Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42338
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王兆麟
dc.contributor.authorcheng-kun hsuen
dc.contributor.author徐正錕zh_TW
dc.date.accessioned2021-06-15T01:12:19Z-
dc.date.available2009-07-31
dc.date.copyright2009-07-31
dc.date.issued2009
dc.date.submitted2009-07-30
dc.identifier.citation1. http://www.vertebroplasty.com/.
2. Banerjee S, Baerlocher MO, Asch MR. Back stab: percutaneous vertebroplasty for severe back pain. Can Fam Physician 2007;53:1169-75.
3. Belkoff SM, Mathis JM, Jasper LE, et al. The biomechanics of vertebroplasty. The effect of cement volume on mechanical behavior. Spine 2001;26:1537-41.
4. Cappozzo A. Compressive loads in the lumbar vertebral column during normal level walking. J Orthop Res 1984;1:292-301.
5. Chiang CK, Wang YH, Yang CY, et al. Prophylactic vertebroplasty may reduce the risk of adjacent intact vertebra from fatigue injury: an ex vivo biomechanical study. Spine 2009;34:356-64.
6. Dimar JR, 2nd, Voor MJ, Zhang YM, et al. A human cadaver model for determination of pathologic fracture threshold resulting from tumorous destruction of the vertebral body. Spine 1998;23:1209-14.
7. Goldsmith AA, Dowson D, Wroblewski BM, et al. Comparative study of the activity of total hip arthroplasty patients and normal subjects. J Arthroplasty 2001;16:613-9.
8. Hitchon PW, Goel V, Drake J, et al. Comparison of the biomechanics of hydroxyapatite and polymethylmethacrylate vertebroplasty in a cadaveric spinal compression fracture model. J Neurosurg 2001;95:215-20.
9. Kayanja MM, Evans K, Milks R, et al. Adjacent level load transfer following vertebral augmentation in the cadaveric spine. Spine 2006;31:E790-7.
10. Kettler A, Schmoelz W, Shezifi Y, et al. Biomechanical performance of the new BeadEx implant in the treatment of osteoporotic vertebral body compression fractures: restoration and maintenance of height and stability. Clin Biomech (Bristol, Avon) 2006;21:676-82.
11. Kim MJ, Lindsey DP, Hannibal M, et al. Vertebroplasty versus kyphoplasty: biomechanical behavior under repetitive loading conditions. Spine 2006;31:2079-84.
12. Knavel EM, Rad AE, Thielen KR, et al. Clinical outcomes with hemivertebral filling during percutaneous vertebroplasty. AJNR Am J Neuroradiol 2009;30:496-9.
13. Laredo JD, Hamze B. Complications of percutaneous vertebroplasty and their prevention. Skeletal Radiol 2004;33:493-505.
14. Lin WC, Lee YC, Lee CH, et al. Refractures in cemented vertebrae after percutaneous vertebroplasty: a retrospective analysis. Eur Spine J 2008;17:592-9.
15. Mathis JM. Percutaneous vertebroplasty: complication avoidance and technique optimization. AJNR Am J Neuroradiol 2003;24:1697-706.
16. Mehbod A, Aunoble S, Le Huec JC. Vertebroplasty for osteoporotic spine fracture: prevention and treatment. Eur Spine J 2003;12 Suppl 2:S155-62.
17. Oakland RJ, Furtado NR, Wilcox RK, et al. Preliminary biomechanical evaluation of prophylactic vertebral reinforcement adjacent to vertebroplasty under cyclic loading. Spine J 2009;9:174-81.
18. Pflugmacher R, Kandziora F, Schroeder RJ, et al. Percutaneous balloon kyphoplasty in the treatment of pathological vertebral body fracture and deformity in multiple myeloma: a one-year follow-up. Acta Radiol 2006;47:369-76.
19. Tsai TT, Chen WJ, Lai PL, et al. Polymethylmethacrylate cement dislodgment following percutaneous vertebroplasty: a case report. Spine 2003;28:E457-60.
20. Wagner AL, Baskurt E. Refracture with cement extrusion following percutaneous vertebroplasty of a large interbody cleft. AJNR Am J Neuroradiol 2006;27:230-1.
21. Wilke HJ, Mehnert U, Claes LE, et al. Biomechanical evaluation of vertebroplasty and kyphoplasty with polymethyl methacrylate or calcium phosphate cement under cyclic loading. Spine 2006;31:2934-41.
22. Wilke HJ, Neef P, Caimi M, et al. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 1999;24:755-62.
23. Yang SC, Chen WJ, Yu SW, et al. Revision strategies for complications and failure of vertebroplasties. Eur Spine J 2008;17:982-8.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42338-
dc.description.abstract目的:本實驗目的是想藉由X光照攝和切片的方式觀察經骨水泥強固之椎骨在循環負載下形態的變化,以了解椎骨再破壞的產生原因與機制。
背景簡介:經皮椎骨整型手術( Vertebroplasty )是一種微創的脊椎手術,主要用於治療因骨質疏鬆症所導致的椎骨骨折,其併發症主要為骨水泥溢流及癒後鄰近椎骨破壞。但近年來發現,治療節椎骨再破壞(refracture)的病例越來越多。因此本研究希望了解椎骨再破壞的產生原因與機制,可作為預防與治療之理論基礎。
材料與方法: 使用4節胸椎為一組運動單元,將軟組織切除並在椎骨中埋下鋼珠及塗上鎢粉共10組(T5~T8,N=3;T9~T12,N=5 ;T8~T11,N=1; T4~T7,N=1 )。實驗首先模擬椎骨破壞,再使用經皮椎骨整型手術對其椎節做補強。骨水泥是以5ml的液體和6.5g的粉末的比例調配,另外在加上1.3g的鋇劑使骨水泥在X光下更清楚。固定注射3.5ml的骨水泥於受傷節椎骨。接著使試樣承受650牛頓、950牛頓和1150牛頓的循環負載,頻率5Hz,時間5小時。並在每一個小時對試樣照攝X光,利用鋼珠在X光下的顯影量測椎骨高度、神經腔寬度和椎間盤高度等參數。最後將破壞較嚴重的椎骨以每片3mm的厚度切片。
結果: 循環負載的力量和時間的增加會造成椎骨高度、神經腔寬度和椎間盤高度減少,並在12個小時的休息後會有回復的現象,尤其是在椎間盤高度和受傷節椎骨的神經腔寬度更為明顯。由X光片觀察得知,神經腔寬度變小主要是因為椎骨後側的變形侵入至神經腔。而經由線性迴歸分析發現,循環負載後神經腔寬度和椎骨後側高度、破壞時神經腔寬度皆呈現線性相關,但和骨質、前緣椎骨回復高度並無線性相關。切片觀察發現,椎骨後側的骨小樑呈現鬆散的現象,是造成後側強度減弱的主要原因。
結論:將骨水泥灌注在椎骨的前端,會使得椎骨後側強度因為沒有骨水泥補強而減弱。椎骨後側強度減弱使其無法承受循環負載導致椎骨後側變形和椎骨後側高度減少。當一個病人發生了椎骨破壞,發現其椎骨的後側有嚴重的變形現象,若只以VP手術做治療,會有較高的機率發生椎骨再破壞的現象。將骨水泥注射至椎骨前緣可能會造成椎骨後側強度相對降低,造成後側椎骨變形。
zh_TW
dc.description.abstractObjective: To explore the refracture mechanism of vertebroplasty.
Summary of Background Data: Vertebroplasty is a minimal invasive surgery for spinal compression fracture. The major complications of vertebroplasty are cement leakage and adjacent vertebral failure. In recent year, the incidence of augmented vertebral refracture increases. The mechanism of refracture is, however, not clear.
Materials and Methods: Ten fresh 4-level thoracic motion segments (T5~T8,N=3;T9~T12,N=5 ;T8~T11,N=1; T4~T7,N=1) from 6 human spines were used. A series of steel balls (D=1.4 mm) were glued to the canal for determining the canal width in the midsagittal plane. Four steel balls separately embedded into the anterior vertebra for measuring the height of anterior vertebra. Both ends of the specimen were mounted, leaving the center 2 vertebrae free. The lower level of free vertebra was artificially injured and than cement augmented. The injection volume of cement was 3.5 ml and the powder to monomer ratio of the cement was 1.3. All specimens were applied with 650 N, 950 N and 1150 N (mean) compressive fatigue loading. The loading frequency was 5 Hz and the loading period was 5 hours in each loading magnitude. The lateral radiographs were taken in each hour. In the end of the experiment, the failure specimens were cut along the sagittal plane.
Results: The vertebral height, spinal canal width and disc height decreased following fatigue loading, and can be partially recovered during 12 hr rest. The vertebral posterior cortex extrusion causes loss of the spinal canal width. The spinal canal width after injury and posterior vertebral height were positively related to the spinal canal width after fatigue, but the bone mineral density and the anterior vertebral height restoration were not correlated to the spinal canal. The dissected specimens showed that the weak posterior bony structure was extruded into spinal canal due to the fatigue loading.
Conclusion: The fracture of pre-existed vertebral posterior cortex increases the risk of subsequent fracture post vertebroplasty. The refracture mechanism cannot be correlated with the BMD and the anterior vertebral height restoration in this study.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T01:12:19Z (GMT). No. of bitstreams: 1
ntu-98-R96548038-1.pdf: 5343724 bytes, checksum: 9f7edae3ea0b735b2183d861851475dd (MD5)
Previous issue date: 2009
en
dc.description.tableofcontents目錄
中文摘要 i
第一章 序論 1
1-1 脊椎的基本構造 1
1-2 骨質疏鬆症 3
1-3 經皮椎骨整型手術 3
1-4 治療椎骨再破壞 6
1-5 實驗目的 9
第二章 實驗材料與測試方法 10
2-1 試樣準備 10
2-2 連續式衝擊測試平台(CITA) 11
2-3 X-ray 13
2-3-1 夾具 13
2-3-2 暗室 13
2-3-3 X光機 15
2-3-4 洗片 15
2-4 鑽石切割機 16
2-5 實驗流程 16
2-5-1 循環負載 16
2-5-2 試樣切片 18
2-6 量測參數 19
第三章 結果 20
3-1 X光片 20
3-2 椎骨高度 21
3-2-1 VB1椎骨高度 21
3-2-1-1 VB1椎骨前緣高度 21
3-2-1-2 VB1椎骨後緣高度 23
3-2-2 VB2椎骨高度 24
3-2-2-1 VB2椎骨前緣高度 24
3-2-2-2 VB2椎骨後緣高度 26
3-2-3 椎骨高度比較 28
3-3 神經腔寬度 28
3-3-1 VB1神經腔寬度 28
3-3-2 VB2神經腔寬度 30
3-3-3神經腔寬度比較 32
3-4 椎間盤高度 33
3-5 椎骨回復 36
3-6 Canalinvasion V.S. Canal fa 37
3-7 AVHrestoration V.S. Canal fa 38
3-8 BMD V.S. Canal fa 39
3-9 Posterior Height loss-VB2 V.S. Canalfa 40
3-10 切片 41
第四章 討論 42
4-1 椎骨的破壞模式 42
4-2 循環負載 43
4-3 椎骨高度 44
4-4 椎骨再破壞 44
4-5 實驗限制 45
第五章 結論 46
參考文獻 47
圖目錄
圖1- 1 脊椎結構圖 1
圖1- 2 單節椎骨構造 2
圖1- 3 注射骨水泥流程圖 4
圖1- 4 注射骨水泥示意圖 4
圖1- 5 骨水泥 5
圖1- 6 椎骨再破壞 7
圖1- 7 椎骨前側突出 8
圖1- 8 椎骨再破壞 9
圖2- 1 試樣準備 10
圖2- 2 試樣示意圖 10
圖2- 3連續式衝擊測試平台 11
圖2- 4 650牛頓負載情況 12
圖2- 5 轉速控制器 12
圖2- 6 夾具組示意圖 13
圖2- 7 夾具組實際圖 13
圖2- 8 暗室 14
圖2- 9 X光照攝 15
圖2- 10 X光機 15
圖2- 11 鑽石切片機 16
圖2- 12 循環負載實驗流程 17
圖2- 13 切片流程 18
圖2- 14 椎骨示意圖 19
圖2- 15 椎骨X光片 19
圖3- 1 X光片 20
圖3- 2 VB1椎骨前緣高度(1) 21
圖3- 3 VB1椎骨前緣高度(2) 22
圖3- 4 VB1椎骨前緣高度(3) 22
圖3- 5 VB1椎骨後緣高度(1) 23
圖3- 6 VB1椎骨後緣高度(2) 23
圖3- 7 VB1椎骨後緣高度(3) 24
圖3- 8 VB2椎骨前緣高度(1) 25
圖3- 9 VB2椎骨前緣高度(2) 25
圖3- 10 VB2椎骨前緣高度(3) 26
圖3- 11 VB2椎骨後緣高度(1) 26
圖3- 12 VB2椎骨後緣高度(2) 27
圖3- 13 VB2椎骨後緣高度(3) 27
圖3- 14 椎骨高度比較 28
圖3- 15 VB1神經腔寬度(1) 29
圖3- 16 VB1神經腔寬度(2) 29
圖3- 17 VB1神經腔寬度(3) 30
圖3- 18 VB2神經腔寬度(1) 31
圖3- 19 VB2神經腔寬度(2) 31
圖3- 20 VB2神經腔寬度(3) 32
圖3- 21 神經腔寬度比較 32
圖3- 22 椎間盤高度(1) 33
圖3- 23 椎間盤高度(2) 34
圖3- 24 椎間盤高度(3) 34
圖3- 25 椎間盤高度比較 35
圖3- 26 AVH restoration 36
圖3- 27 Canalinvasion V.S. Canal fa 37
圖3- 28 AVHrestoration V.S. Canal fa 38
圖3- 29 BMD VS Canal fa 39
圖3- 30 Posterior Height loss-VB2 VS Canalfa 40
圖3- 31 CA07061620(T5~T8) 切片 41
圖3- 32 CA07061620(T9~T12) 切片 41









表目錄
表2- 1 X光機規格 14
表3- 1 BMD 39
dc.language.isozh-TW
dc.title疲勞負載對脊骨整形手術後之脊椎形態學影響zh_TW
dc.titleSpinal Morphology of Vertebroplasty during Fatigue Loadingen
dc.typeThesis
dc.date.schoolyear97-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳文斌,林晉
dc.subject.keyword壓迫性骨折、經皮椎骨整形手術、骨水泥、椎骨再破壞,zh_TW
dc.subject.keywordcompression fracture、vertebroplasty、bone cement、refracture,en
dc.relation.page48
dc.rights.note有償授權
dc.date.accepted2009-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf
  目前未授權公開取用
5.22 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved