Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42383
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張瑞益
dc.contributor.authorJia-Shian Linen
dc.contributor.author林佳憲zh_TW
dc.date.accessioned2021-06-15T01:12:56Z-
dc.date.available2011-08-14
dc.date.copyright2009-08-14
dc.date.issued2009
dc.date.submitted2009-07-29
dc.identifier.citation[1] 曾煜棋、潘孟鉉、林致宇, “無線區域及個人網路:隨意即感測器網路之技術與應用” 初版,知城圖書,2006
[2] S.C. Yeh and Y.J. Peng, “A Research for Location-aware System Based on Wireless LANs,” International Journal of Informatics and Electronics, Volume 1, pp.1-8, Mar. 2006.
[3] P. Bahl and V. N. Padmanabhan, “RADAR: An In-building RF-based User Location and Tracking System,” IEEE INFOCOM, Volume 2, pp.775–784, Aug. 2002.
[4] E.J. Ding , Q.Y. Meng, P.Y. Gao, and Q. Zhou, “ Improved Pattern Matching Localization of WSN in Coal Mine,” International Conference on Information Acquisition, pp. 534-537, Jul. 2007.
[5] L.-W. Chan, J.-R. Chiang, Y.-C. Chen, C.-N. Ke, J. Hsu, and H.-H. Chu, “Enhancing WiFi-based position estimation with neighborhood links in clusters,” Pervasive Computing, pp. 50-66, May 2006
[6] C.W You, Y.C. Chen, J.R. Chiang, P. Huang, H.H. Chu, and S.Y. Lau, “Sensor-Enhanced Mobility Prediction for Energy-Efficient Localization,” IEEE Sensor and Ad Hoc Communications and Networks, Volume 2, pp. 565-574, Sept. 2006.
[7] S.P. Kuo, Y.C. Tseng, and C.C. Shen, “Increasing Search Space for Pattern-Matching Localization Algorithms by Signal Scrambling,” IEEE Symposium on Asia-Pacific Wireless Communications, 2007
[8] J. Macquen, “Some methods for classification and analysis of multivariate observations,” Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1967
[9] S.P. Kuo and Y.C. Tseng, “A Scrambling Method for Fingerprint Positioning Based on Temporal Diversity and Spatial Dependency,” IEEE Transactions on Knowledge and Data Engineering, Volume 20 ,Issue 5 , pp.678-684, May 2008.
[10] T. Roos, P. Myllymaki, H. Tirri, P. Misikangas, and J. Sievanen, “A Probabilistic Approach to WLAN User Location Estimation,” International Journal of Wireless Information Networks, Volume 9, Issue 3, pp. 155-164, Jul. 2002.
[11] V. Seshadri, G.V.Zaruba, and M. Huber, “A Bayesian sampling approach to in-door localization of wireless devices using received signal strength indication,” IEEE Conference on Pervasive Computing and Communications, pp. 75-84, Mar. 2005.
[12] A.S. Paul and E.A. Wan, “Wi-Fi based indoor localization and tracking using sigma-point Kalman filtering methods,” IEEE Symposium on Position, Location and Navigation, pp. 646-659, May 2008.
[13] A. Villani, N. T. Le, and R. Battiti, “A neural network model for determining location in wireless LANs,” Technical Report DIT-02-0083, Universita di Trento, Dipartimento di Ingegneria e Scienza dell'Informazione, 2002
[14] C. Takenga, C. Xi, and K. Kyamakya, “Fusion of Neural Network positioning and Database Correlation in localizing a Mobile Terminal,” IEEE Conference on Wireless Networks, pp.488-492, Jun. 2006.
[15] M. Stella, M. Russo, and D. Begusic, “Location Determination in Indoor Environment based on RSS Fingerprinting and Artificial Neural Network,” IEEE Conference on Telecommunications, pp.301-306, Jun. 2007.
[16] C. M. Takenga and K. Kyamakya, “Robust positioning system based on fingerprint approach,” ACM international workshop on Mobility management and wireless access, pp.1-8, Oct. 2007.
