Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42285
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡詩偉(Shih-Wei Tsai)
dc.contributor.authorWan-Chen Leeen
dc.contributor.author李婉甄zh_TW
dc.date.accessioned2021-06-15T00:57:38Z-
dc.date.available2013-09-11
dc.date.copyright2008-09-11
dc.date.issued2008
dc.date.submitted2008-08-04
dc.identifier.citation1. Klepeis, N.E., W.C. Nelson, W.R.Ott, et al., The National Human Activity Pattern Survey (NHAPS): Data collection methodology and selected results. Ernest Orlando Lawrence Berkeley National Labratory, Berkeley, USA, 1999: p. 1-41.
2. Pierson, W.E. and J.Q. Koenig, Respiratory effects of air-pollution on allergic disease. Journal of Allergy and Clinical Immunology, 1992. 90(4): p. 557-566.
3. Samet, J.M., M.C. Marbury, and J.D. Spengler, Health-effects and sources of indoor air-pollution .1. American Review of Respiratory Disease, 1987. 136(6): p. 1486-1508.
4. Ebbehoj, N.E., M.O. Hansen, T. Sigsgaard, et al., Building-related symptoms and molds: a two-step intervention study. Indoor Air, 2002. 12(4): p. 273-277.
5. Jovanovic, S., I. Piechotowski, T. Gabrio, et al., Estimation of mould levels in households in South-West Germany. Gesundheitswesen, 2001. 63(6): p. 404-411.
6. Stadler, J.C. and G.L. Kennedy, Evaluation of the sensory irritation potential of volatile organic chemicals from carpets - Alone and in combination. Food and Chemical Toxicology, 1996. 34(11-12): p. 1125-1130.
7. Schleibinger, H., D. Laussmann, C. Brattig, et al., Emission patterns and emission rates of MVOC and the possibility for predicting hidden mold damage? Indoor Air, 2005. 15: p. 98-104.
8. Wessen, B. and K.O. Schoeps, Microbial volatile organic compounds - What substances can be found in sick buildings? Analyst, 1996. 121(9): p. 1203-1205.
9. Heekmann, S., Non-enantioselective and Enantioselective Determination of microbial volatile organic compounds as tracer for human exposure to mould growth in buildings. 2006, University of Basel: Basel, Swtizerland.
10. Rogers, C.A., Indoor fungal exposure. Immunology and Allergy Clinics of North America, 2003. 23(3): p. 501-518.
11. Doll, S.C., Determination of limiting conditions for fungal growth in the built environment, in Environmental Health. 2002, Harvard School of Public Health: Boston.
12. Shelton, B.G., K.H. Kirkland, W.D. Flanders, et al., Profiles of airborne fungi in buildings and outdoor environments in the United States. Applied and Environmental Microbiology, 2002. 68(4): p. 1743-1753.
13. Agarwal, M.K., R.T. Jones, and J.W. Yunginger, Shared allergenic and antigenic determinants in alternaria and stemphylium extracts. Journal of Allergy and Clinical Immunology, 1982. 70(6): p. 437-444.
14. Gravesen, S. and L. Nyholm, Common major allergen in Alternaria and Ulocladium. Folia Allergologia et Immunologica Clinica, 1983. 30(suppl 4): p. 128.
15. Institute of Medicine, Damp indoor spaces and health. 2004, Washington, DC: National Academic Press.
16. Ohollaren, M.T., J.W. Yunginger, K.P Offord, et al., Exposure to an aeroallergen as a possible precipitating factor in respiratory arrest in young-patients with asthma. New England Journal of Medicine, 1991. 324(6): p. 359-363.
17. Mudarri, D. and W.J. Fisk, Public health and economic impact of dampness and mold. Indoor Air, 2007. 17(3): p. 226-235.
18. Amman, H.M., Microbial volatile organic compounds. Bioaerosols: Assessment and Control. Cincinnati: American Conference of Governmental Industrial Hygienists, 1999. 26: p. 1
19. Pasanen, A.L., S. Lappalainen, and P. Pasanen, Volatile organic metabolites associated with some toxic fungi and their mycotoxins. Analyst, 1996. 121(12): p. 1949-1953.
