Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42271
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張靜文(Ching-Wen Chang)
dc.contributor.authorYing-Chieh Wuen
dc.contributor.author吳盈潔zh_TW
dc.date.accessioned2021-06-15T00:56:43Z-
dc.date.available2013-09-11
dc.date.copyright2008-09-11
dc.date.issued2008
dc.date.submitted2008-08-04
dc.identifier.citation1. 李世忠, 曾順輝. (1993) 經內科療法治癒之棘狀阿米巴角膜炎-壹例報告. 中華民國眼科醫學會雜誌. 32: 90-93.
2. 李清真. (1994) 大台北地區公共場所盥洗台伺機性阿米巴-棘阿米巴類之調查研究. 臺灣大學微生物學研究所寄生蟲組碩士論文.
3. 黃國銅. (1994) 台北地區土壤及淡水內自由生活性阿米巴之研究. 臺灣大學微生物學研究所寄生蟲組碩士論文.
4. 陳媚音, 陳裕程. (1988) 棘狀阿米巴原蟲角膜炎-台灣首二例報告. 中華民國眼科醫學會會刊. 27:172-178.
5. Arias Fernandez, M.C., Paniagua Crespo, E., Marti Mallen, M., Penas Ares, M.P., and Casro Casas, M.L. (1989) Marine amoeba from waters of northwest Spain, with comments on a potentially pathogenic euryhaline species. J Protozool 36, 239-241.
6. Atlas, R.M. (1999) Legionella: from environmental habitats to disease pathology, detection and control. Environ Microbiol 1, 283-293.
7. Attard, E., Degrange, V., Klumpp, K., Richaume, A., Soussana, J.F., and Le Roux, X. (2008) How do grassland management history and bacterial micro-localisation affect the response of bacterial community structure to changes in aboveground grazing regime? Soil Biol Biochem 40, 1244-1252.
8. Awwad, S.T., Petroll, W.M., McCulley, J.P., and Cavanagh, H.D. (2007) Updates in Acanthamoeba keratitis. Eye & Contact Lens 33, 1-8.
9. Bier, J.W. and Sawyer, T.K. (1990) Amoebae isolated from laboratory eyewash stations. Curr Microbiol 20, 349-350.
10. Bloch, K.C., Schuster, and Frederick, L. (2005) Inability to Make a Premortem Diagnosis of Acanthamoeba Species Infection in a Patient with Fatal Granulomatous Amebic Encephalitis. J Clin Microbiol 43, 3003-3006.
11. Byer, T.J. (1986) Molecular biology of DNA in Acanthamoeba, Amoeba, Entamoeba, and Naegleria. Int Rev Cyt 99, 311-341.
12. Centeno, M., Rivera, F., Cerva, L., Tsutsumi, V., Gallegos, E., Calderón, A., Ortiz, R., Bonilla, P., Ramírez, E., and Suárez, G. (1996) Hartmannella vermiformis isolated from the cerebrospinal fluid of a young male patient with meningoencephalitis and bronchopneumonia. Arch Med Res 27, 579-586.
13. Clark, W. and Christopher, K. (2000) An introduction to DNA: Spectrophotometry, degradation, and the “Frankengel’ experiment. Pages 81-99, in Tested studies for laboratory teaching, Volume 22 (S. J. Karcher, Editor). Proceedings of the 22nd Workshop/Conference of the Association for Biology Laboratory Education, 489 pages.
14. Coelho, M.R., de Vos, M., Carneiro, N.P., Marriel, I.E., Paiva, E., and Seldin, L. (2008) Diversity of nifH gene pools in the rhizosphere of two cultivars of sorghum (Sorghum bicolor) treated with contrasting levels of nitrogen fertilizer. FEMS Microbiol Lett 279, 15-22.
15. Cohen, E.J., Buchanan, H.W., Laughrea, P.A., Adams, C.P., Galentine, P.G., Visvesvara, G.S., Folberg, R., Arentsen, J.J., and Laibson, P.R. (1985) Diagnosis and management of Acanthamoeba keratitis. Am J Ophthalmol 100, 389-395.
16. Cook, K.L. and Britt, J.S. (2007) Optimization of methods for detecting Mycobacterium avium subsp. paratuberculosis in environmental samples using quantitative, real-time PCR. J Microbiol Methods 69, 154-160.
17. Declerck, P., Behets, J., van Hoef, V., and Ollevier, F. (2007) Detection of Legionella spp. and some of their amoeba hosts in floating biofilms from anthropogenic and natural aquatic environments. Water Res 41, 3159-3167.
18. Di Gregorio, C., Rivasi, F., Mongiardo, N., De Rienzo, B., Wallace, S., and Visvesvara, G.S. (1992) Acanthamoeba meningoencephalitis in a patient with acquired immunodeficiency syndrome. Arch Pathol Lab Med 116, 1363-1365.
19. Drgon, T., Saito, K., Gillevet, P.M., Sikaroodi, M., Whitaker, B., Krupatkina, D.N., Argemi, F., and Vasta, G.R. (2005) Characterization of ichthyocidal activity of Pfiesteria piscicida: dependence on the dinospore cell density. Appl Environ Microbiol 71, 519-529.
20. Ettinger, M.R., Webb, S.R., Harris, S.A., McIninch, S.P., C Garman, G., and Brown, B.L. (2003) Distribution of free-living amoebae in James River, Virginia, USA. Parasitol Res 89, 6-15.
21. Fields, B.S. (1996) The molecular ecology of legionellae. Trends Microbiol 4, 286-290.
22. Gordon, S.M., Steinberg, J.P., DuPuis, M.H., Kozarsky, P.E., Nickerson, J.F. and Visvesvara, G.S. (1992) Culture isolation of Acanthamoeba species and leptomyxid amebas from patients with amebic meningoencephalitis, including two patients with AIDS. Clin Infec Dis 15, 1024-30.
23. Grimm, D., Ludwig, W.F., Brandt, B.C., Michel, R., Schleifer, K.H., Hacker, J., and Steinert, M. (2001) Development of 18S rRNA-targeted Oligonucleotide Probes for Specific Detection of Hartmannella and Naegleria in Legionella – positive Environmental Samples. System Appl Microbiol 24, 76-82.
24. Hagn, A., Engel, M., Kleikamp, B., Munch, J.C., Schloter, M., and Bruns, C. (2008) Microbial community shifts in Pythium ultimum -inoculated suppressive substrates. Biol Fertil Soils 44, 481-490.
25. Henk, M.C. (2004) Method for collecting air–water interface microbes suitable for subsequent microscopy and molecular analysis in both research and teaching laboratories. Appl Environ Microb 70, 2486-2493.
26. Hoffmann, R. and Michel, R. (2001) Distribution of free-living amoebae (FLA) during preparation and suplly of drinking water. Int J Hyg Environ Health 203, 215-219.
27. Kennedy, S.M., Devine, P., Hurley, C., Ooi, Y.S., and Collum, L.M. (1995) Corneal infection associated with Hartmannella vermiformis in contact-lens wearer. Lancet 346, 637-638.
28. Khan, N.A. (2006) Acanthamoeba: biology and increasing importance in human health. FEMS Microbiol Rev 30, 564-595
29. Kim, K.S., Byun, S.H., Lee, B.M. (2005) Effects of chemical carcinogens and physicochemical factors on the UV spectrophotometric determination of DNA. J Toxicol Environ Health A 68, 2081-2095.
30. Kuiper, M.W., Wullings, B.A., Akkermans, A.D., Beumer, R.R., van der Kooij, D. (2004) Intracellular proliferation of Legionella pneumophila in Hartmannella vermiformis in aquatic biofilms grown on plasticized polyvinyl chloride. Appl Environ Microbiol 70, 6826-6833.
31. Kuiper, M.W., Valster, R.M., Wullings, B.A., Boonstra, H., Smidt, H., and van der Kooij, D. (2006) Quantitative detection of the free-living amoeba Hartmannella vermiformis in surface water by using real-time PCR. Appl Environ Microbiol 72, 5750-5756.
32. Lee, J.J., Leedale, G.F., and Bradbury, P.C. (2000) An illustrated guide to the protozoa : organisms traditionally referred to as protozoa, or newly discovered groups. 2nd ed. Society of Protozoologists, Lawrence, K.S.
33. Lloyd, D., Turner, N.A., Khunkitti, W., Hann, A.C., Furr, J.R., and Russell, A.D. (2001) Encystation in Acanthamoeba castellanii: development of biocide resistance. J Eukaryot Microbiol 48, 11-16.
34. Michaelsena, A., Pinzari, F., Ripka, K., Lubitz, W., and Pin˜ ar, G. (2006) Application of molecular techniques for identification of fungal communities colonising paper material. Int Biodeterior Biodegradation 58, 133-141.
35. Moore, M.B., McCulley, J.P., Luckenbach, M., Gelender. H., Newton. C., McDonald, M.B., and Visvesvara, G.S. (1985) Acanthamoeba keratitis associated with soft contact lenses. Am J Ophthalmol 100, 396-403.
36. Moré, M.I., Herrick, J.B., Silva, M.C., Ghiorse, W.C., and Madsen, E.L. (1994) Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment. Appl Environ Microbiol 60, 1572-1580.
37. Neff, R.J., Ray, S.A., Benton, W.F. and Wilborn, M. (1964) Induction of synchronous encystment (differentiation) in Acanthamoeba sp. In Methods in Cell Physiology, Vol. 1, (Prescott, D. M., Ed.), pp. 55–83. Academic Press, New York.
38. Ofer, K., Gold, D., and Flescher, E. (2008) Methyl jasmonate induces cell cycle block and cell death in the amitochondriate parasite Trichomonas vaginalis. Int J Parasitol 38, 959-968.
39. Oliva, S., Jantz, M., Tiernan, R., Cook, D.L., Judson, M.A. (1999) Successful treatment of widely disseminated acanthamoebiasis. South Med J 92, 55-57.
40. Page, F.C. (1988) A new key to freshwater and soil Gymnamoebae. Freshwater Biological Association, Ambleside. 122 s.
41. Priha, O., Hallamaa, K., Saarela, M., and Raaska, L. (2004) Detection of Bacillus cereus group bacteria from cardboard and paper with real-time PCR. J Ind Microbiol Biotechnol 31, 161-169.
42. Rivera, F., Ramirez, P., Vilaclara, G., Robles, E., and Medina, F. (1983) A survey of pathogenic and free-living amoebae inhabiting swimming pool water in Mexico City. Environ Res 32, 205-211.
43. Rivera, F., Ramirez, E., Bonilla, P., Calderon, A., Gallegos, E., Rodriguez, S., Ortiz, R., Zaldivar, B., Ramirez, P., and Duran A. (1993) Pathogenic and free-living amoebae isolated from swimming pools and physiotherapy tubs in Mexico. Environ Res 62, 43-52.
44. Riviere, D., Szczebara, F.M., Berjeaud, J.M., Frere, J., and Hechard, Y. (2006) Development of a real-time PCR assay for quantification of Acanthamoeba trophozoites and cysts. J Microbiol Methods 64, 76-83.
45. Rohr, U., Weber, S., Michel, R., Selenka, F., and Wilhelm, M. (1998) Comparison of free-living amoebae in hot water systems of hospitals with isolates from moist sanitary areas by identifying genera and determining temperature tolerance. Appl Environ Microbiol 64, 1822-1824.
46. Rowbotham, T.J. (1980) Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J Clin Pathol 33, 1179-1183.
47. Sanden, G.N., Morrill, W.E., Fields, B.S., Breiman, R.F., and Barbaree, J.M. (1992) Incubation of water samples containing amoebae improves detection of legionellae by the culture method. Appl Environ Microbiol 58, 2001-2004.
48. Savin, M.C., Martin, J.L., LeGresley, M., Giewat, M., and Rooney-Varga, J. (2004) Plankton Diversity in the Bay of Fundy as Measured by Morphological and Molecular Methods. Microb Ecol 48, 51-65.
49. Schuster, F.L. and Visvesvara, G.S. (2004) Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int J Parasitol 34, 1001-1027.
50. Seijo Martinez, M., Gonzalez-Mediero, G., Santiago, P., Rodriguez De Lope, A., Diz, J., Conde, C., and Visvesvara, G. S. (2000) Granulomatous Amebic Encephalitis in a Patient with AIDS: Isolation of Acanthamoeba sp. Group II from Brain Tissue and Successful Treatment with Sulfadiazine and Fluconazole. J Clin Microbiol 38, 3892-3895.
51. Stehr-Green, J.K., Bailey, T.M., and Visvesvara, G.S. (1989) The epidemiology of Acanthamoeba keratitis in the United States. Am J Ophthalmol 107, 331-336.
52. Tambong, J.T., Mwange, K.N., Bergeron, M., Ding, T., Mandy, F., Reid, L.M., and Zhu, X. (2008) Rapid detection and identification of the bacterium Pantoea stewartii in maize by TaqMan real-time PCR assay targeting the cpsD gene. J Appl Microbiol 104, 1525-1537.
53. Tan, B., Weldon-Linne, C.M., Rhone, D.P., Penning, C.L., and Visvesvara, G.S. (1993) Acanthamoeba infection presenting as skin lesions in patients with the acquired immunodeficiency syndrome. Arch Pathol Lab Med 117, 1043-1046.
54. Thomas, V., Herrera-Rimann, K., Blanc, D.S., and Greub, G. (2006) Biodiversity of amoebae and amoeba-resisting bacteria in a hospital water network. Appl Environ Microbiol 72, 2428-2438.
55. Torno, M.S., Jr. Babapour, R., Gurevitch, A., and Witt, M.D. (2000) Cutaneous acanthamoebiasis in AIDS. J Am Acad Dermatol 42, 351-354.
56. Wynter-Allison, Z., Lorenzo Morales, J., Calder, D., Radlein, K., Ortega-Rivas, A., and Lindo, J.F. (2005) Acanthamoeba infection as a cause of severe keratitis in a soft contact lens wearer in Jamaica. Am J Trop Med Hyg 73, 92-94.
57. Zachow, C., Tilcher, R., and Berg, G. (2008) Sugar beet-associated bacterial and fungal communities show a high indigenous antagonistic potential against plant pathogens. Microb Eco 55, 119-129.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42271-
dc.description.abstractAcanthamoeba spp.及Hartmannella vermiformis為自營性阿米巴原蟲,常存在於水體環境中,不僅本身具有致病性,且為致病菌繁殖增生的宿主。本研究針對此兩種原蟲,建立一套應用即時定量聚合酶鏈鎖反應 (real-time quantitative polymerase chain reaction, real-time qPCR) 之定量方法。
為了選出一種可同時應用於Acanthamoeba spp.及H. vermiformis之DNA萃取試劑,本研究比較兩種常用者: Wizard® SV genomic DNA purification system (Promega) 及FastDNA spin kit for soil (MP) 搭配real-time qPCR進行分析結果,發現其各自最佳之萃取流程為Promega使用離心法,而MP需增加震盪時間及沖提體積。另採集冷卻水塔水樣、水塔內壁生物膜 (substrate biofilm,SB) 及水塔內空氣與水交界處的生物膜 (floating biofilm,FB),評估此兩種DNA萃取試劑在環境樣本之適用性。結果顯示以MP萃取水樣、SB與FB之DNA並分別稀釋100倍、100倍、10倍後,real-time qPCR偵測出的Acanthamoeba DNA含量均分別較Promega萃取者高0.7、0.5、0.8 log fg;MP萃取後所能偵測之H. vermiformis DNA量亦分別較Promega多1.3、1.1、1.4 log fg。此外,以MP萃取之環境樣本,Acanthamoeba spp.及H. vermiformis的陽性數於各式環境樣本亦較高,顯示MP較Promega適於萃取環境樣本。進一步以MP萃取Acanthamoeba castellanii與H. vermiformis營養體及囊體之DNA,評估水樣及FB樣本採樣後之前處理流程對DNA定量的影響。以無前處理者為100%,結果顯示於水樣及FB樣本的DNA相對回收率:A. castellanii營養體為88.10±8.48%及65.93±10.96%,而囊體則為110.09±22.95%及94.69±7.25%;H. vermiformis營養體為108.14±13.08%及75.07±31.24%,囊體為137.15±72.25%及78.31±17.04%,顯示水樣之回收率均較FB高。此外,本研究也建立以A. castellanii或H. vermiformis原蟲數對應DNA量的檢量線,其偵測下限最低可達3原蟲數。
綜合上述結果,本研究開發以MP結合適當稀釋倍數與real-time qPCR應用於定量環境中的Acanthamoeba spp.及H. vermiformis的方法,藉此未來除可快速了解此類原蟲在環境水體的分布,亦可進一步評估其與他種寄生致病菌間之消長關係。
zh_TW
dc.description.abstractFree-living amoebae (FLA) of Acanthamoeba spp. and Hartmannella vermiformis are widely distributed in various aquatic habitats. They are the hosts of many pathogenic bacteria and have been found to cause opportunistic infection. In this study, we developed a real-time quantitative polymerase chain reaction (real-time qPCR) to target these two types of amoebae.
For selecting a better DNA extraction kit, we compared two commercial DNA extraction kits, Wizard® SV genomic DNA purification system (Promega) and FastDNA spin kit for soil (MP).We optimized each protocol of these two kits at first, and the data showed it was better when using microcentrifuge method for Promega and increasing both vortex time and elution volume for MP. Both kits were further coupled with real-time qPCR assay to determine the DNA quantity of Acanthamoeba spp. and H. vermiformis from the samples prepared in lab and collected from water, substrate biofilm (SB) or floating biofilm (FB) of cooling towers. After 100-fold, 100-fold, and 10-fold dilution of DNA extracted from water, SB, and FB samples, respectively, and determination by real-time qPCR, quantity of Acanthamoeba DNA extracted by MP was 0.7, 0.5, and 0.8 log fg, respectively, more than that by Promega. Similarity, H. vermiformis DNA extracted by MP was also 1.3, 1.1, and 1.4 log fg greater than that by Promega, respectively. Moreover, the number of amoebae-positive samples was generally greater in MP-extracted samples than that in Promega-extracted ones regardless of sample type or amoebic genera, indicating MP is more applicable for environmental samples than Promega. We further adopted MP to extract DNA from trophozoites and cysts of A. castellanii and H. vermiformis to evaluate the effect of pretreatment in water and FB samples on DNA quantity. With the DNA extracted from the sample without pretreatment as reference, the relative DNA recovery rates of water and FB samples were 88.10±8.48% and 65.93±10.96% for A. castellanii trophozoite, respectively, and 110.09±22.95% and 94.69±7.25% for A. castellanii cyst, respectively. As for H. vermiformis, the respective recovery rates of water and FB samples were 108.14±13.08% and 75.07±31.24% for trophozoite and 137.15±72.25% and 78.31±17.04% for cyst. These results indicate the DNA recovery rate of water samples was greater than that of FB samples for both of A. castellanii and H. vermiformis. Finally, a calibration curve between amoebic number and DNA quantity was determined, from which the detection limit was found as low as 3 amoebae.
In conclusion, the present study showed MP kit coupled with appropriate DNA dilution and real-time qPCR assay is an optimal method to quantify Acanthamoeba spp. and H. vermiformis from artificial water reservoirs. This methodology provides the potential to accurately characterize the distribution of these two types of amoebae, and may be further used to evaluate the relationship between the amoebae and their parasitic pathogens.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:56:43Z (GMT). No. of bitstreams: 1
ntu-97-R95844008-1.pdf: 4347491 bytes, checksum: 29993ae00321adf6276baf563b7106bd (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents第一章 前言 1
第二章 文獻回顧 2
2.1.阿米巴原蟲 (amoeba) 2
2.1.1. Acanthamoeba spp. (棘阿米巴原蟲) 2
2.1.2. Hartmannella vermiformis 3
2.2. 冷卻水塔 3
2.3. 原蟲偵測方法 4
2.4. 研究的重要性 7
第三章 研究目的 8
第四章 研究架構 9
4.1. DNA萃取流程最佳化 10
4.2. 選取最適DNA萃取試劑 11
4.3. 評估DNA萃取試劑應用於冷卻水塔樣本之DNA相對回收率及偵測下限 13
第五章 材料與方法 14
5.1. 實驗物種 14
5.1.1. A. castellanii 14
5.1.2. H. vermiformis 14
5.2. 培養基及緩衝溶液製備 15
5.2.1. ATCC medium 712 15
5.2.2. ATCC medium 1034 16
5.2.3. 囊化培養基 16
5.2.4. Page’s Amoeba Saline (PAS) 17
5.2.5. 磷酸緩衝液 (phosphate buffered saline, PBS) 18
5.2.6. TE buffer 18
5.3. DNA萃取最佳化 19
5.3.1. Promega萃取效率評估 19
5.3.2. MP萃取效率評估 22
5.3.3. Promega與MP比較 24
5.3.4. DNA相對回收率及偵測下限 32
5.4. Real-time qPCR 35
5.4.1. Acanthamoeba spp. 35
5.4.2. H. vermiformis 37
5.4.3. 標準品製備及PCR複製效率 39
5.4. 統計分析 40
第六章 結果 41
6.1. 原蟲型態 41
6.1.1. A. castellanii 41
6.1.2. H. vermiformis 43
6.2. DNA萃取試劑最佳化 45
6.2.1. Promega萃取效率評估 45
6.2.2. MP萃取效率評估 46
6.3. A. castellanii 定量 48
6.3.1. DNA純度 48
6.3.2. DNA-based calibration curve 49
6.3.3. Cell-based calibration curve 50
6.3.4. 環境樣本適用性評估 53
6.3.5. DNA相對回收率 57
6.3.6. 水樣與FB樣本偵測下限 57
6.3.7. Real-time qPCR QA/QC 63
6.4. H. vermiformis定量 66
6.4.1. DNA純度 66
6.4.2. DNA-based calibration curve 68
6.4.3. Cell-based calibration curve 69
6.4.4. 環境樣本適用性評估 73
6.4.5. DNA相對回收率 76
6.4.6. 水樣及FB樣本偵測下限 77
6.4.7. Real-time qPCR QA/QC 83
6.5. 統計檢定 92
第七章 討論 96
7.1. Promega與MP比較 96
7.1.1. DNA純度 96
7.1.2. DNA-based calibration curve 96
7.1.3. Cell-based calibration curve 97
7.1.4. 營養體與囊體之PCR比較 98
7.1.5. 冷卻水塔環境應用性 99
7.1.6. Promega與MP之比較 99
7.2. Acanthamoeba spp. 100
7.2.1. 前處理對DNA回收率的影響 100
7.2.2. 偵測下限 101
7.2.3. 冷卻水塔Acanthamoeba spp.濃度 101
7.2.4. PCR引子對及探針特異性 101
7.3. H. vermiformis 102
7.3.1. 偵測下限 102
7.3.2. 環境樣本萃取後之DNA稀釋 103
7.3.3. 冷卻水塔環境樣本應用性 103
7.3.4. PCR引子對特異性 104
7.4. SB檢量線 104
7.5. DNA萃取與PCR分析條件 105
第八章 結論與建議 108
參考文獻 110
附錄 117
dc.language.isozh-TW
dc.subject即時定量聚合&#37238zh_TW
dc.subjectDNA萃取zh_TW
dc.subjectHartmannella vermiformiszh_TW
dc.subjectAcanthamoeba castellaniizh_TW
dc.subject棘阿米巴原蟲zh_TW
dc.subject鏈鎖反應zh_TW
dc.subjectAcanthamoeba castellaniien
dc.subjectHartmannella vermiformisen
dc.subjectDNA extractionen
dc.subjectreal-time quantitative polymerase chain reactionen
dc.title以即時聚合酶鏈鎖反應定量Acanthamoeba spp.與Hartmannella vermiformiszh_TW
dc.titleQuantification of Acanthamoeba spp. and Hartmannella vermiformis by real-time polymerase chain reactionen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林嘉明,陳培詩
dc.subject.keyword棘阿米巴原蟲,Acanthamoeba castellanii,Hartmannella vermiformis,DNA萃取,即時定量聚合&#37238,鏈鎖反應,zh_TW
dc.subject.keywordAcanthamoeba castellanii,Hartmannella vermiformis,DNA extraction,real-time quantitative polymerase chain reaction,en
dc.relation.page131
dc.rights.note有償授權
dc.date.accepted2008-08-04
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
4.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved