Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42293
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曹承礎(Chou Seng-Cho)
dc.contributor.authorYu-chi Wangen
dc.contributor.author王宇頎zh_TW
dc.date.accessioned2021-06-15T00:58:08Z-
dc.date.available2009-08-08
dc.date.copyright2008-08-08
dc.date.issued2008
dc.date.submitted2008-08-02
dc.identifier.citation[1] T. N. Masataka Goto, Hiroki Hashiguchi, Ryuichi Oka, 'RWC Music Database: Music Genre Database and Musical Instrument Sound Database,' in Proceedings of the 4th International Conference on Music Information Retrieval Baltimore, Maryland, 2003, pp. 229-230.
[2] J. A. S. Patrik N. Juslin, Music and emotion: theory and research. Oxford, New York: Oxford University Press, 2001.
[3] T. Jehan, 'Creating Music by Listening.' vol. PhD thesis: Massachusetts Institute of Technology, 2005.
[4] B. A. Whitman, 'Learning the Meaning of Music.' vol. PhD thesis: Massachusetts Institute of Technology, 2005.
[5] O. Meyers., 'Mysoundtrack: A commonsense playlist generator,,' in http://web.media.mit.edu/~meyers/mysoundtrack.pdf, 2005.
[6] P. Dourish, 'What we talk about when we talk about context,' Personal and Ubiquitous Computing, vol. 8, pp. 19-30, 2004.
[7] A. Dey Anind K., Gregory D. and Salber, Daniel, 'A Conceptual Framework and a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications,' Human-Computer Interaction, vol. 16, pp. 97-166, 2001.
[8] A. K. Dey, 'Understanding and Using Context,' Personal and Ubiquitous Computing, vol. 5, pp. 4-7, 2001.
[9] C. K. Eric Horvitz, Tim Paek,David Hovel 'Models of attention in computing and communication: from principles to applications,' Communications of the ACM, vol. 46, pp. 52-59, 2003.
[10] C.-W. S. Jong-Hun Kim, Kee-Wook Lim,Jung-Hyun Lee, Design of Music Recommendation System Using Context Information vol. 4088: Springer Berlin / Heidelberg, 2006.
[11] J.-O. Y. Han-Saem Park, Sung-Bae Cho, A Context-Aware Music Recommendation System Using Fuzzy Bayesian Networks with Utility Theory vol. 4223: Springer Berlin / Heidelberg, 2006.
[12] M. K. Panu Korpipää, Johannes Peltola, Satu-Marja Mäkelä, Tapio Seppänen, 'Bayesian approach to sensor-based context awareness,' Personal and Ubiquitous Computing, vol. 4, pp. 113-124, 2004.
[13] L. Gong, 'Can web-based recommendation systems afford deep models: a context-based approach for efficient model-based reasoning,' in Proceedings of the 13th international World Wide Web conference on Alternate track papers & posters New York, NY, USA, 2004, pp. 89-93.
[14] M. P. P Floreen, P Nurmi, J Koolwaaij, A Tarlano, Mattias Wagner, M Lther, F Bataille, M Boussard, B Mrohs, S Lau, 'Towards a Context Management Framework for MobiLife,' in 14 th IST Mobile and Wireless Commnication Summit (MOWICOM'05) Dresden, Germany, 2005.
[15] M. L. Takefumi Naganuma, Matthias Wagner, Atsuki Tomioka, Kunihiro Fujii, Yusuke Fukazawa,Shoji Kurakake, Task-Oriented Mobile Service Recommendation Enhanced by a Situational Reasoning Engine vol. 4185: Springer Berlin / Heidelberg, 2006.
[16] A. M. K. Paul R. Kleinginna Jr, 'A categorized list of emotion definitions, with suggestions for a consensual definition,' Motivation and Emotion, vol. 5, pp. 345-379, 2005.
[17] B. F. a. J. A. Russell, 'Concept of emotion viewed from a prototype perspective,' Journal of Experimental Psychology: General, vol. 113, pp. 464-486, 1984.
[18] P. Ekman, 'An argument for basic emotions,' Cognition & Emotion, vol. 6, pp. 169-200, 1992.
[19] R. E. Thayer, The origin of everyday moods: managing energy, tension, and stres. New York: Oxford University Press, 1996.
[20] K. Hevner., 'Experimental studies of the elements of expression in music,' American Journal of Psychology, vol. 48, pp. 246-248, 1926.
[21] J. A. Russell, 'A circumplex model of affect,' Journal of Personality and Social Psychology, vol. 39, pp. 1161-1178, 1980.