20. Bjurman, J., Release of MVOCs from microorganisms. Organic Indoor Air Pollutants - Occurence, Measurement, Evaluation., ed. T. Salthammer. 1999.
21. Elke, K., J. Begerow, H. Oppermann, et al., Determination of selected microbial volatile organic compounds by diffusive sampling and dual-column capillary GC-FID - a new feasible approach for the detection of an exposure to indoor mould fungi? Journal of Environmental Monitoring, 1999. 1(5): p. 445-452.
22. Gao, P.F., F. Korley, J. Martin, et al., Determination of unique microbial volatile organic compounds produced by five Aspergillus species commonly found in problem buildings. American Industrial Hygiene Association Journal, 2002. 63(2): p. 135-140.
23. Pasanen, A.L., A. Korpi, J.P.Kasanen, et al., Critical aspects on the significance of microbial volatile metabolites as indoor air pollutants. Environment International, 1998. 24(7): p. 703-712.
24. Hussein, H.S. and J.M. Brasel, Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology, 2001. 167(2): p. 101-134.
25. Kuske, M., A.C. Romain, and J. Nicolas, Microbial volatile organic compounds as indicators of fungi. Can an electronic nose detect fungi in indoor environments? Building and Environment, 2005. 40(6): p. 824-831.
26. Fischer, G., R. Schwalbe, M. Moller, et al., Species-specific production of microbial volatile organic compounds (MVOC) by airborne fungi from a compost facility. Chemosphere, 1999. 39(5): p. 795-810.
27. Kreja, L. and H.J. Seidel, On the cytotoxicity of some microbial volatile organic compounds as studied in the human lung cell line A549. Chemosphere, 2002. 49(1): p. 105-110.
28. Wady, L. and L. Larsson, Determination of microbial volatile organic compounds adsorbed on house dust particles and gypsum board using SPME/GC-MS. Indoor Air, 2005. 15: p. 27-32.
29. Kuo, Y.M. and C.S. Li, Seasonal fungus prevalence inside and outside of domestic environments in the subtropical climate. Atmospheric Environment, 1994. 28(19): p. 3125-3130.
30. Ji, B.F. and H.J. Su, Fungal growth on building materials., in Department of Environmental and Occupational Health Medical College. 2003, National Cheng Keng University.
31. Su, H.J., P.C. Wu, H.L. Chen, et al., Exposure assessment of indoor allergens, endotoxin, and airborne fungi for homes in southern Taiwan. Environmental Research, 2001. 85(2): p. 135-144.
32. Su, H.J., P.C. Wu, and C.Y. Lin, Fungal exposure of children at homes and schools: A health perspective. Archives of Environmental Health, 2001. 56(2): p. 144-149.
33. Pasanen, A.L., A review: Fungal exposure assessment in indoor environments. Indoor Air, 2001. 11(2): p. 87-98.
34. Fiedler, K., E. Schutz, and S. Geh, Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials. International Journal of Hygiene and Environmental Health, 2001. 204(2-3): p. 111-121.
35. Wilkins, K., K. Larsen, and M. Simkus, Volatile metabolites from mold growth on building materials and synthetic media. Chemosphere, 2000. 41(3): p. 437-446.
36. US EPA Office of Air and Radiation, U., Mold remediation in schools and commercial buildings. 2001, Washington DC: Environmental Protection Agency.
37. Sudakin, D.L., Toxigenic fungi in a water-damaged building: An intervention study. American Journal of Industrial Medicine, 1998. 34(2): p. 183-190.
38. Cooley, J.D., W.C. Wong, C.A. Jumper, et al., Correlation between the prevalence of certain fungi and sick building syndrome. Occupational and Environmental Medicine, 1998. 55(9): p. 579-584.
39. Dales, R.E., H. Zwanenburg, R. Burnett, et al., Respiratory health-effects of home dampness and molds among canadian children. American Journal of Epidemiology, 1991. 134(2): p. 196-203.
40. Crook, B., Inertial samplers: biological perspectives. Bioaerosol Handbook. 1995, Boca Raton: Lewis Publishers.
41. Dillon, H.K., P.A. Heinsohm, and J.D. Miller, Field guide for the detemination of biological contaminants in environmental Samples. Fairfox, American Idustrial Hygiene Association, 1996.
42. Flannigan, B., Air sampling for fungi in indoor environments. Journal of Aerosol Science, 1997. 28(3): p. 381-392.
43. Strom, G., J. West, B. Wessen, et al., Health implications of fungi in indoor environments: quantitative analysis of microbial volatiles in damp Swedish houses. Air Quality Monographs, 1994. 2: p. 291-305.
44. Ahearn, D.G., S.A. Crow, R.B. Simmons, et al., Fungal colonization of air filters and insulation in a multi-story office building: Production of volatile organics. Current Microbiology, 1997. 35(5): p. 305-308.
45. American Industrial Hygiene Association, A., field guide for the determination of biological contaminants. AIHA Field Guide for Determination of Biological Contaminants, 2006: p. 161-171.
46. Sunesson, A.L., C.A. Nilsson, and B. Andersson, Evaluation of adsorbents for Sampling and quantitative-analysis of microbial volatiles using thermal desorption-gas chromatography. Journal of Chromatography A, 1995. 699(1-2): p. 203-214.
47. Arthur, C.L., Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical Chemistry, 1990. 62(19): P.2145-2148
48. Pawliszyn, J., Applications of solid-phase microextraction. RSC: Cornwall, U.K., 1999.
49. Alpendurada, M.F., Solid-phase microextraction: a promising technique for sample preparation in environmental analysis. Journal of Chromatography, 2000. A. 889(1-2): p. 3-14.
50. Koziel, J., M.Y. Jia, A. Khaled, et al., Field air analysis with SPME device. Analytica Chimica Acta, 1999. 400: p. 153-162.
51. Eisert, R. and K. Levsen, Development of a prototype system for quasi-continuous analysis of organic contaminants in surface or sewage water based on in-line coupling of solid-phase microextraction to gas chromatography. Journal of Chromatography A, 1996. 737(1): p. 59-65.
52. Lao, R.C., R.S. Thomas, and J.L. Monkman, Computerized gas chromatographic-mass spectrometric analysis of polycyclic aromatic-hydrocarbons in environmental samples. Journal of Chromatography, 1975. 112(Oct29): p. 681-700.
53. Barcelo, D., Environmental-protection-agency and other methods for the determination of priority pesticides and their transformation products in water. Journal of Chromatography, 1993. 643(1-2): p. 117-143.
54. Jentoft, R.E. and T.H. Gouw, Analysis of polynuclear aromatic hydrocarbons in automobile exhaust by supercritical fluid chromatography. Analytical Chemistry, 1976. 48(14): p. 2195-200.
55. Augusto, F., J. Koziel, and J. Pawliszyn, Design and validation of portable SPME devices for rapid field air sampling and diffusion based calibration. Analytical Chemistry, 2001. 73(3): p. 481-486.
56. Scheppers-Wiercinski, S.A., Solid-phase microextraction: A practical guide. Marcel Dekker: New York, 1999.
57. Chai, M. and J. Pawliszyn, Analysis of environmental air samples by solid-phase microextraction and gas-chromatography ion-trap mass-spectrometry. Environmental Science & Technology, 1995. 29(3): p. 693-701.
58. Eisert, R., J. Pawliszyn, G. Barinshteyn, et al., Design of an automated analysis system for the determination of organic compounds in continuous air stream using solid-phase microextraction. Analytical Communications, 1998. 35(6): p. 187-189.
59. Grote, C. and J. Pawliszyn, Solid-phase microextraction for the analysis of human breath. Analytical Chemistry, 1997. 69(4): p. 587-596.
60. Martos, P.A. and J. Pawliszyn, Calibration of solid phase microextraction for air analyses based on physical chemical properties of the coating. Analytical Chemistry, 1997. 69(2): p. 206-215.
61. Martos, P.A., A. Saraullo, and J. Pawliszyn, Estimation of air/coating distribution coefficients for solid phase microextraction using retention indexes from linear temperature-programmed capillary gas chromatography. Application to the sampling and analysis of total petroleum hydrocarbons in air. Analytical Chemistry, 1997. 69(3): p. 402-408.
62. Martos, P.A. and J. Pawliszyn, Sampling and determination of formaldehyde using solid-phase microextraction with on-fiber derivatization. Analytical Chemistry, 1998. 70(11): p. 2311-2320.
63. Wardencki, W. and J. Namiesnik, Studies on the application of solid-phase microextraction for analysis of volatile organic sulphur compounds in gaseous and liquid samples. Chemia Analityczna, 1999. 44(3): p. 485-493.
64. Martos, P.A. and J. Pawliszyn, Time-weighted average sampling with solid-phase microextraction devise: Implications for enhanced personal exposure monitoring to airborne pollutants. Analytical Chemistry, 1999. 71(8): p. 1513-1520.
65. Khaled, A. and J. Pawliszyn, Time-weighted average sampling of volatile and semi-volatile airborne organic compounds by the solid-phase microextraction device. Journal of Chromatography A, 2000. 892(1-2): p. 455-467.
66. Negrao, M.R. and M.F. Alpendurada, Solvent-free method for the determination of polynuclear aromatic hydrocarbons in waste water by solid-phase microextraction-high-performance liquid chromatography with photodiode-array detection. Journal of Chromatography, 1998. A. 823(1-2): p. 211-218.
67. Nguyen, A.L. and J.H.T. Luong, Separation and determination of polycyclic aromatic hydrocarbons by solid phase microextraction/cyclodextrin-modified capillary electrophoresis. Analytical Chemistry, 1997. 69(9): p. 1726-1731.
68. Langenfeld, J.J., S.B. Hawthorne, and D.J. Miller, Quantitative analysis of fuel-related hydrocarbons in surface water and wastewater samples by solid-phase microextraction. Analytical Chemistry, 1996. 68(1): p. 144-155.
69. Bartelt, R.J. and B.W. Zilkowski, Nonequilbrium quantitation of volatiles in air streams by solid-phase microextraction. Analytical Chemistry, 1999. 71(1): p. 92-101.
70. Magdic, S. and J.B. Pawliszyn, Analysis of organochlorine pesticides using solid-phase microextraction. Journal of Chromatography, 1996. A. 723(1): p. 111-122.
71. Frazey, P.A., R.M. Barkley, and R.E. Sievers, Solid phase microextraction with temperature-programmed desorption for the analysis of iodination disinfection byproducts. Analytical Chemistry, 1998. 70(3): p. 638-644.
72. Yang, F. and Y.K. Chau, Determination of methylcyclopentadienylmanganese tricarbonyl (MMT) in aqueous samples by SPME-GC-AED. Analyst, 1999. 124(1): p. 71-73.
73. Potter, D.W. and J. Pawliszyn, Detection of substituted benzenes in water at the pg/ml level using solid-phase microextraction and gas-chromatography ion trap mass-spectrometry. Journal of Chromatography, 1992. 625(2): p. 247-255.
74. Mani, V., and J. Pawliszyn, Application of solid-phase microextraction, Chapter 5. RSC: Cornwall, U.K., 1999.
75. Gorecki, T., and J. Paqliszyn, Applications of solid-phase microextraction, Chapter 7. RSC: Cornwall, U.K., 1999.
76. Gorecki, T., X.M. Yu, and J. Pawliszyn, Theory of analyte extraction by selected porous polymer SPME fibres. Analyst, 1999. 124(5): p. 643-649.
77. Jia, M.Y., J. Koziel, and J. Pawliszyn, Fast field sampling/sample preparation and quantification of volatile organic compounds in indoor air by solid-phase microextraction and portable gas chromatography. Field Analytical Chemistry and Technology, 2000. 4(2-3): p. 73-84.
78. Koziel, J.A. and I. Novak, Sampling and sample-preparation strategies based on solid-phase microextraction for analysis of indoor air. Trac-Trends in Analytical Chemistry, 2002. 21(12): p. 840-850.
79. Ai, J., Solid phase microextraction for quantitative analysis in nonequilibrium situations. Analytical Chemistry, 1997. 69(6): p. 1230-1236.
80. Zhang, Z.Y., M.J. Yang, and J. Pawliszyn, Solid-phase microextraction. Analytical Chemistry, 1994. 66(17): p. A844-A853.
81. Wittkamp, B.L. and D.C. Tilotta, Determination of BTEX compounds in water by solid-phase microextraction and raman-spectroscopy. Analytical Chemistry, 1995. 67(3): p. 600-605.
82. Koziel, J., M.Y. Jia, and J. Pawliszyn, Air sampling with porous solid-phase microextraction fibers. Analytical Chemistry, 2000. 72(21): p. 5178-5186.
83. Tuduri, L., V. Desauziers, and J.L. Fanlo, A simple calibration procedure for volatile organic compounds sampling in air with adsorptive solid-phase microextraction fibres. Analyst, 2003. 128(8): p. 1028-1032.
84. Ouyang, G. and J. Pawliszyn, SPME in environmental analysis. Analytical and Bioanalytical Chemistry, 2006. 386(4): p. 1059-1073.
85. Lyman, W.J.R., W.F. and Rosenblatt, D.H, Handbook of chemical property estimation method, Chapter 17. ASC, McGraw-Hill: New York, 1982.
86. Fuller, E.N., P.D. Schettle, and J.C. Giddings, A new method for prediction of binary gas-phase diffusion coeffecients. Industrial and Engineering Chemistry, 1966. 58(5): p. 19-27.
87. King, C.V., Reaction rates at solid-liquid interfaces. Journal of the American Chemical Society, 1935. 57(1): p. 828-831.
88. Pawliszyn, J., Solid-phase microextraction: theory and practice Wiley-VCH: New York, 1997.
89. Incopera, F.P., and D.P. De Witt, Fundamentals of heat transfer, Chapter 7. John Wiley and Sons: New York, 1981.
90. Tuduri, L., V. Desauziers, and J.L. Fanlo, Potential of solid-phase microextraction fibers for the analysis of volatile organic compounds in air. Journal of Chromatographic Science, 2001. 39(12): p. 521-529.
91. Lucero, D.P., Performance characteristics of permeation tubes. Analytical Chemistry, 1971. 43(13): p. 1744-1749.
92. Okeeffe, A.E. and G.C. Ortman, Primary standards for trace gas analysis. Analytical Chemistry, 1966. 38(6): p. 760-763.
93. Bjurman, J. and J. Kristensson, Production of volatile metabolites by the soft rot fungus Chaetomium-Globosum on building-materials and defined media. Microbios, 1992. 72(290): p. 47-54.
94. Claeson, A.S., J.O. Levin, G. Blomquist, et al., Volatile metabolites from microorganisms grown on humid building materials and synthetic media. Journal of Environmental Monitoring, 2002. 4(5): p. 667-672.
95. Fischer, G. and W. Dott, Relevance of airborne fungi and their secondary metabolites for environmental, occupational and indoor hygiene. Archives of Microbiology, 2003. 179(2): p. 75-82.
96. Pasanen, P., A. Korpi, P. Kalliokoski, et al., Growth and volatile metabolite production of Aspergillus versicolor in house dust. Environment International, 1997. 23(4): p. 425-432.
97. Wilkins, K. and K. Larsen, Variation of volatile organic-compound patterns of mold species from damp buildings. Chemosphere, 1995. 31(5): p. 3225-3236.
98. Kaminski, E., S. Stawicki, and E. Wasowicz, Volatile flavor compounds produced by molds of Aspergillus, Penicillium, and Fungi-Imperfecti. Applied Microbiology, 1974. 27(6): p. 1001-1004.
