Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42346
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳玲玲(Ling-Ling Wu)
dc.contributor.authorTzung-En Chiangen
dc.contributor.author蔣宗恩zh_TW
dc.date.accessioned2021-06-15T01:12:25Z-
dc.date.available2012-07-31
dc.date.copyright2009-07-31
dc.date.issued2009
dc.date.submitted2009-07-30
dc.identifier.citationAnderson, C. (2006). The long tail. New York :, Hyperion.

Anderson, R. D., J. L. Engledow, et al. (1979). 'Evaluating the relationships among attitude toward business, product satisfaction, experience, and search effort.' Journal of Marketing Research: 394-400.

Bikhchandani, S. (1998). 'Learning from the behavior of others: conformity, fads, and informational cascades.'

Brynjolfsson, E. (2006). 'From Niches to Riches: Anatomy of the Long Tail.' Sloan Management Review 47(4): 67.

Chevalier, J. and A. Goolsbee (2003). 'Measuring prices and price competition online: Amazon. com and BarnesandNoble. com.' Quantitative Marketing and Economics 1(2): 203-222.

Chiang, K. P. and R. R. Dholakia (2003). 'Factors driving consumer intention to shop online: an empirical investigation.' Journal of Consumer Psychology: 177-183.

Clemons, E. K. (2006). 'When Online Reviews Meet Hyperdifferentiation: A Study of the Craft Beer Industry.' Journal of Management Information Systems 23(2): 149.

Fleder, D. M. and K. Hosanagar (2008). 'Blockbuster Culture's Next Rise or Fall: The Impact of Recommender Systems on Sales Diversity.'

Frank, R. H., P. J. Cook, et al. (1995). The winner-take-all society, Free Press.

Goldberg, K., T. Roeder, et al. (2001). 'Eigentaste: A Constant Time Collaborative Filtering Algorithm.' Information Retrieval 4(2): 133-151.

Good, N., J. B. Schafer, et al. (1999). Combining Collaborative Filtering with Personal Agents for Better Recommendations, JOHN WILEY & SONS LTD.

Guadagni, P. M. and J. D. C. Little (1983). 'A logit model of brand choice calibrated on scanner data.' Marketing Science: 203-238.

Hendricks, K. and A. T. Sorensen (2006). 'Information spillovers in the market for recorded music.' NBER working paper.

Katona, G. a. E. M. (1955). 'A Study of Purchasing Decisions,.' in Consumer Behavior: The Dynamics of Consumer Reaction, L. H. Clark, ed. New York: New York University Press.

Komiak, S. Y. X. (2006). 'The Effects of Personalization and Familiarity on Trust and Adoption of Recommendation Agents.' Social Science News Bulletin 30(4): 941.

Liang, T. P. and J. S. Huang (1998). 'An empirical study on consumer acceptance of products in electronic markets: a transaction cost model.' Decision Support Systems 24(1): 29-43.

Linden, G. (2003). 'Amazon. com Recommendations: Item-to-Item Collaborative Filtering.' IEEE Internet Computing Magazine 7(1): 76.

Mattila, A. S. (2002). 'The use of narrative appeals in promoting restaurant experiences.' Journal of Hospitality & Tourism Research 26(4): 379.

McDonald, D. W. and M. S. Ackerman (2000). Expertise recommender: a flexible recommendation system and architecture, ACM Press New York, NY, USA.

Melville, P., R. J. Mooney, et al. (2001). Content-boosted collaborative filtering.

Rao, A. R. and K. B. Monroe (1988). 'The moderating effect of prior knowledge on cue utilization in product evaluations.' Journal of Consumer Research: 253-264.

Schafer, J. B., J. Konstan, et al. (1999). Recommender systems in e-commerce, ACM New York, NY, USA.

Schein, A. I., A. Popescul, et al. (2002). Methods and metrics for cold-start recommendations, ACM New York, NY, USA.

Sen, A. (1976). 'Poverty: An Ordinal Approach to Measurement.' Econometrica 44(2): 219.

Strehl, A., J. Ghosh, et al. (2000). Impact of similarity measures on web-page clustering.

Yalcinkaya, G., R. J. Calantone, et al. (2007). 'An examination of exploration and exploitation capabilities: implications for product innovation and market performance.' Journal of International Marketing 15(4): 63-93.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42346-
dc.description.abstract近年來網際網路上的商品數量與種類快速的增加,如何幫助消費者找到符合他們需求的商品變成網路賣家一個日漸重要的議題,而推薦系統似乎是一個可行的解決方式。而推薦系統對市場銷售造成的影響有兩派不同的說法,有學者認為推薦系統會造成熱門產品更加熱門,冷門產品趨於冷門。而另一派學者認為推薦系統會幫助消費者找到符合他們個人需求的商品,但這些商品並不一定是熱門商品,導致熱門商品的部分銷售會轉移至冷門商品上。我們發現市場上銷售集中程度的高低變化取決我們所採用的推薦策略,當推薦系統以推薦熱門商品為主,銷售集中程度上升,使的熱門商品更加熱賣。相反的,當推薦系統能夠依個人的選擇行為進行推薦,銷售集中程度下降,部分熱門商品的銷售轉移至冷門商品。而使用者個人的認知行為與對推薦系統的信任程度,並不會影響銷售集中程度改變的方向,但會影響變動的大小。因此,推薦系統有可能造成銷售集中程度的上升或下降,在考慮市場上銷售集中度的變化時,必須同時考量推薦策略、使用者的認知行為與對推薦系統的信任程度,才能夠準確的預測。zh_TW
dc.description.abstractIn recent years, it has seen an extraordinary increase in the number of products available on the Internet. Thus, it has become increasingly important to help consumers locate desirable products from Internet. Recommenders are useful tools to solve this problem. However, there are two different views about recommenders. Some researchers believe that with the help of recommendation systems, the concentration of sales on a small number of hits will decrease. On the contrary, contradicting views that believe recommendation systems make popular products become more popular and vice-versa for unpopular ones exist. Our results indicate change of sales concentration is depended on which recommendation strategies we adopt. Sales concentration will increase when recommenders incline to recommend popular products. On the contrary, sales concentration will decrease when recommenders promote products which fit consumers’ awareness behaviors. We also add consumer’s awareness behaviors and acceptance rate into discuss. We find these two factors only change the magnitude of the effects of recommenders to sales concentration but not the direction. According to these results, we can combine awareness behaviors, recommendation strategies and acceptance rate when we predict change of sales concentration.en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:12:25Z (GMT). No. of bitstreams: 1
ntu-98-R96725028-1.pdf: 771435 bytes, checksum: 119bb56510257083ddb3163798d6bf57 (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsContent 1
Table 2
Figure 3
1. INTRODUCTION 4
2. PRIOR WORK 8
2.1 Winner-Take-All and Long Tail Theory 8
2.2 Initial Product Selection 11
2.3 Recommendation Strategy 14
2.4 Decision Making 16
3. PROBLEM DEFINITION 18
3.1 Measure of Sales Concentration 18
4. MODEL DESIGN 20
4.1 Model Definition 20
4.2 Initial Product Selection 20
4.3 Recommendation Strategy 23
4.4 Decision Making 27
5. SIMULATIONS 29
5.1 Data Translation 29
5.1.1 Analysis User preference 29
5.1.2 Preference Function 32
5.1.3 Popularity Function 33
5.2 Initial Product Selection 34
5.3 Recommendation Strategy 38
5.4 Decision Making 39
6. RESULTS 40
6.1 Sample Path of No recommendation 41
6.2 Simulation Results 42
7. CONCLUSIONS 53
7.1 Contributions 55
7.2 Limitations 56
7.3 Future Research 57
8. REFERECE 58
APPENDIX A 61
dc.language.isoen
dc.subject協同式推薦zh_TW
dc.subject銷售集中zh_TW
dc.subject商業zh_TW
dc.subject贏家通吃zh_TW
dc.subject長尾理論zh_TW
dc.subject模擬zh_TW
dc.subject經濟zh_TW
dc.subject推薦系統zh_TW
dc.subjectrecommender systemsen
dc.subjectconcentrationen
dc.subjectlong tailen
dc.subjectsimulationen
dc.subjectwinner-take-allen
dc.subjectBusinessen
dc.subjecteconomicsen
dc.subjectelectronic commerceen
dc.subjectcollaborative filteringen
dc.title推薦系統對產品銷售集中性的影響zh_TW
dc.titleThe Effect of Recommendation Systems on Sales Concentrationen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.coadvisor莊裕澤(Yuh-Jzer Joung)
dc.contributor.oralexamcommittee蕭正平
dc.subject.keyword商業,經濟,推薦系統,協同式推薦,模擬,長尾理論,贏家通吃,銷售集中,zh_TW
dc.subject.keywordBusiness,economics,electronic commerce,recommender systems,collaborative filtering,winner-take-all,simulation,long tail,concentration,en
dc.relation.page61
dc.rights.note有償授權
dc.date.accepted2009-07-30
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  未授權公開取用
753.35 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved