的選別過濾 15 第三章 研究方法 16 3.1 實驗原理與公式 16 3.2實驗材料與儀器設備 19 3.2.1 實驗材料 19 3.2.2 實驗儀器設備 20 3.2.3 實驗自製設備 21 3.2.4 Polystyrene溶液配製 22 3.3 實驗方法 22 第四章 研究結果與討論 23 4.1 實驗系統之微流道設計與傳導元件材質探討 23 4.1.1 微流道設計 23 4.1.2 傳導元件材質探討 24 4.2 音波傳導形式之探討與修正 25 4.3 音波入射角度與微粒排列角度間相互關係 29 4.4 可變角度音波導波元件之設計與探討 35 4.5 超音波駐波操控於流動式流道 39 4.6超音波駐波操控於流動式分岔式流道 41 第五章 結論與未來展望 44 參考文獻 46 | |
| dc.language.iso | zh-TW | |
| dc.subject | 微粒 | zh_TW |
| dc.subject | 超音波 | zh_TW |
| dc.subject | 操控 | zh_TW |
| dc.subject | 駐波 | zh_TW |
| dc.subject | Standing wave | en |
| dc.subject | Micro particles | en |
| dc.subject | Ultrasound | en |
| dc.subject | Manipulation | en |
| dc.title | 使用超音波駐波技術進行非接觸式微粒的操控 | zh_TW |
| dc.title | Non-contact Manipulation of Micro-Particles by Standing Acoustic Waves | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳力騏,陳林祈,洪敏勝 | |
| dc.subject.keyword | 超音波,操控,駐波,微粒, | zh_TW |
| dc.subject.keyword | Ultrasound,Manipulation,Standing wave,Micro particles, | en |
| dc.relation.page | 49 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2009-07-29 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf 未授權公開取用 | 2.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