[22] A. Mehrabian, 'Pleasure-arousal-dominance: A general framework for describing and measuring individual,' Current Psychology, vol. 14, pp. 261-292, 1996.
[23] E. E. Thayer, The Biopsychology of Mood and Arousal: Oxford University Press, 1989.
[24] W. S. N. Reilly, 'Believable Social and Emotion Agents.' vol. PhD: Dissertation, 1996.
[25] S.-S. T. Chan-Chang Yeh, Pei-Chin Tsai,Jui-Feng Weng, Building a Personalized Music Emotion Prediction System: Springer Berlin / Heidelberg, 2006.
[26] K. Hevner, 'The affective value of pitch and tempo in music,' The American Journal of Psychology, vol. 49, pp. 621-630, 1937.
[27] M. G. Rigg, 'The mood effects of music: A comparison of data from four investigators,' The Journal of Psychology, vol. 58, pp. 427-438, 1964.
[28] P. R. Farnsworth, The social psychology of music, 2e. Ames, Iowa: Iowa State University Press, 1969.
[29] Gediminas Adomaviciu, Alexander Tuzhilin,, 'Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions ' IEEE Transactions On Knowledge and Data Engineering, vol. 17, 2005.
[30] L. U. A Popescul, DM Pennock, S Lawrence, 'Probabilistic models for unified collaborative and content-based recommendation in sparse-data,' in 17th Conference on Uncertainty in Artificial Intelligence, 2001.
[31] B. Marko and S. Yoav, 'Fab: content-based, collaborative recommendation,' Commun. ACM, vol. 40, pp. 66-72, 1997.
[32] A. K. Joseph, N. M. Bradley, M. David, L. H. Jonathan, R. G. Lee, and R. John, 'GroupLens: applying collaborative filtering to Usenet news,' Commun. ACM, vol. 40, pp. 77-87, 1997.
[33] P. Bonhard, Harries, C., McCarthy, J., and Sasse, M. A, 'Empirical Analysis of Predictive Algorithms for Collaborative Filtering,' in Proceedings of the SIGCHI conference on Human Factors in computing systems,, 2006, pp. 1057-1166.
[34] S. Badrul, K. George, K. Joseph, and R. John, 'Item-based collaborative filtering recommendation algorithms,' in Proceedings of the 10th international conference on World Wide Web Hong Kong, Hong Kong: ACM, 2001.
[35] M. Minsky, The Society Of Mind. New York: Simon and Schuster, 1986.
[36] D. B. Lenat, 'CYC: a large-scale investment in knowledge infrastructure,' Communications of the ACM, vol. 38, pp. 33-38, 1995.
[37] T. L. Push Singh, Erik T. Mueller, Grace Lim, Travell Perkins, Wan Li Zhu, Open Mind Common Sense: Knowledge Acquisition from the General Public vol. 2519. Berlin / Heidelberg: Springer, 2002.
[38] H. L. a. P. Singh, 'ConceptNet — A Practical Commonsense Reasoning Took-Kit,' BT Technology Journal, vol. 22, 1995.
[39] G. A. Miller, 'WordNet: a lexical database for English,' Communications of the ACM, vol. 38, pp. 39-41, 1995.
[40] H. L. H. Liu, and T. Selker., 'A model of textual affect sensing using realworld knowledge,' in Proceedings of the 8th International Conference on Intelligent User Interfaces Miami, USA: ACM Press, 2003, pp. 125-132.
[41] S. Liu H, P, 'ConceptNet: A Practical Commonsense Reasoning Toolkit,' BT Technology Journal, vol. 22, 2004.
[42] D. C. M Cafarella, 'Building Nutch: Open Source Search,' Queue, vol. 2, pp. 54-61, 2004.
[43] P. S. Hugo Liu, 'Commonsense Reasoning in and over Natural Language,' in Proceedings of the 8th International Conference on Knowledge-Based Intelligent Information & Engineering Systems, 2004.
[44] O. C. Meyers, 'A Mood-Based Music Classification and Exploration System,' in Media Arts and Sciences. vol. Master of Science: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, 2007.
[45] P. Cariani, HST.725 Music Perception and Cognition, Spring 2007.
[46] T. Jehan, 'Creating Music by Listening.' vol. PhD: Massachusetts Institute of Technology, 2005.
[47] A. A. a. G. Haus, 'Automatic playlist generation based on tracking user's listening habits,' Multimedia Tools and Applications, vol. 29, pp. 127-151, 2006.
[48] R. Burke, 'Hybrid Recommender Systems: Survey and Experiments,' User Modeling and User-Adapted Interaction, vol. 12, pp. 331-370, 2002.
[49] U. Shardanand and M. Pattie, 'Social information filtering: algorithms for automating 'word of mouth',' in Proceedings of the SIGCHI conference on Human factors in computing systems Denver, Colorado, United States: ACM Press/Addison-Wesley Publishing Co., 1995.
[50] P. L. Oscar Celma, 'TUTORIAL ON MUSIC RECOMMENDATION,' in International Conference on Music Information Retrieval (ISMIR), 2007.
[51] M. H. Andreas Geyer-Schulz, 'Evaluation of Recommender Algorithms for an Internet Information Broker based on Simple Association Rules and on the Repeat-Buying Theory,' in Proceedings of the Workshop on Web Usage Analysis and User Profiling (WEBKDD), 2002, pp. 100-114.
[52] J. Herlocker, Konstan, J., Terveen, L., and Riedl, J., 'Evaluating Collaborative Filtering Recommender Systems,' ACM Transactions on Information Systems, vol. 22, pp. 5-53, 2004.
[53] A. Massa, 'Trust-aware recommender systems,' in Proceedings of the ACM conference on Recommender systems, 2007, pp. 17-24.
[54] C. v. Rijsbergen, Information retrieval. London: Butterworth, 1979.
[55] S. Gerard and J. M. Michael, Introduction to Modern Information Retrieval: McGraw-Hill, Inc., 1986.
[56] F. G. Michael Buckland 'The relationship between Recall and Precision,' Journal of the American Society for Information Science, vol. 45, pp. 12-19, 1999.
[57] D. Jesse and G. Mark, 'The relationship between Precision-Recall and ROC curves,' in Proceedings of the 23rd international conference on Machine learning Pittsburgh, Pennsylvania: ACM, 2006.
[58] R. Paul, I. Neophytos, S. Mitesh, B. Peter, and R. John, 'GroupLens: an open architecture for collaborative filtering of netnews,' in Proceedings of the 1994 ACM conference on Computer supported cooperative work Chapel Hill, North Carolina, United States: ACM, 1994.
[59] J. a. K. Han, M, Data Mining: Concepts and Techniques: Morgan Kaufmann, 2006.
[60] E. F. Ian H. Witten, Data Mining: Practical Machine Learning Tools and Techniques, 2e: Morgan Kaufmann, 2005.
[61] C. Wei and V. Barry, 'Music thumbnailing via structural analysis,' in Proceedings of the eleventh ACM international conference on Multimedia Berkeley, CA, USA: ACM, 2003.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42293-
dc.description.abstract隨著網際網路的發展以及音樂創作的普及,音樂推薦系統成為主要發展中的應用服務之一,嘗試提供符合使用者需求或心情的音樂。為了達成這個目標,傳統的推薦技術被廣泛的使用在這個領域,大部分現有的音樂推薦系統專注在探索使用者偏好、META-DATA、聆聽紀錄、以及音樂的內容來產生可能讓使用者滿意的個人化音樂推薦功能。
然而,聆聽紀錄是一種主題式的心理認知經驗,這種經驗會在特殊的時間點與個人意向高度相關,因此,情境因素諸如時間、地點、氣候、與溫度等常被納入推薦系統中來增加推薦結果的精確性;心理因素是另一個影響使用者對推薦結果滿意度的重要因素。
有鑑於此,本研究結合音樂聆聽者的情感因素與情境資訊,先依據Kate Hevner的情緒循環模型、ConceptNet的語意網、以及音樂學原理,計算在使用者、情緒、與情境等因素間的相似度,做為共通性的音樂基礎;再依照使用者的音樂偏好、聆聽音樂時的行為、以及使用者回報的資訊,透過以使用者為基礎的協同過濾演算法,找出不同使用者對音樂的個人差異,來建構一更為符合使用者情境與情緒因素的音樂推薦系統。
zh_TW
dc.description.abstractMusic recommendation systems are emerging applications that attempt to provide music to suit users’ needs or moods. To achieve this goal, traditional recommendation techniques are widely used in this field. Most of the music recommendation system exploits user interest, metadata, listening history, and audio signals of music to generate a personalized function that can predict songs the user may like.
However, listening experience is a type of subjective cognitive experience that is highly dependent on the individual’s intention at a particular time. Thus, contexts such as time, location, weather, and temperature have been added to systems to improve their accuracy. Psychological influences represent another important aspect that determines the user’s satisfaction with the recommended results.
In the proposed approach, listeners’ emotional information is used in conjunction with context information. We first gather the explicit similarity between human, emotion, context, and music based on Kate Hevner’s Adjective Cycle, the semantic network of ConceptNet, and musicology as the common fundamental. Then, we adjust the individual differences according to the user’s musical taste, listening behavior, and feedback through user-based collaborative filtering in order to generate a more individual intentional music recommendation system.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:58:08Z (GMT). No. of bitstreams: 1
ntu-97-R95725024-1.pdf: 3093401 bytes, checksum: 228c86e9f673d621c76dd6044dcff395 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsTHESIS ABSTRACT I
LIST OF CONTENTS V
LIST OF FIGURES VII
LIST OF TABLES IX
1 INTRODUCTION 1
1.1 MOTIVATION 1
1.1.1 Finding suitable music 1
1.1.2 Context-aware Influences 2
1.1.3 Individual Intentions 2
1.1.4 Music Recommendations 3
1.2 CONTRIBUTION & APPROACH 4
1.3 THESIS STRUCTURE 5
2 RELATED WORK 7
2.1 MUSIC RECOMMENDATION SYSTEM 7
2.1.1 Hybrid of Content and Metadata 7
2.1.2 Social Music Networking 9
2.1.3 Emotional Playlist 11
2.2 CONTEXT-AWARE COMPUTING 11
2.2.1 Definition of Context-aware 12
2.2.2 Context Factors 12
2.2.3 Context-aware Models 13
2.3 EMOTIONS AND MUSIC 14
2.3.1 Definition of Emotions 15
2.3.2 Emotional Models 15
2.3.3 Relationship between Music and Emotion 18
2.4 RECOMMENDATION ALGORITHMS 20
2.4.1 Content-based Filtering 20
2.4.2 User-based Collaborative Filtering 21
2.4.3 Item-based Collaborative Filtering 22
2.4.4 Model-based Collaborative Filtering 22
2.4.5 Hybrid Method 23
2.5 COMMONSENSE REASONING 23
2.5.1 Cyc 24
2.5.2 Open Mind Common Sense 24
2.5.3 ConceptNet 25
2.5.4 WordNet 26
3 SYSTEM DESIGN 27
3.1 SYSTEM CONCEPT 27
3.2 DESIGN GOAL 28
3.3 OUR APPROACH 29
3.4 SYSTEM ARCHITECTURE 31
3.4.1 User Interface Module 32
3.4.2 Query Analyze Module 33
3.4.3 Context Module 34
3.4.4 Emotion Module 36
3.4.5 Song Info Module 38
3.4.6 User Profile Module 39
3.4.7 Recommendation Module 39
4 EXPERIMENT AND ANALYSIS 45
4.1 EXPERIMENT ENVIRONMENT 45
4.2 EXPERIMENT PROCESS 45
4.2.1 Data Collection and Processing 47
4.2.2 Online Experiment 47
4.2.3 Experiment Evaluation 49
4.3 EXPERIMENT RESULT 54
4.3.1 Music Source 54
4.3.2 Statistic of User Profile 55
4.3.3 Collected Context Data 56
4.3.4 Rating Result 58
4.4 SYSTEM EVALUATION 60
4.4.1 Recommendation Accuracy 60
4.4.2 User Satisfaction 63
4.4.3 Comparison with Last.FM 66
5 CONCLUSION 69
5.1 CONTRIBUTION 69
5.2 LIMITATIONS 70
5.2.1 The Limitation of Recommendation 71
5.2.2 Limited Data with Fixed Factors 71
5.3 FUTURE WORK 71
6 BIBLIOGRAPHY 73
dc.language.isoen
dc.subject情境zh_TW
dc.subject推薦系統zh_TW
dc.subject情緒zh_TW
dc.subject協同過濾zh_TW
dc.subject音樂zh_TW
dc.subjectemotionen
dc.subjectmusicen
dc.subjectcollaborative filteringen
dc.subjectcontexten
dc.subjectrecommender systemen
dc.title以情緒為基礎之情境式音樂推薦系統zh_TW
dc.titleA Context-Aware Music Recommendation System Based On Emotionen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳玲玲(Ling-Ling Wu),許瑋元(Carol Hsu)
dc.subject.keyword推薦系統,情緒,協同過濾,音樂,情境,zh_TW
dc.subject.keywordrecommender system,emotion,context,collaborative filtering,music,en
dc.relation.page77
dc.rights.note有償授權
dc.date.accepted2008-08-04
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理學研究所zh_TW
顯示於系所單位:資訊管理學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
3.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved