請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42354完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳奕君(I-Chun Cheng) | |
| dc.contributor.author | Chang-Yi Tsai | en |
| dc.contributor.author | 蔡昌益 | zh_TW |
| dc.date.accessioned | 2021-06-15T01:12:31Z | - |
| dc.date.available | 2014-07-31 | |
| dc.date.copyright | 2011-09-07 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-16 | |
| dc.identifier.citation | 參考文獻
[1]楊明輝,”透明導電膜”,藝軒出版社, 30-80 (2006) [2] H. Agura, A. Suzuki, T. Matsushita, T. Aoki, M. Okuda “Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition” Thin Solid Films 445, 263-267 (2003) [3] T. Minami “Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes” Thin Solid Films 516, 5822-5828 (2008) [4] B. Chavillon, L. Cario, C. D. Brochard, R. Srinivasan, L. L. Pleux, Y. Pellegrin, E. Blart, F. Odobel, S. Jobic “Synthesis of light-coloured nanoparticles of wide band gap p-type semiconductors CuGaO2 and LaOCuS by low temperature hydro/solvothermal processes” Physical Status Solidi 207, 7, 1642-1646(2010) [5] M. L. Flora, R. Waddingham , W. I. Milne , A. J. Flewitt, S. Speakman, J. Dutson, S.Wakeham, M.Thwaites “Low temperature (<100 °C) deposited P-type cuprous oxide thin films: Importance of controlled oxygen and deposition energy” Thin Solid Films 7, 29367 (2011) [6] M. Fang, H. He, B. Lu, W. Zhang, B. Zhao, J. Huang “Optical properties of p-type CuAlO2 thin film grown by rf magnetron sputtering” Applied Surface Science 257 , 8330-8333 (2011) [7] S.Y. Tsai, M. H. Hon, Y. M. Lu “Optically transparent of n-ZnO/p-NiO heterojunction for ultraviolet photodetector application” Materials Science Forum 687, 711-715 (2011) [8] H.L.Chen, Y.M.Lub, W.S.Hwang “Characterization of sputtered NiO thin films” Surface & Coatings Technology 198, 138-142 (2005) [9] T. Sugimoto, A.Yanagawa,T. Hashimoto “Evaluation of thermodynamic and kinetic stability of P-type transparent conducting oxide,SrCu2O2 under various oxygen partial pressures” Thermochimica Acta 4, 75612 (2011) [10] H. Sato, T. Minami, S. Takata , T. Yamada “Transparent conducting p-type NiO thin films prepared by magnetron sputtering” Thin Solid Films 236, 27-31 (1993) [11] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi , H. Hosono “P-type electrical conduction in transparent thin films of CuAlO2” Nature 389, 939-942 (1997) [12] N. Wongcharoen, T. Gaewdang “Thermoelectric properties of Ni-doped CuAlO2 “ Physics Procedia 2, 101-106 (2009) [13] G. Dong, M. Zhang, W. Lan, P. Dong, H. Yan “Structural and physical properties of Mg-doped CuAlO2 thin films” 82, 1321-1324 (2008) [14] K. Park, K.Y. Ko, H.-C. Kwon, S. Nahm “Improvement in thermoelectric properties of CuAlO2 by adding Fe2O3” Journal of Alloys and Compounds 437, 1-6 (2007) [15] K. Park , K.Y. Ko , W.S. Seo “Effect of partial substitution of Ca for Al on the microstructure and high-temperature thermoelectric properties of CuAlO2” Materials Science and Engineering B 129, 1-7 (2006) [16] G. Thomas “Invisible circuits” Nature 389, 907-908 (1997) [17] H. Kawazoe, H, Yanagi, K. Ueda, H. Hosono “Transparent p-Type Conducting Oxides: Design and Fabrication of p-n Heterojunctions “ Materials Research Society Bulletin 25, 28-36 (2000) [18] H. Chang, I. C. Cheng “Properties of amorphous calcium-doped copper-aluminum oxide thin films” National Taiwan University thesis , page 27, 35, 50 (2010) [19] H. Yanagi, S. I. Inoue, K. Ueda, H. Kawazoe, H. Hosono “Electronic structure and optoelectronic properties of transparent p-type conducting CuAlO2” Journal Of Applied Physics 88, 7, 4159-4163 (2000) [20] S. J. Pearton, C. R. Abernathy, G. T. Thaler, R. M. Frazier, D. P. Norton ” Wide bandgap GaN-based semiconductors for spintronics” Condensed Matter 16, R209-R245 (2004) [21] S. T. Tan, B. J. Chen, X. W. Sun, W. J. Fan “Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition “Journal Of Applied Physics 98, 013505 (2005) [22]U. Ozgur, Y. I. Alivov, C. Liu, A. Teke,M.A.Reshchikov, S.Dogan,V. Avrutin,S.J.Cho, H. Morkoc “A comprehensive review of ZnO materials and devices” Journal Of Applied Physics 98, 041301 (2005) [23] C. Klingshirn “ZnO: Material, Physics and Applications” ChemPhysChem 8, 782-803 (2007) [24] G. Xiong, J. Wilkinson, B. Mischuck, S. Tuzemen, K. B. Ucer,R. T. Williams “Control of p- and n-type conductivity in sputter deposition of undoped ZnO” Journal Of Applied Physics 80 , 7, 195-1197 (2002) [25] A. A. D. T. Adikaaria, S. R. P. Silva “Thickness dependence of properties of excimer laser crystallized nano-polycrystalline silicon” Journal Of Applied Physics 97, 114305 (2005) [26]Y. P. Zeng, Y. F. Lu, Z. X. Shen, W. X. Sun, T. Yu, L. Liu, J. N. Zeng, B. J. Cho, C. H. Poon” Raman spectroscopy investigation on excimer laser annealing and thickness determination of nanoscale amorphous silicon” Nanotechnology 15, 658-662 (2004) [27] M. Hatano, S. Moon, M. Lee “Excimer laser-induced temperature field in melting and resolidification of silicon thin films” Journal Of Applied Physics 87, 1, 36-43 (2000) [28] Y. T. Lin, C. Chen “Trap-state density in continuous-wave laser-crystallized single-grainlike silicon transistors” Journal Of Applied Physics 88, 233511 (2006) [29] S.Y. Lee, E. S. Shim, H. S. Kang, S. S. Pang, J. S. Kang “Fabrication of ZnO thin film diode using laser annealing” Thin Solid Films 473 , 31-34 (2005) [30]C. S. Sandu, V. S. Teodorescu, C. Ghica, B. Canut, M. G. Blanchin, J. A. Roger, A. Brioude, T. Bret, P. Hoffmann, C. Garapon “P. Ashburn ” Densification and crystallization of SnO2:Sb sol-gel films using excimer laser annealing“ Applied Surface Science 208-209, 382-387 (2003) [31]E. V. Johnson, P. Prodhomme, C. Boniface, K. Huet, T. Emeraud,P. R. Cabarrocas “Excimer laser annealing and chemical texturing of ZnO:Al sputtered at room temperature for photovoltaic applications “ Solar Energy Materials & Solar Cells 16, 324-332 (2011) [32] W. M. Tsang, F. L. Wong, M. K. Fung, J. C. Chang, C. S. Lee, S. T. Lee “Transparent conducting aluminum-doped zinc oxide thin film prepared by sol-gel process followed by laser irradiation treatment” Thin Solid Films 517, 891-895 (2008) [33] 施敏 ”半導體元件物理與製作技術” P 213~229 [34] 旗立資訊www.knvs.tp.edu.tw [35] P. Ashburn ” SiGe Heterojunction Bipolar Transistors “ pag 23-24(2003) [36] R. Bashir, S. Venkatesan “A Polysilicon Contacted Subcollector BJT for a Three-Dimensional BiCMOS Process” Institute of Electrical and Electronics Engineers 13, 8 (1992) [37] S. Yoshida and J Suzuki “High-temperature reliability of GaN metal semiconductor field-effect transistor and bipolar junction transistor” Journal Of Applied Physics 85, 11, 7931-7934 (1999) [38] S. C. Binari, K. Doberspike, G. Kelner, H. B. Dietrich,A. E. Wickenden “GaN FETs for microwaave and high-temperature applications” Solid-State Electronics 41, 177-180 (1997) [39] M. I. Nathan, S. Tiwari, P. M. Mooney, S. L. Wright ” DX centers in AlGaAs p‐n heterojunctions and heterojunction bipolar transistors” Journal Of Applied Physics 62, 3234-3236 (1987) [40] P. C. Chang, A. G. Baca “InGaP/InGaAsN/GaAs NpN double-heterojunction bipolar transistor” APPLIED PHYSICS LETTERS 76, 16, 407-414 (2000) [41] J. H. Tsai, D. F. Guo, Y. C. Kang, T. T.Weng “Characteristics of InP/InGaAs pnp heterostructure-emitter bipolar transistor (HEBT)” Physice Scripta 129, 293-296 (2007) [42] L.V. Azaroff, 'Elements of X-ray Crystallography' pag42 (1968) [43] A.K. Kulkarni, K. H. Schulz, T. S. Lim, M. Khan “Dependence of the sheet resistance of indium-tin-oxide thin films on grain size and grain orientation determined from X-ray diffraction techniques” Thin Solid Films 345, 273-277 (1999) [44] D. S. Kim, T. J. Park, D. H. Kim, S. Y. Choi “Fabrication of a transparent p–n heterojunction thin film diode composed of p-CuAlO2/n-ZnO” Physical Status Solidi 203, R51-R53 (2006) [45] E. Velmre “Thomas Johann Seebeck and his contribution to the modern science and Technology” Biennial Baltic Electronics Conference, Tallinn, Estonia, October 4-6 (2010) [46] A. W. V. Herwaarden, P. M. SARRO “Thermal sensors based on the seebeck effect” Sensors and Actuators 10, 321-346 (1986) [47] S. Jiao, L. Xu, K. Jiang, D. Xu “Well-Defined Non-spherical Copper Sulfide Mesocages with Single-Crystalline Shells by Shape-Controlled Cu2O Crystal Templating” Advanced Materials 18, 1174-1177 (2006) [48] C. H. Ong, H. Gong “Effects of aluminum on the properties of p-type Cu-Al-O transparent oxide semiconductor prepared by reactive co-sputtering” Thin Solid Films 445 , 299-303 (2003) [49] A. N. Banerjee, R. Maity, P. K. Ghosh, K. K. Chattopadhyay “Well-Defined Non-spherical Copper Sulfide Mesocages with Single-Crystalline Shells by Shape-Controlled Cu2O Crystal Templating” Thin Solid Films 474, 261-266 (2005) [50] H. Ohta, Y. Mune, K. Koumoto, T. Mizoguchi, Y. Ikuhara ” Critical thickness for giant thermoelectric Seebeck coefficient of 2DEG confined in SrTiO3/SrTi0.8Nb0.2O3 superlattices” Thin Solid Films 516 , 5916-5920 (2008) [51] K. Koumoto, H. Koduka, W.S. Seo “Thermoelectric properties of single crystal CuAlO2 with a layered Structure” Journal Of Materials Chemistry 11, 251-252 (2001) [52] I. Terasaki “Large thermoelectric power in NaCo2O4 single crystals” Physcial Review B 56, R12685-R12687 (1997) [53] Y. Masuda, M. Ohta,W. S. Seo, W. Pitschke, K. Koumoto “Structure and Thermoelectric Transport Properties of Isoelectronically Substituted (ZnO)5In2O3” Journal of Solid State Chemistry 150, 221-227 (2000) [54] L.E. Shelimova, M.K. Zhitinskaya, S.A. Nemov, T.E. Svechnikova, P.P. Konstantinov, E.S. Avilov, M.A. Kretova, V.S. Zemskov “Thermoelectric Properties of Layered Anisotropic p-type PbSb2Te4 Compound and Peculiarities of its Energy Spectrum” 7, 3012-3016 (2007) [55] K. Park, K.Y. Ko, W. S. Seo “Thermoelectric properties of CuAlO2” Journal of the European Ceramic Society 25, 2219-2222 (2005) [56] A.N. Banerjee, R. Maity, P. K. Ghosh, K. K. Chattopadhyay “Thermoelectric properties and electrical characteristics of sputter-deposited p-CuAlO2 thin films” Thin Solid Films 474, 261-266 (2005) [57] K. Park, K.Y. Ko, J.K. Seong, S. Nahm “Microstructure and high-temperature thermoelectric properties of polycrystalline CuAl1−xMgxO2 ceramics” Journal of the European Ceramic Society 27, 3735-3738 (2007) [58] J. G. Noudem, M. Prevel, A. Veres, D. Chateigner,J. Galy “Thermoelectric Ca3Co4O9 ceramics consolidated by Spark Plasma sintering” Journal Of Electroceramic 22, 1-3 (2009) [59] H. Ohta, K. Sugiura, K. Koumoto “Recent Progress in Oxide Thermoelectric Materials: p-Type Ca3Co4O9 and n-Type SrTiO3” Inorgnoic Chemistry 47, 8429-8436 (2008) [60] W. Shin, N. Murayama “High performance p-type thermoelectric oxide based on NiO” Materials Letters 45, 302-306 (2000) [61] Y. M. Lu, Y. B. He, B. Yang, A. Polity, N. Volbers, C. Neumann, D. Hasselkamp, B.K. Meyer “RF reactive sputter deposition and characterization of transparent CuAlO2 thin films” Physica Status Solidi 3, 2895-2898 (2006) [62] A.N. Banerjee, S. Kundoo, K. K. Chattopadhyay “Synthesis and characterization of p-type transparent conducting CuAlO2 thin film by DC sputtering” Thin Solid Films 440, 5-10 (2003) [63] C. Bouzidi, H. Bouzouita, A. Timoumi, B. Rezig “Fabrication and characterization of CuAlO2 transparent thin films prepared by spray technique” Materials Science and Engineering B 118 , 259-263 (2005). [64] C. H. Ong, H. Gong “Effects of aluminum on the properties of p-type Cu-Al-O transparent oxide semiconductor prepared by reactive co-sputtering” Thin Solid Films 445, 299-303 (2003) [65] H. Yanagi, H. Kawazoe, A. Kudo, M. Yasukawa,H. Hosono “Chemical Design and Thin Film Preparation of p-Type Conductive Transparent Oxides” Journal of Electroceramics 4, 407-414 ( 2000) [66] D. S. Kim, S. J. Park , E. K. Jeong , H. K. Lee , S. Y. Choi “Optical and electrical properties of p-type transparent conducting CuAlO2 thin film” Thin Solid Films 515 , 5103-5108 (2007) [67] A.N. Banerjee, R. Maity, K. K. Chattopadhyay “Preparation of p-type transparent conducting CuAlO2 thin films by reactive DC sputtering” Materials Letters 58 , 10-13 (2003) [68] A. S. Reddy , P. S. Reddy, S. Uthanna ,G. M. Rao “Characterization of CuAlO2 films prepared by dc reactive magnetron sputterin” Mater Electron17, 615-620 (2006) [69] S. Nandy, U. N. Maiti, C. K. Ghosh, K. K. Chattopadhyay “Optical and electrical properties of amorphous CuAlO2 thin film deposited by RF magnetron Sputtering” Institute of Electrical and Electronics Engineers 443, 16-20 (2007) [70] Y. M. Lu, Y. B. He, B.Yang, A. Polity, N. Volbers, C. Neumann, D. Hasselkamp, B. K. Meyer “RF reactive sputter deposition and characterization of transparent CuAlO2 thin films” Physical Status Solidi 8, 2895-2898 (2006) [71] A. S. Reddy, H. H. Parka, G. M. Rao, S. Uthanna, P. S. Reddy “Effect of substrate temperature on the physical properties of dc magnetron sputtered CuAlO2 films” Journal of Alloys and Compounds 474 , 401-405 (2009) [72] E. P. Ver Ploeg, T. Watanabe, N. A. KistlerS, J. C. S. Woos, J. D. Plummer “Elimination of Bipolar-Induced Breakdown in Fully-Depleted SO1 MOSFETs” Journal of Applied Physics 337-340 (1992) [73] P. J. Ding, W. A. Lanford “Effects of the addition of small amounts of Al to copper: Corrosion,resistivity, adhesion, morphology, and diffusion” Journal of Applied Physics 75, 3627-3631 (1994) [74] J.A. Vreeling, Y.T. Pei, B. Wind, V. Ocelık, J. Hosson “Formation of γ-Al2O3 in reaction coatings produced with lasers” 44, 4, 643-649 (2001) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42354 | - |
| dc.description.abstract | 銅鋁氧化物是頗具應用潛力之p型透明導電材料。然而在低溫製程下所得的銅鋁氧化物往往電性不佳,且呈現非晶態,故我們嘗試摻雜鈣來增加其薄膜的電性,並以雷射退火調變能量參數來增加薄膜的結晶狀態,以期得到更有利用價值的銅鋁氧化物薄膜。
本實驗利用射頻磁控濺鍍機,沉積摻雜不同含量鈣之薄膜,量測其電性及光學性質。以Ca0.2CuAl0.8O2靶材沉積之薄膜,具有最佳電性,seebeck 係數為255~270(μV/K),電阻率為110(Ω-cm),可見光平均穿透率為26%(厚度200nm)。 本實驗接著利用雷射退火增加薄膜結晶狀態,並以X光繞射儀(XRD)分析結晶性,以二次離子質譜儀(SIMS)觀察薄膜成份。雷射退火後,CaxCuAl2-xO2靶材沉積之薄膜不易改善其結晶性,而CaxCuAl1-xO2靶材沉積之薄膜,結晶性隨著能量增加有所提升。以Ca0.2CuAl0.8O2靶材沉積之薄膜,其最大晶粒約為21.2nm,且有CuAlO2、Al2O3及Cu2O之相產生;薄膜成份則隨著雷射能量增加而有顯著改變,由直接沉積時Cu:Al≒2:1轉變為Cu:Al≒1:2;可見光平均穿透率則隨雷射能量上升至166(mJ/cm2)而提升至51%(厚度200nm),其電阻率為917(Ω-cm)。 因薄膜電阻率隨著雷射能量增強而增加,所以最後選用未退火導電率最高Ca0.2CuAl0.8O2靶材沉積之薄膜配搭氧化鋅薄膜來製作雙極性接面電晶體元件,由於Ca0.2CuAl0.8O2靶材沉積之薄膜載子濃度過低1015~1016 /cm3,β值僅達~1.1,所以我們進一步使用載子濃度達5x1019 /cm3的氧化鎳來取代銅鋁氧化物,製作出的雙極性接面電晶體,其β值達166,平均可見光穿透率為39%。 | zh_TW |
| dc.description.abstract | Copper aluminum oxide is one of the interesting p-type transparent conducting oxides. It can be obtained at room temperature by RF magnetron sputtering on glass. However, the as-deposited copper alumina oxide thin films are amorphous and has poor electrical propertied. In this study, calcium was used as dopant to improve the electrical properties. In addition, we also applied excimer laser to enhance the film crystallinity.
Thin films were sputtered from copper aluminum oxide targets doped with various amount of calcium, and their electrical properties, such as electrical resistivity, seebeck coefficient, and optical properties were evaluated. We found that thin films sputtered from Ca0.2CuAl0.8O2 targets had best electrical properties. Their electrical resistivities and seebeck coefficients are 110Ω-cm and 255~270μV/K, respectiviely. An average optical transmittance in the visible light region of 26% (200nm-thick) was obtained. To improve the film crystallinity, thin films were annealed by excimer laser. By XRD analysis, we found that it was not easy to improve the films deposited from CaxCuAl2-xO2 targets, while the crystallinity of thin films deposited from CaxCuAl1-xO2 targets ameliorated significantly after laser irradiation. Thin films deposited from Ca0.2CuAl0.8O2 targets had the largest grain size of 21nm; howerver, Al2O3 and Cu2O phase were observed in addition to CuAlO2 phase. The SIMS analysis showed that the atomic composition ratio of thin films deposited from Ca0.2CuAl0.8O2 targets were changed from Cu:Al≒1:2 to Cu:Al≒2:1 after laser irradiation. Thin films deposited from Ca0.2CuAl0.8O2 targets with resistivity of 917Ω-cm and the highest average optical transmittance in the visible light region of 51% were obtained by laser irradiation of 166mJ/cm2 . Because the laser irradiation deteriorated the electrical property of the thin films, we used as-deposited Ca-doped Ca0.2CuAl0.8O2 thin films for device fabrication. However, the carrier concentration of 1015 ~ 1016 /cm3 was too low, a β value of 1.1 was obtained. To improve the device performance, NiO thin films with carrier concentration of 5x1019 /cm3 was used to replace Ca-doped Ca0.2CuAl0.8O2 thin films. A β value of 166 and an average optical transmittance in the visible light region of 39% were obtained. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T01:12:31Z (GMT). No. of bitstreams: 1 ntu-100-R98941088-1.pdf: 3132383 bytes, checksum: ccc1003c6a8f7a8fc1e21ddc0ad3331e (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 目錄
中文摘要......................................................................................................................Ⅰ 英文摘要......................................................................................................................Ⅱ 致謝..............................................................................................................................Ⅳ 圖目錄..........................................................................................................................Ⅷ 表目錄..........................................................................................................................XI 第一章 緒論 1 1.1透明導電膜..............................................................................................................1 1.2研究動機與目的......................................................................................................2 1.3論文架構..................................................................................................................3 第二章 實驗理論與文獻回顧 4 2.1 透明導電氧化物.....................................................................................................4 2.1.1 p型透明導電氧化物.......................................................................................4 2.1.2 n型透明導電氧化物........................................................................................5 2.2 低溫雷射退火.......................................................................................................8 2.3 雙載子接面電晶體.............................................................................................12 第三章 研究方法 16 3.1製程方法................................................................................................................16 3.1.1薄膜成長...........................................................................................................16 3.1.2 雷特退火製程..................................................................................................17 3.2量測分析................................................................................................................19 3.2.1 結構與成份分析................................................................................................19 3.2.4.1 X光繞射儀(X-ray diffraction: XRD)....................................................19 3.2.4.2 二次離子質譜儀(Secondary Ion Mass Spectrometer, SIMS)................20 3.2.4.3 Alpha-step 表面輪廓儀.........................................................................20 3.2.2 電阻量測............................................................................................................21 3.2.3 熱電性質架構與量測........................................................................................21 3.2.4 光學性質量測....................................................................................................23 3.3 雙極性接面電晶體(Bipolar Junction Transistor ,BJT)之製作流程................24 第四章 結果與討論 26 4.1 CaxCuAl1-xO2、CaxCuAl2-xO2薄膜特性分析...................................................26 4.1.1薄膜結構分析.....................................................................................................26 4.1.1.1未退火處理之薄膜........................................................................................26 4.1.1.2雷射退火處理之薄膜....................................................................................27 4.1.2 薄膜成份分析....................................................................................................32 4.1.3 薄膜表面分析....................................................................................................34 4.1.3.1未退火處理之薄膜........................................................................................34 4.1.3.2雷射退火處理之薄膜....................................................................................35 4.1.4 薄膜電性分析..................................................................................................39 4.1.4.1 電阻率...........................................................................................................39 4.1.4.1.1未退火處理之薄膜...................................................................................39 4.1.4.1.2雷射退火處理之薄膜...............................................................................40 4.1.4.2 熱電性質分析...............................................................................................42 4.1.5 薄膜光學性質量測............................................................................................45 4.1.5.1穿透、吸收頻譜............................................................................................45 4.1.5.2 Tauc gap......................................................................................................48 4.2雙極性接面電晶體................................................................................................52 4.2.1 電性分析..........................................................................................................52 4.2.2光學特性分析...................................................................................................58 第五章 結論與未來展望 59 參考文獻......................................................................................................................60 | |
| dc.language.iso | zh-TW | |
| dc.subject | 濺鍍 | zh_TW |
| dc.subject | 銅鋁氧化物 | zh_TW |
| dc.subject | 雷射 | zh_TW |
| dc.subject | sputtered | en |
| dc.subject | CuAlO2 | en |
| dc.subject | laser | en |
| dc.title | 室溫濺鍍與雷射退火之銅鋁氧化物薄膜特性分析 | zh_TW |
| dc.title | Properties of room-temperature sputtered and laser annealed copper-aluminum oxide thin films | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳建彰(Jian-Zhang Chen) | |
| dc.contributor.oralexamcommittee | 吳志毅(Chih-I Wu),吳育任(Yuh-Renn Wu) | |
| dc.subject.keyword | 銅鋁氧化物,雷射,濺鍍, | zh_TW |
| dc.subject.keyword | CuAlO2,laser,sputtered, | en |
| dc.relation.page | 65 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 3.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