[17] C. Nerguizian and V. Nerguizian, “Indoor Fingerprinting Geolocation using Wavelet-Based Features Extracted from the Channel Impulse Response in Conjunction with an Artificial Neural Network,” IEEE International Symposium on Industrial Electronics, pp.2028-2032, Jun. 2007.
[18] S. Outemzabet and C. Nerguizian, “Accuracy enhancement of an indoor ANN-based fingerprinting location system using Kalman filtering,” IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, pp.1-5, Sept. 2008.
[19] M. Brunato and R. Battiti, “Statistical learning theory for location fingerprinting in wireless LANs,” ACM International Journal of Computer Networks and ISDN Systems, Volume 47, Issue 6, pp.825 –845, Apr. 2005.
[20] Q.Lei and R.A. Kennedy, “Radio location using pattern matching techniques in fixed wireless communication networks,” IEEE International Symposium on Communications and Information Technologies, pp.1054-1059, Oct. 2007.
[21] H. Chang, J. Choi, and M. Kim, “Experimental research of probabilistic localization of service robots using range image data and indoor GPS system,” IEEE International Conference on Emerging Technologies and Factory Automation, pp.1021-1027, Sept. 2006.
[22] K.H. Hwang, D.E. Kim, D.H. Lee, and T.Y. Kuc, “A Simple Ultrasonic GPS System for Indoor Mobile Robot System using Kalman Filtering,” SICE-ICASE, pp.2915-2918, Oct. 2006.
[23] A.K. Anwar, G. Ioannis, and F.N. Pavlidou, “Evaluation of indoor location based on combination of AGPS/ HSGPS,” IEEE International Symposium on Wireless Pervasive Computing, pp.383–387, May 2008.
[24] Y. Nakamura, Y. Namimatsu, N. Miyazaki, Y. Matsuo, and T.Nishimura, “A Method for Estimating Position and Orientation with a Topological Approach using Multiple Infrared Tags,” IEEE International Conference on Networked Sensing Systems, pp.187–195, Jun. 2007.
[25] M. Panos, K. Yannis, S. John, P. Athanasia, and T.Anthony, “Mobile robot odometry relying on data fusion from RF and ultrasound measurements in a wireless sensor framework,” International Mediterranean Conference on Control and Automation, pp.523–528, Jun. 2008.
[26] H.Y. Chen and T.Y. Chou, “Hybrid TDOA/AOA Mobile User Location with Artificial Neural Networks,” IEEE International Conference on Networking, Sensing and Control, pp.847–852, Apr. 2008
[27] S.A. Jazzar and M. Ghogho, “A Joint TOA/AOA Constrained Minimization Method for Locating Wireless devices in Non-Line-of-Sight Environment,” IEEE International Conference on Vehicular Technology, pp.496–500, Oct. 2007.
[28] E.E.L. Lau and W.Y. Chung, “Enhanced RSSI-Based Real-Time User Location Tracking System for Indoor and Outdoor Environments,” IEEE International Conference on Convergence Information Technology, pp.1213–1218, Nov. 2007.
[29] C.D. Wann and H.C. Chin, “Hybrid TOA/RSSI Wireless Location with Unconstrained Nonlinear Optimization for Indoor UWB Channels,” IEEE International Conference on Wireless Communications and Networking, pp. 3940 – 3945, Mar. 2007.
[30] N. Bulusu, J. Heidemann, and D. Estrin, “GPS-less Low Cost Outdoor Localization for Very Small Devices,” IEEE International Journal of Personal Communications, volume 7, issue 5, pp.28–34, Oct. 2000.
[31] J. Blumenthal, R.Grossmann, F. Golatowski, and D. Timmermann, “Weighted Centroid Localization in Zigbee-based Sensor Networks,” IEEE International Symposium on Intelligent Signal Processing, pp.1–6, Oct. 2007.
[32] I.H. Witten, E. Frank, “Data Mining: Practical Machine Learning Tools and Techniques,” Second Edition, Morgan Kaufmann, Jun. 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42383-
dc.description.abstract對於許多應用服務來說,若能提供物品位置的定位資訊,將能提供很高的附加價值。因此近幾年定位方法受到廣泛的討論,國內外學者紛紛針對不同的室內及室外環境需求,提出對應的方法來改善定位的準確度。在傳統定位方法中,常需要透過一些額外的設備來輔助計算位置,例如:GPS[21][22][23]、Infrared[24]和Ultrasound[25];但是節點上額外的輔助設備會增加電力消耗及系統建置成本。本論文利用節點本身所具有的RF晶片進行室內定位,以常用於室內定位的樣式比對演算法為基礎,改善其訓練時間長、計算量大與定位準確度不夠等缺點。我們實際使用本計畫所開發的無線感測器來進行驗證,實驗結果顯示,我們所提出的方法與傳統樣式比對方法相比,不但可有效地提高最多達41%的室內定位精確度,在同樣室內定位精確度下亦能有效減少訓練pattern的數量。zh_TW
dc.description.abstractTracing the location of a specific item has induced abundant applications with the development of wireless sensor networks. In past years, different location algorithms have been proposed for indoor or outdoor environments. Some of these use additional equipments, such as GPS[21][22][23], Infrared[24] and Ultrasound[25]. However, these equipments will increase the power consumption and system cost. In this paper, we propose a Self-learning Indoor Locating Algorithm for Wireless Sensor Networks and use only the embedded RF chip to improve the PM (Pattern Matching) algorithm. We made some improvements on saving training time, computation, and higher the positioning precision. Experiments show that our proposed algorithm not only lower training time but also higher positioning precision in 41%.en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:12:56Z (GMT). No. of bitstreams: 1
ntu-98-R96525069-1.pdf: 2241992 bytes, checksum: 41781ee14569181e4bd7a85c8aeff68a (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
摘要 III
ABSTRACT IV
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 1
1.3 架構 2
第二章 相關研究 3
2.1 依測量方法分類 3
2.1.1 AOA 3
2.1.2 TOA 4
2.1.3 TDOA 4
2.1.4 RSSI 4
2.2 依演算法分類 5
2.2.1 Centroid algorithm 5
2.2.2 Triangulation Method 6
2.2.3 Pattern Matching/Fingerprinting 6
2.3 適合室內的PATTERN MATCHING定位演算法 7
2.3.1 Regression 8
2.3.2 Nearest Neighbor Signal Strength 9
2.3.3 Statistical 9
2.3.4 Neural Networks 10
2.3.5 Support Vector Regression 11
第三章 提出演算法之系統流程 13
3.1 訓練階段 14
3.2 定位階段 18
第四章 方法實做 19
4.1 訓練階段 19
4.1.1 Filter 19
4.1.2 Predictor 22
4.1.3 Selector 23
4.2 定位階段 24
第五章 實驗結果 25
5.1 測試環境 25
5.2 演算法參數的選擇 27
5.3 訓練時間分析 28
5.4 定位精準度分析 29
第六章 結論 37
dc.language.isozh-TW
dc.subject室內定位演算法zh_TW
dc.subject無線感測網路zh_TW
dc.subject樣式比對法zh_TW
dc.subject訊號特徵紋zh_TW
dc.subjectIndoor Locating Algorithmen
dc.subjectWireless sensor networks (WSN)en
dc.subjectFingerprintingen
dc.subjectPattern Matchingen
dc.title具有自我學習機制之無線感測網路室內定位演算法zh_TW
dc.titleSelf-learning Indoor Locating Algorithm for Wireless Sensor Networksen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee丁肇隆,黃乾綱,王家輝,林正偉
dc.subject.keyword無線感測網路,室內定位演算法,樣式比對法,訊號特徵紋,zh_TW
dc.subject.keywordWireless sensor networks (WSN),Indoor Locating Algorithm,Pattern Matching,Fingerprinting,en
dc.relation.page42
dc.rights.note有償授權
dc.date.accepted2009-07-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
2.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved