請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42272
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李雨(U. Lei) | |
dc.contributor.author | Chien-Fu Chen | en |
dc.contributor.author | 陳建夫 | zh_TW |
dc.date.accessioned | 2021-06-15T00:56:46Z | - |
dc.date.available | 2010-08-08 | |
dc.date.copyright | 2008-08-08 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-08-03 | |
dc.identifier.citation | References
Arnold, W. M. and U. Zimmermann, “Rotating-field induced rotation and measurement of the membrane capacitance of single mesophyll cells,” Z. Naturforsch vol. 37c, pp. 908-915, (1982). Arnold, W. M., H. P. Schwan and U. Zimmermann, “Surface conductance and other properties of latex particles measured by electrorotation,” J. Phys. Chem., vol. 91, pp. 5093-5098 (1987). Ganatos, P., S. Weinbaum, and R. Pfeffer, “A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part2. Parallel motion” J. Fluid Mech., vol. 99, pp. 755-783 (1980). Gimsa, J. R., T. , T. Schnelle, and G. Fuhr, “Dielectric spectroscopy of single human erythrocytes at physiological ionic strength: dispersion of the cytoplasm,” Biophys J. vol. 71, 495–506 (1996). Happel, J. and H. Brenner, “Low Reynolds number hydrodynamics” Kluwer Academic Publishers (1983). Ho ̈lzel, R., “Electric field calculation for electrorotation electrodes,” J. Phys. D: Appl. Phys., vol. 26, pp. 2112-2116, (1993). Hughes, M. P., “Computer-aided analyses of electric fields used in electrorotation studies” J. Phys. D: Appl. Phys., vol. 27, pp. 1564-1570 (1994). Hughes, M. P., “Computer-aided analysis of conditions for optimizing practical electrorotation” Phys. Med. Biol., vol. 43, pp. 3639-3648 (2006). Hughes, M. P., “Nanoelectromechanics in Engineering and Biology,” CRC Press, Boca Raton, Flordia (2003). Hung, Y., R. Ho ̈lzel R. Pethig and X-B Wang, “ Difference in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies,” Phys. Med. Bid., vol. 37, no. 7, pp. 1499-1517 (1992). Jone, T. B., “Basic Theory of Dielectrophoresis and Electrorotation,” IEEE Eng. Biol., vol. 22, pp. 33-42 (2003). Maswiwat, K., M. Holtappels and J. Gimsa, “On the field distribution in electrorotation chambers- Influence of electrode shape” Electrochimica Acta, vol. 51, pp. 5215-5220 (2006). Morgan, H., A. G. Izquierdo, D. Bakewell, N. G Green and A. Ramos, “The dielectrophoretic and travelling wave forces generated by interdigitated electrode arrays: analytical solution using Fourier series” J. Phys. D. Appl. Phys., vol. 34, pp. 1553-1561 (2001). Phol, H. A., “Dielectrophoresis,” Cambridge Univ. Press (1978). Voldman, J., “Dielectrophoretic Traps for Cell Manipulation”, BioMEMS and Biomedical Nanotechnology (2007). Wang, X-B, Y. Huang, F. F. Becker and P. R. C. Gascoyne, “A unified theory of dielectrophoresis and travelling wave dielectrophoresis,” J. Phys. D: Appl. Phys., vol. 27, pp. 1571-1574 (1994). Yang, C. Y. and U. Lei, “Quasistatic force and torque on ellipsoidal particles under generalized dielectrophoresis,” J. Appl. Phys., vol. 102, pp. 094702 (2007). Huang, C. W., “Traveling wave dielectrophoretic pump for blood delivery,” Mater thesis, Institute of Applied Mechanics, National Taiwan University (2008). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42272 | - |
dc.description.abstract | 電旋轉現為成功的生醫檢測工具,特別是在細胞的檢測應用更為廣泛。本研究目的,為設計最佳化電旋轉設備,其一設備可以提供最大抓取微粒的區域內,同時擁有穩定介電力距。文中,我們計算電場,總介電泳力(包括傳統介電泳力與旅波式介電泳力)、介電力矩與粒子群二維與三維設備中的運動軌跡。在考慮介電泳抓取微粒的穩定性 (穩定的將微粒抓取於流道中間),與介電力距的等值性的情形下,我們得知在改變電極的特徵長度( 電極長度/裝備長度),可得到最佳化電旋轉設備。借由數值分析後,本研究得知當 ,可擁有極佳的電旋轉設備,因此我們得知改變電極的特徵長度,來改善電旋轉設備是可行的。就三維電旋轉設備,文中引入實驗常使用的,上下四片電極組來進行模擬。在實驗與模擬結果的相互驗證下,可得知本研究所建立之模擬結果的正確性,並對往後電旋轉裝備,對於細胞檢測的應用,提供更穩定與擴大其應用範圍。 | zh_TW |
dc.description.abstract | Electrorotation is a successful tool for the characterization of particles, in particular, the biological particles. Here we propose a design of the chamber which might have better performance for electrorotation. An optimal chamber is the one that possesses a maximized trapping region of essentially constant and maximized torque on the particles. We have calculated the electric field, the total dielectrophoretic force (including both the conventional and traveling wave dielectrophoretic forces), the dielectrophoretic torque, and trajectories of many particles inside various 2D/3D chambers. By considering both the trapping ability of the particles and the variation of the across the chamber, we found that the ratio of the electrode width to channel width is a crucial parameter. Numerical results for different 2D/3D cases indicate that is the optimize range for the design. A 3D rectangular chamber with four electrodes on both the upper and lower walls is a promising candidate for particle application. Our method is validated by comparing with the analytic solution of a 2D model problem and with experiment in a 3D chamber. | en |
dc.description.provenance | Made available in DSpace on 2021-06-15T00:56:46Z (GMT). No. of bitstreams: 1 ntu-97-R95543028-1.pdf: 6415398 bytes, checksum: 6f310db9d26f5baf6504a38cd70d72f4 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | CONTENTS
ACKNOWLEDGMENTS I 中文摘要 II ABSTRACT III CHAPTER 1 INTRODUCTION 1 1.1 BACKGROUND 1 1.2 LITERATURES SURVEY 3 1.3 MOTIVATION AND OBJECTIVE 5 CHAPTER 2 THEORY 7 2.1 ELECTROSTATICS 7 2.2 GENERAL DIELECTROPHORESIS 8 2.3 VISCOUS FORCE AND TORQUE ON SPHERICAL PARTICLES 12 CHAPTER 3 NUMERICAL METHOD 17 3.1 ELECTRIC FIELD SIMULATION 17 3.2 PARTICLE MOTION 18 3.3 INITIAL CONDITIONS AND BOUNDARY CONDITIONS 19 CHAPTER 4 RESULT AND DISCUSSION 21 4.1 GRID DEPENDENCE TEST 21 4.2 MODEL PROBLEM FOR PROGRAM VALIDATION 23 4.3 REAL PROBLEM FOR THE 2D ELECTROROTATION CHAMBER 26 4.3.1 Square electrode array 27 4.4 2D CHAMBER WITH POLYNOMIAL ELECTRODE 29 4.5 3D ELECTROROTATION CHAMBER 31 4.5.1 Grid dependence test 31 4.5.2 Levitation height calculation 32 4.6 THREE DIMENSIONAL CHAMBER WITH 4 RECTANGULAR ELECTRODES AT THE BOTTOM WALL 33 4.7 THREE DIMENSIONAL CHAMBER WITH ON BOTH THE LOWER AND UPPER WALLS 34 CHAPTER 5 EXPERIMENTS 36 5.1 SYSTEM FABRICATION 36 5.1.1 Electrodes 36 5.1.2 Channel 37 5.2 Experiment process 38 5.3 ROTATION SPEED MEASUREMENT 38 5.4 COMPARISON BETWEEN EXPERIMENT AND CALCULATION 39 CHAPTER 6 CONCLUSION AND FUTURE WORKS 40 6.1 CONCLUSIONS 40 6.2 FUTURE WORKS 40 REFERENCE 42 | |
dc.language.iso | en | |
dc.title | 一項電旋轉設備的設計、模擬及實驗 | zh_TW |
dc.title | Design, Simulation and Experiments of apparatus for electrorotation | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 胡文聰(Andrew M. Wo),楊政穎(Chen-Ying Yang) | |
dc.subject.keyword | 傳統與旅,波式介電泳力,電旋轉設計,最佳化電旋轉設備,微粒,抓取, | zh_TW |
dc.subject.keyword | Conventional and traveling wave dielectrophoretic forces,electrorotation,design of electrotation chamber,particle trapping,particle rotation, | en |
dc.relation.page | 45 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2008-08-04 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 6.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。