99. http://www.wbdg.org/design/env_iaq.php.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42285-
dc.description.abstract本研究利用固相微萃取(Solid-Phase Microextraction, SPME)技術免溶劑脫附及操作簡單操作等優點,發展以動態暴露系統採樣之方法,同步偵測多種室內常見的MVOCs。
本研究選取了台灣室內常見的七種MVOCs,包括2-methyl-1-propanol, 1-butanol, 3-methyl-1-butanol, 2-hexanone, 2-heptanone, 1-octen-3-ol 及 2-pentylfuran,分別以PDMS/DVB、DVB/Carboxen/PDMS、Carboxen/PDMS三款SPME纖維置入暴露腔,在固定的氣體流速下,改變採樣時間及採樣濃度等條件,進行外推式採樣;採樣之後將纖維置於氣相層析儀之注射口進行熱脫附,接著以質譜儀進行分析。
本研究結果發現,採樣時間對纖維吸附的MVOCs有顯著影響。在固定MVOCs濃度下,當採樣時間超過某一臨界值,MVOCs之間有競爭效應的發生。但在此臨界時間範圍之內,採樣時間及採集質量間有良好的線性關係,顯示隨著採樣時間增加,纖維上採集的質量也跟著增加。另外,在經過不同範圍之MVOCs採樣濃度測試,發現以Carboxen/PDMS纖維在0.8μg/m3 to 8 μg/m3濃度下進行40分鐘的採樣,沒有競爭效應的發生;而所得之採樣率分別為2-methyl-1-propanol 0.0884±0.0038 cm3/s、1-butanol 0.1231±0.0024 cm3/s、 3-methyl-1-butanol 0.0268±0.0008 cm3/s、2-hexanone 0.0355±0.0005 cm3/s、2-heptanone 0.1379±0.0062 cm3/s、1-octen-3-ol 0.0253±0.0044 cm3/s及2-pentylfuran 0.0748±0.002 cm3/s。
本研究所發展之動態採樣系統結合Carboxen/PDMS纖維之使用,除了有免溶劑脫附及採樣時間短等優點,亦具有未來應用於室內環境MVOCs偵測之潛力。
zh_TW
dc.description.abstractMore emphasis has been placed on mold in recent years because exposure to indoor mold can cause adverse health effects in human. Microbial Volatile Organic Compounds (MVOCs) are chemicals generated by molds during their life cycle and can be used as markers for mold growth indoors because they can diffuse through building materials which can not be penetrated by mold spores. And positive associations have also been found between the exposures of MVOCs and asthma or allergy. Therefore, the objective of this research was to develop a dynamic sampling method which is rapid and sensitive enough for the determination of MVOCs with solid-phase microextraction (SPME) technique.
Three SPME fibers were evaluated in this study for their suitability in sampling seven commonly seen mold indoors in Taiwan, including 2-methyl-1-propanol, 1-butanol, 3-methyl-1-butanol, 2-hexanone, 2-heptanone, 1-octen-3-ol, and 2-pentylfuran. The dynamic sampling system which produced a constant flow of known concentration of MVOC vapor was used for rapid sampling. After sampling, the SPME fiber was inserted to the injection port of gas chromatograph with mass spectrometer (GC/MS) for thermal desorption and further analysis.

Results showed that the Carboxen/PDMS fiber was found to be the most suitable among the three fibers for MVOCs sampling. Sampling with Carboxen/PDMS also presented a good linearity between mass collected on fiber and the magnitude of exposure (in concentration-time units). In addition, when sampling for 40 min from 0.8 μg/m3 to 8μg/m3, no competitive adsorption occurred. And the experimental sampling rates were 0.0884±0.0038 cm3/s for 2-methyl-1-propanol, 0.1231±0.0024 cm3/s for 1-butanol, 0.0268±0.0008 cm3/s for 3-methyl-1-butanol, 0.0355±0.0005 cm3/s for 2-hexanone, 0.1379±0.0062 cm3/s for 2-heptanone, 0.0253±0.0044 cm3/s for 1-octen-3-ol, and 0.0748±0.002 cm3/s for 2-pentylfuran.
This study demonstrated the potential of using Carboxen/PDMS fiber for analysis of MVOCs under nonequilibrium conditions, which possesses the advantages of the SPME technique. And the sampling rates determined in this study can possibly be applied in the future for field study.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:57:38Z (GMT). No. of bitstreams: 1
ntu-97-R95844006-1.pdf: 839956 bytes, checksum: bdc6cc72050280994264cd90845d7e88 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
TABLE OF CONTENTS iv
LIST OF TABLES vii
LIST OF FIGURES viii

CHAPTER 1 INTRODUCTION 1
1.1 INDOOR AIR QUALITY 1
1.2 INDOOR MOLDS 1
1.2.1 MOLDS AND RELATED HEALTH PROBLEMS 2
1.2.2 MVOCS PRODUCED BY MOLDS 3
1.2.3 COMMON INDOOR MOLDS AND RELATED MVOCS IN TAIWAN 4
1.3 INDOOR MOLD DETECTION 4
1.3.1 BIOLOGICAL DETECTION 5
1.3.2 CHEMICAL DETECTION 6

CHAPTER 2 SOLID-PHASE MICROEXTRCTION, SPME 8
2.1 INTRODUCTION TO SPME TECHNIQUE 8
2.2 COATINGS OF SPME FIBERS 9
2.3 AIR SAMPLING UNDER NON-EQUILIBRIUM CONDITIONS 10
2.3.1 EQUILIBRIUM AND NON-EQUILIBRIUM CONDITIONS 10
2.3.2 INTERFACE CALIBRATION THEORY 11
2.3.3 COMPETITIVE ADSORPTION AND DISPLACEMENT EFFECT 17

CHAPTER 3 RESEARCH OBJECTIVES AND STRUCTURE 18
3.1 RESEARCH OBJECTIVES 18
3.2 RESEARCH STRUCTURE 19

CHAPTER 4 MATERIALS AND METHODS 20
4.1 CHEMICALS 20
4.2 STANDARDS 20
4.3 DYNAMIC VAPOR GENERATION SYSTEM 21
4.3.1 SET UP OF THE SYSTEM 21
4.3.2 SYSTEM STABILITY TEST 22
4.3.3 VERIFICATION OF SAMPLING AIR VELOCITY 22
4.3.4 CABRATION OF THE SYRINGE PUMP INJECTION RATE 24
4.4 DYNAMIC SAMPLING OF MVOCS 24
4.5 INSTRUMENTAL ANALYSIS 25
4.6 SPME FIBERS 26
CHAPTER 5 RESULTS AND DISCUSSIONS 27
5.1 EFFECT OF SAMPLING VELOCITY ON MASS COLLECTED ON FIBER 27
5.2 COMPARISON OF FIBER PERFORMANCES 28
5.2.1 EFFECTS OF THE COMPETITIVE ADSORPTION ON THE ADSORBED MASS 28
5.2.2 SAMPLING RATES 29
5.2.3 CORRELATION BETWEEN PREDICTED AND MEASURED MASS 30
5.3 SAMPLING WITH CARBOXEN/PDMS FIBER UNDER LOW SAMPLING CONCENTRATIONS 31
5.3.1 COMPETITIVE ADSORPTION 31
5.3.2 SELECTION OF OPTIMAL RANGE OF SAMPLING TIME 31
5.4.1 SAMPLING RATES 32
5.4.2 CORRELATION BETWEEN PREDICTED AND MEASURED MASS 33
CHAPTER 6 CONCLUSIONS 34
REFERENCES 35
dc.language.isoen
dc.subject氣相層析質譜儀zh_TW
dc.subjectMVOCszh_TW
dc.subject動態暴露系統zh_TW
dc.subject固相微萃取zh_TW
dc.subjectGC/MSen
dc.subjectMVOCsen
dc.subjectsolid-phase microextractionen
dc.subjectnonequilibrium sampling conditionen
dc.title以固相微萃取技術配合氣相層析質譜儀於非平衡狀態下分析室內環境之MVOCszh_TW
dc.titleAnalysis of Indoor Microbial Volatile Organic Compounds by Solid-Phase Microextraction with GC/MS under Nonequilibrium Situationen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林嘉明(Jia-Ming Lin),陳美蓮(Mei-Lien Chen)
dc.subject.keyword固相微萃取,MVOCs,動態暴露系統,氣相層析質譜儀,zh_TW
dc.subject.keywordsolid-phase microextraction,MVOCs,nonequilibrium sampling condition,GC/MS,en
dc.relation.page67
dc.rights.note有償授權
dc.date.accepted2008-08-04
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
820.27 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved