Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42372
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林彥蓉(Yann-Rong Lin)
dc.contributor.authorHung-Ying Linen
dc.contributor.author林鋐穎zh_TW
dc.date.accessioned2021-06-15T01:12:46Z-
dc.date.available2011-07-31
dc.date.copyright2009-07-31
dc.date.issued2009
dc.date.submitted2009-07-30
dc.identifier.citation朱昌蘭、沈文飆、翟虎渠、萬建民。2004。水稻低直鏈澱粉含量基因育種利用的研究進展。中國農業科學第37卷: 157-162
吳少鈞。2004。稉稻台稉8號與秈稻IR1545-339雜交後代F2族群之數量性狀分析。天主教輔仁大學生命科學所碩士論文,3-5頁
吳永培和盧虎生。2002。水稻誘變育種。中華農藝12: 219-239
吳啟瑞。2006。利用不同直鏈澱粉含量之系列稻米品種為模式探討影響澱粉膠體特性因子。國立台灣大學食品研究所碩士論文,8-14、34-37頁
宋勳、洪梅珠、許愛娜。1991。台灣稻米品質之研究。台中區農業改良場特刊 24: 5-9
宋勳和劉瑋庭。1996。稻米品質的影響因素與分級。稻作生產改進策略研討會專刊台灣省農業試驗所專刊59: 133-153
杜若甫。1981。作物輻射遺傳與育種。科學出版社。北京市
李偉嘉。2006。微小水稻基因Tr1的定位選殖。天主教輔仁大學生命科學所碩士論文,27、29頁
沈宗瀚。1963。台灣農業之發展。台灣商務印書館。台北市
林崇正、李長沛、鄭舒允、林育宗、許愛娜、曾富生、吳詩都、古新梅。2007。利用水稻SSR分子標幟偵測影響米質的數量性狀基因座。作物、環境與生物資訊4: 269-284
林富雄。2006。水稻產量、品質及抗病蟲害育種的回顧及展望。作物、環境與生物資訊3: 40-53
許愛娜。1994。稻米品質理化特質之研究。國立中興大學農藝學研究所博士論文,119-145頁
許愛娜。2000。稉糯稻米品質之研究六個品種加工製品之質地特性。臺中區農業改良場研究彙報 66: 15-26
郭益全。1999。稻米生產與氣候。環境與稻作生產2: 7-32
馮丁樹和陳貽倫。1977。稻穀低溫密實驗穀倉試驗分析。中國農業工程學報 23: 1-20
黃基倬。1995。水稻穀粒充實期間溫度對稻米品質及儲藏性蛋白質累積之影響。國立台灣大學農藝學系研究所碩士論文,34-45頁
劉瑋婷和宋勳。1996。稻米品質的影響因素。花蓮區農業專訊18: 12-15
鄭統隆、林素月、曾東海、王強生。2007。水稻直鏈性澱粉突變體快速篩選法。台灣農業研究54: 103-112
鄧耀宗。1988。臺灣地區稻米品質改進現況與展望。稻米品質研討會專刊 13: 9-19
盧虎生。1999。溫度對水稻穀粒充實發育及稻米品質的影響。環境與稻作生產7: 106-118
Ashikari M., Sakakibara H., Lin S., Yamamoto T., Takashi T., Nishimura A., Angeles E.R., Qian Q., Kitano H., Matsuoka M. 2005. Cytokinin oxidase regulates rice grain production. Science 309: 741-745
Baldwin P.M., Adler J., Davies M.C. 1994. Holes in starch granules- confocal SEM and light-microscopy studies of starch granules structure. Starch 46: 341-346
Brondani C., Rangel N., Brondani V., Ferreira E. 2002. QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice (Oryza sativa) using microsatellite markers. Theor. Appl. Genet. 104: 1192-1203
Ceserani T., Trofka A., Gandotra N., Nelson T. 2009. VH1/BRL2 receptor-like kinase interacts with vascular-specific adaptor protein VIT and VIK to influence leaf venation. Plant J. 57: 1000-1014
Chang T.T. 1976. The origin, evolution, cultivation, dissemination, and diversification of Asian and Africa rice. Euphytica 25: 425-441
De Angeli A., Monachello D., Ephritikhine G., Franchisse J.M., Thomine S., Gambale F., Barbier-Brygoo H., 2009. CLC-mediated anion transport in plant cell. Phlio. Trans. R. Soc. Lond. B. Biol. Sci. 364: 195-201
Diamond J. 2002. Evolution, consequences and future of plant and animal domestication. Nature 418: 700-707
Fan C.C., Yu X.Q., Xing Y.Z., Xu C.G., Luo L.J., Zhang Q. 2005. The main effects, epistatic effects and environmental interactions of QTLs on the cooking and eating quality of rice in a doubled-haploid line population. Theor. Appl. Genet. 110: 1445-1452
Feltus F.A., Wan J., Schulze S.R., Estill J.C., Jiang N., Paterson A.H. 2004. An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res. 14: 1812-1819
Filardo F., Robertson M., Singh D.P., Parish R.W., Swain S.M., 2009. Functional analysis of HvSPY, a negative regulator of GA response, in barley aleurone cells and Arabidopsis. Planta 229: 523-537
Frances H., Bligh J., Larkin P.D., Roach P.S., Jones C.A., Fu H., Park W.D. 1998. Use of alternate splice sites in granule-bound starch synthase mRNA from low-amylose rice varieties. Plant Mol. Biol. 38: 407-415
Gallant D.J., Bouchet B., Baldwin P.M. 1997. Microscopy of starch: evidence of a new level of granule organization. Carbohydr. Polym. 32: 177-191
Gerard C., Barron C., Colonna P., Planchot V. 2001. Amylose determination in genetically modified starches. Carbohydr. Polym. 44: 19-27
Goff S.A., Ricke D., Lan T.H., Presting G., Wang R., Dunn M., Glazebrook J., Sessions A., Oeller P., Varma H., Hadley D., Hutchison D., Martin C., Katagiri F., Lange B.M., Moughamer T., Xia Y., Budworth P., Zhong J., Miguel T., Paszkowski U., Zhang S., Colbert M., Sun W.L., Chen L., Cooper B., Park S., Wood T.C., Mao L., Quail P., Wing R., Dean R., Yu Y., Zharkikh A., Shen R., Sahasrabudhe S., Thomas A., Cannings R., Gutin A., Pruss D., Reid J., Tavtigian S., Mitchell J., Eldredge G., Scholl T., Miller R.M., Bhatnagar S., Adey N., Rubano T., Tusneem N., Robinson R., Feldhaus J., Macalma T., Oliphant A., Briggs S. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296: 92-100
Guo Y.M., Mua P., Liu J.F., Lub Y.X., Lia Z.C. 2007. QTL mapping and Q×E interactions of grain cooking and nutrient qualities in rice under upland and lowland environments. J. Genet. Genomics 34: 420-428
Heu M. H. 1986. Inheritance of chalkiness of brown rice found in a nonglutinous cultivar “Pokhareli Mashino”. Korean J. of Breed. 18: 162-166
Hirano H.Y. and Sano Y. 2000. Comparison of waxy gene regulation in the endosperm and pollen in Oryza sativa L. Genes Genet. Syst. 75: 245-249
Hsieh S.C. and Wang L.M. 1989. Genetical studies on physico-chemical properties of rice grains. Proc. 6th Internatl. Congress of SABRAO.: 325-328
International Rice Genome Sequencing Project (IRGSP). 2005. The map-based sequence of the rice genome. Nature 436: 793-780
Isshiki M., Matsuda Y., Takasaki a., Wong H. L., Satoh H., Shimamoto K. 2008. Du3, a mRNA cap-binding protein gene, regulates amylose content in Japonica rice seeds. Plant Biotechnol.25: 483-487
Isshiki M., Nakajima M., Satoh H., Shimamoto K. 2000. dull: rice mutants with tissue-specific effects on the splicing of the waxy pre-mRNA. Plant J. 23: 451-460
Jander G., Norris S.R., Rounsley S.D., Bush D.F., Levin I.M., Last RL. 2002. Arabidopsis map-based cloning in the post-genome era. Plant Physiol. 129: 440-450
Jayamani P., Negrão S., Brites C., Oliveira M.M. 2007. Potential of Waxy gene microsatellite and single-nucleotide polymorphisms to develop japonica varieties with desired amylose levels in rice (Oryza sativa L.). J. Cereal Sci. 46: 178-186
Jiang H., Dian W., Wu P. 2003. Effect of high temperature on fine structure of amylopectin in rice endosperm by reducing the activity of the starch branching enzyme. Phytochemistry 63: 53-59
Jiang L., Guo L., Jiang H., Zeng D., Hu J., Wu L., Liu J., Gao Z., Qian Q. 2008. Genetic analysis and fine-mapping of a dwarfing with withered leaf-tip mutant in rice. J. Genet. Genomics 35: 715-721
Juliano B.O. 1985. Polysaccharide, proteins and lipids of rice. In Rice: Chemistry and Technology, 2ed. Juliano B. O. ed. American Association of Cereal Chemists, 59-174 p.p.
Juliano B.O., Onate L.U., Delmundo A.M. 1972. Amylose and protein contents of milled rice as eating quality factors. Philippine Agriculturist 56: 44-47
Kang H.G., Park S., Matsuoka M., An G. 2005. White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C-type pyruvate orthophosphate dikinase gene (OsPPDKB). The Plant J. 42: 901-911
Kaushik R.P. and Khush G. S. 1991. Genetic analysis of endosperm mutants in rice Oryza sativa L. Theor. Appl. Genet. 83: 146-152
Khush G.S. 2005. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol. Biol. 59: 1-6
Kidner C.A. and Timmermans M.C. 2007. Mixing and matching pathways in leaf polarity. Curr. Opin. Plant Biol. 10: 13-20
Kikuchi H. and Kinoshita T. 1987. Genetical study on amylose content in rice endosperm starch genetical studies on rice plant. J. Fac. Agr. Hokkaido Univ. 15: 299-319
Koh H. J., Cha K.W., Heu M. H. 1997. Inheritance and some physicochemical properites of newly induced low-amylose endosperm mutants in rice. Korean J. Breed. 29: 368-375
Lanceras J.C., Huang Z.L., Naivikul O., Vanavichit A., Ruanjaichon V., Tragoonrung S. 2000. Mapping of genes for cooking and eating qualities in Thai Jasmine rice (KDML105). DNA Res. 7: 93-101
Lander E.S., Green P., Abrahamson J., Barlow A., Daly M.J., Lincoln S.E., Newburg L. 1987. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174-181
Li J., Xiao J., Grandillo S., Jiang L., Wan Y., Deng Q., Yuan L., McCouch S.R. 2004. QTL detection for rice grain quality traits using an interspecific backcross population derived from cultivated Asian (O. sativa L.) and African (O. glaberrima S.) rice. Genome 47: 697-704
Li X., Qian Q., Fu Z., Wang Y., Xiong G., Zeng D., Wang X., Liu X., Teng S., Hiroshi F., Yuan M., Luo D., Han B., Li J. 2003. Control of tillering in rice. Nature 422: 618-621
Li Z., Pinson S.R., Stansel J.W., Park W.D. 1995. Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice (Oryza sativa L.). Theor. Appl. Genet. 91: 374-381
Ma J.F., Tamai K., Ichii M., Wu G.F. 2002. A rice mutant defective in Si uptake. Plant Physiol. 130: 2111-2117
Matsuo T., Yano M., Iwata N., Omura T. 1986. Gene shr-2 located on chromosome 12. R.G.N. 3: 61-62
McCouch S.R., Teytelman L., Xu Y., Lobos K.B., Clare K., Walton M., Fu B., Maghirand R., Li Z.K., Xing Y.Z., Zhang Q., Kono I., Yano M., Jellstrom R.F., DeClerck G., Schneider D., Cartinhour S., Ware D., Stein L. 2002. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res. 9: 199-207
Mikami I., Uwatoko N., Ikeda Y., Yamaguchi J., Hirano H.Y., Suzuki Y., Sano Y. 2008. Allelic diversification at the wx locus in landraces of Asian rice. Theor. Appl. Genet. 116: 979-989
Morita R., Sato Y., Masuda Y., Nishimura M., Kusaba M. 2009. Defect in non-yellow coloring 3, an α/β hydrolase-fold family protein, cause a stay-green phenotype during leaf senescence in rice. Plant J. 10: 132-143
Nagao S. and Takahashi M. 1963. Trial construction of twelve linkage groups in Japanese rice. J. Fac. Agr. Hokkaido Univ. 53: 72-130
Nishio T. and Iida S. 1993. Mutant having a low content of 16-kDa allergenic protein in rice (Oryza sativa L.). Theor. Appl. Genet. 86: 317-321
Paterson A. H., Lander E.S., Hewitt J. D., Peterson S.E., Tanksley S.D. 1988. Resolution of quantitative traits into Mendelian factor, using a complete linkage map of restriction fragment length polymorphisms. Nature 335: 721-726
Ramesh M., Ali S.Z., Bhattacharya K.R. 1999. Starch components in hot-water soluble and insoluble fraction of rice flour. Starch 51: 308-310
Ryoo N., Yu C., Park C.S., Baik M.Y., Park I.M., Cho M.H., Bhoo S.H., An G., Hahn T.R., Jeon J.S. 2007. Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice (Oryza sativa L.). Plant Cell Rep. 26: 1083-1095
Satoh H. and Omura T. 1981. New endosperm mutations induced by chemical mutagen in rice, Oryza sativa L. Jpn J. Breed. 31: 316-326
Satoh, H. and Iwata N. 1990. Linkage analysis in rice. On three mutant loci for endosperm properties, ge (giant embryo), du-4 (dull endosperm-4) and flo-1 (floury endosperm-1). Jpn J. Breed. 40: 268-269
Shen Y.J., Jiang H., Jin J.P., Zhang Z.B., Xi B., He Y.Y., Wang G., Wang C., Qian L., Li X., Yu Q.B., Liu H.J., Chen D.H., Gao J.H., Huang H., Shi T.L., Yang Z.N. 2004. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol. 135: 1198-1205
Smith A.M., Denyer K., Martin C. 1997. The synthesis of the starch granular. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 67-87
Sunkar R., Kapoor A., Zhu J.K. 2006. Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18: 2051-2065
Suto,H., Ando, K., Numaguchi K., Horisue N. 1996. Breeding of low amylase content paddy rice variety “Milky Queen” with good eating quality. Jpn. J. Breed. 46: 221-225
Tanksley S.D. 1993. Mapping polygenes. Annu. Rev. Genet. 27: 205-233
Umemoto T., Nakamura Y., Ishikura N. 1995. Activity of starch synthase and the amylose content in rice endosperm. Phytochemistry 40: 1613–1616
Wan X.Y., Wan J.M., Su C.C., Wang C.M., Shen W.B., Li J.M., Wang H.L., Jiang L., Liu S.J., Chen L.M., Yasui H., Yoshimura A. 2004. QTL detection for eating quality of cooked rice in a population of chromosome segment substitution lines. Theor. Appl. Genet. :110:71-79
Wu Y.P., Ko P.Y., Tseng T.H., Wang C.S. 2007. Screening for scent and grain quality in rice mutants. J. Taiwan Agric. Res. 56:121-133
Xu J.D., Zhang Q.F., Zhang T., Zhang H.Y., Xu P.Z., Wang X.D., Wu X.J. 2008. Phenotypic characterization, genetic analysis and gene-mapping for a brittle mutant in rice. J. Integr. Plant Biol. 50:319-328
Yano M., Okuno K., Kawakami J., Satoh H., Omura T. 1985. High amylose mutants of rice, Oryza sativa L. Theor. Appl. Genet. 69: 253-257
Yano M., Okuno K., Satoh H., Omura T. 1988. Chromosomal location of genes conditioning low amylose content of endosperm starches in rice, Oryza sativa L. Theor. Appl. Genet. 76: 183-189
Yoshida S.and Hana T. 1977. Effect of air temperature and light on grain filling of an indica and a japonica rice under controlled environmental conditions. Soil Sci. Plant Nutr. 23: 93-107
Yu J., Hu S., Wang J., Wong G.K., Li S., Liu B., Deng Y., Dai L., Zhou Y., Zhang X., Cao M., Liu J., Sun J., Tang J., Chen Y., Huang X., Lin W., Ye C., Tong W., Cong L., Geng J., Han Y., Li L., Li W., Hu G., Huang X., Li W., Li J., Liu Z., Li L., Liu J., Qi Q., Liu J., Li L., Li T., Wang X., Lu H., Wu T., Zhu M., Ni P., Han H., Dong W., Ren X., Feng X., Cui P., Li X., Wang H., Xu X., Zhai W., Xu Z., Zhang J., He S., Zhang J., Xu J., Zhang K., Zheng X., Dong J., Zeng W., Tao L., Ye J., Tan J., Ren X., Chen X., He J., Liu D., Tian W., Tian C., Xia H., Bao Q., Li G., Gao H., Cao T., Wang J., Zhao W., Li P., Chen W., Wang X., Zhang Y., Hu J., Wang J., Liu S., Yang J., Zhang G., Xiong Y., Li Z., Mao L., Zhou C., Zhu Z., Chen R., Hao B., Zheng W., Chen S., Guo W., Li G., Liu S., Tao M., Wang J., Zhu L., Yuan L., Yang H.. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296: 79-92
Zhang Z. H., Deng Y. J., Tan J., Hu S. N., Yu J., Xue Q. Z. 2007. A genome-wide microsatellite polymorphism database for the indica and japonica Rice. DNA Res. 14: 37-45
Zeng D., Yan M., Wang Y., Liu X., Qian Q., Li J. 2007. Du1, encoding a novel Prp1 protein, regulates starch biosynthesis through affecting the splicing of Wxb pre-mRNAs in rice (Oryza sativa L.). Plant Mol. Biol. 65: 501-509
Zheng X., Wu J.G., Lou X.Y., Xu H.M., Shi C.H. 2008. The QTL analysis on maternal and endosperm genome and their environmental interactions for characters of cooking quality in rice (Oryza sativa L.). Theor. Appl. Genet. 116: 335-342
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42372-
dc.description.abstract稻米是人類重要的糧食之一,更是台灣地區之主要糧食。隨著經濟發展,消費型態的改變,台灣稻米的生產出現了生產過剩的情形,且因應加入世界貿易組織WTO,稻米的生產已由量的時代轉變為質的時代,提升稻米品質在近年來成為重要的研究課題。
直鏈澱粉的含量為影響稻米品質的重要因素,低直鏈澱粉的米飯口感濕潤、有彈性,因此較受日本、韓國與台灣等地區消費者青睞。本論文係以來自EMS誘變台稉8號所得之13個突變品系為材料,而這些突變品系擁有不同直鏈性澱粉含量。試驗首先以碘呈色比色法測定13個突變品系之直鏈澱粉含量,範圍從5.11%到15.53%,直鏈澱粉含量存在相當程度之變異。以碘液染色胚乳,呈色顏色隨直鏈增加而加深,直至飽和為止,可成為簡易判斷澱粉含量之方法。為瞭解半糯胚乳顏色和影響直鏈澱粉含量改變的原因,挑選口感食味佳半糯品系CNY921391,其直鏈澱粉含量11.92%,進行觀察胚乳澱粉粒結構與半糯基因定位選殖。CNY921391澱粉結構分別在400 X與3000 X掃描式電子顯微鏡下觀察,於3000 X中,其澱粉粒型態與米粒外觀晶瑩剔透的台稉8號之常見多角型、排列緊實不同,而是圓形、排列鬆散,造成胚乳不透明之乳白色。在CNY921391與台中秈17號雜交建立之F2族群中,胚乳透明型與半糯乳白型的個體比例為3.6:1,顯示半糯為單一隱性基因所控制,並從中挑選30個胚乳外表型呈半糯F2個體,以96個分子標幟進行建構遺傳圖譜,平均間距為16.63 cM, 並進行半糯基因之遺傳連鎖分析,結果將此半糯基因粗略定位於第四條染色體的長臂S13714與C53391之間,是一新發現的半糯性基因,因此命名為Du8,再以26個於標的區域具互換的F2個體進行細微定位,最後將Du8侷限在CH0422與CH0426之間,此一152987 bp的區域中涵蓋12個基因。本論文已完成至Du8的候選基因只剩12個,但尚未達到本研究之最終目標,未來將繼續高解析定位以縮小標的區間與進行候選基因之定序來確認Du8突變點,最後並釐清半糯性狀之基因與直鏈性澱粉合成機制,並應用於提升稻米品質之育種。
zh_TW
dc.description.abstractRice is one of the major crops in the world, and it is also a major food in Taiwan. The aim of rice production has been changed from quantity-oriented to quality-oriented because of altered rice consumption along with rapid development of economics and of joining WTO in Taiwan. Researches and breeding for improvement of the rice quality have been the important tasks ever since.
The amylose content is one of important factors that affect the quality of rice grain. Low-amylose rice is mostly popular and widely accepted in Japan, Korea and Taiwan, which tends to show fluffy texture and glossy appearance after cooked. In this research, we selected 13 mutant lines of Taikeng 8 (TK8) induced by EMS that were provided by Dr. Yong-Pei Wu. The amylose contents of 13 lines were measured by the absorbance of spectrophotometer at 620 nm after iodine-binding procedures and ranged from 5.11% to 15.53%. The endosperm was stained with iodine which the color of endosperm was proportion to the amylose content. To understand what caused the changes of endosperm color and amylose content, we selected the mutant line CNY921391 for which good taste and low-amylose content of 11.92%. The starch granules of CNY921391, rather than in polyhedron shapes as of TK8, were in sphere shapes by SEM at 3000 X. We established an F2 population by crossing CNY921391 with O. sativa ssp. indica cv. Taichung Sen 17 (TCS17) for applying positional cloning this mutated dull gene. The ratio of transparent endosperm to opaque endosperm was found to be 3.6:1, knowing that this mutant gene is a recessive allele. A total of 30 F2 individuals with opaque endosperm were genotyped with 96 polymorphic markers and subjected for construction of genetic maps with an average interval of 16.63 cM. After linkage analysis, the dull gene was coarsely mapped between S13714 and C53391on the long arm of the chromosome 4 and named the mutated gene as Du8. We proceeded fine mapping by using 26 recombinants and narrowed down the target region between CH0422 and CH0426 encompassing 152987 bp and 12 candidate genes after annotation.
We accomplished the fine mapping to narrow down candidate genes to 12, which paved a way to achieve final goal. In the future, high-resolution mapping and DNA sequence candidate genes will be implemented to touch down Du8. Consequently, we can elucidate the gene regulations of dull and metabolism of starch, and further apply in rice breeding to promote rice quality.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:12:46Z (GMT). No. of bitstreams: 1
ntu-98-R96621110-1.pdf: 1656613 bytes, checksum: 34f729c30b47b5e51205cc71906e8bf1 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents中文摘要 I
Abstract II
內容目錄 IV
表目錄 VI
Table Contents VII
圖目錄 VIII
Figure Contents IX
壹、 前言 1
貳、前人研究 4
一、稻米品質之研究 4
二、稻米合成澱粉之研究 8
三、水稻誘變育種 9
四、半糯突變體及半糯基因研究 10
五、定位選殖的發展與應用 12
參、材料和方法 15
一、實驗材料 15
二、半糯型態觀察 17
三、直鏈澱粉之測定 18
四、半糯基因 (Du1) 之定序 19
五、定位選殖半糯基因Du8 20
肆、結果 25
一、直鏈澱粉測定 25
二、胚乳之碘液染色觀察 28
三、電子顯微鏡下之澱粉粒觀察 32
四、粗略定位 (Coarse Mapping) 37
五、細微定位(Fine Mapping) 45
伍、討論 52
一、直鏈澱粉之測定 52
二、澱粉粒結構於掃描式電子顯微鏡觀察 54
三、依胚乳外觀推論Du8之基因型討論 55
四、Du8之定位選殖 57
五、未來展望 57
陸、參考文獻 59
柒、附錄 69
附錄一、不同水稻Waxy基因的剪接 69
附錄二、不同Waxy 對偶基因之序列差異 70
附錄三、已發表半糯突變與相關性狀突變 71
附錄四、直鏈澱粉標準液配置與620 nm波長下之吸光值 73
附錄五、不同濃度馬鈴薯直鏈澱粉溶液所獲得之吸光值標準曲線74
附錄六、半糯基因Du1定序 75
dc.language.isozh-TW
dc.title邁向水稻半糯基因Du8之定位選殖zh_TW
dc.titleToward Positional Cloning of the Rice (Oryza sativa L.) Dull 8, Du8en
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee邢禹依(Yue-Ie Hsing),吳永培(Yong-Pei Wu),張孟基(Men-Chi Chang),陳凱儀(Kai-Yi Chen)
dc.subject.keyword水稻,定位選殖,直鏈澱粉,半糯,zh_TW
dc.subject.keywordrice,positional cloning,amylose,dull,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2009-07-30
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
1.62 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved