Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42262
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor施信民(Shin-Min Shih)
dc.contributor.authorYan-Jhih Chenen
dc.contributor.author陳彥至zh_TW
dc.date.accessioned2021-06-15T00:56:10Z-
dc.date.available2010-08-08
dc.date.copyright2008-08-08
dc.date.issued2008
dc.date.submitted2008-08-04
dc.identifier.citationAresta, M., Quaranta, E., Tommasi, I., “Prospects for the Utilization of Carbon Dioxide”, Energy convers. Mgmt., 33, 495(1992)
Bandi, A., Kuehne, H. M., “Electrochemical Reduction of Carbon Dioxide in Water: Analysis of Reaction Mechanism on Ruthenium-Titanium-Oxide”, J. Electrochemical Society, 139, 225(1992)
Banerjee, T., M. Chhajer, G. C. Lipscomb, “Direct Measure of The Heat of Carbon Dioxide Sorption in Polymeric Materials”, Macromolecules, 28, 8563(1995)
Barnes, V. E. , Shock, D. A., Cunningham, W. A. , “ Utilization of Texas Serpentine “ , The University of Texs , No. 5020 , Bureau of Economic Geology (October 15 , 1950)
Berner, R. A., “A Model for atmospheric CO2 Over Phanerozoic Time”, American Journal of Science, 291, 339(1991)
Busenberg, E., C. V. Clemency, “The Dissolution Kinetics of Feldspars at 25oC and 1atm CO2 Partial Pressure”, Gechimica et Comochimica Acta, 40, 41(1976)
Blackburn, D., Nagamori, M., Metallurgical and Materials Transactions B 25B, 321 (1994)
Brady, P. V., Walther, J. V., Geochim. Cosmochim. Acta., 53, 2823(1989)
Chakma, A., “Separation of CO2 and from Flue Gas Streams by Liquid Membrane”, Energy Convers. Mgmt., 36, 6-9, 405(1995)
Chou, L., R. Wollast, “Steady-State Kinetics and Dissolution Mechanism of Albite”, American Journal of Science, 285, 963(1984)
Dahlin, D. C., O’Conner, W. K., Nilsen, D. N., Rush, G. E., Waters, R. P. Tunner, P. C., “A Method for Permanent CO2 Sequestration: Supercritical CO2 Mineral Carbonation”, presented at the seventeenth Annual International Pittsburgh Coal Conference, Pittsburgh, PA, September 11-15(2000)
Drever, J. I., Stillings L. L., “ The Role of Organic Acids in Mineral Weathering”, Colloids and Surfaces A, 120, 167(1997)
Herzog, H. J., Drake, E., Tester, J., Rosenthal, R., “A Research Needs Assessment for The Capture, Utilization, and Disposal of Carbon Dioxide from Fossil Fuel-Fired Power Plants”, DOE/ER-30194,US Department of Energy, Washington, DC(1993)
Houston, E. C., “ Magnesium from Olivine, ” American Institute of Mining and Metallurgical Engineers, Technical Publication No.1828, Class D, Nonferrous Metallurgy, No. 85(1945)
Jou, F. Y., Mather, A. E., Otto, F. D., “The Solubility of CO2 in a 30Mass percent Monoethanolamine Solution”, The Canad. J. Chem. Eng., 73, 140(1995)
Kakizawa M., Yamasaki A., Yanagisawa Y., “A New CO2 Disposal Process via Artificial Weathering of Calcium Silicate Accelerated by Acetic Acid”, Energy, 26, 341(2001)
Ken C., “Long-term Control of Atmospheric Carbon Dioxide : Low-temperature Seafloor Alteration or Terrestrial Silicate-rock Weathering”, American Journal of Science, 295, 1077(1995)
Kojima, T., Nagamine, A., Ueno, Uemiya, S., “Absorption and Fixation of Carbon Dioxide by Rock Weathering”, Energy Conrers. Mgmt, 38, 461(1997)
Kojima, T. , “ CO2 Problem “ , Agune , Tokyo (1994)
Lancker, K. S. Wendt, C. H., Butt, D. P., Joyce Jr. E. L., Sharp, D. H., “Carbon Dioxide Disposal in Carbonate Minerals”, Energy, 20, 1153(1995).
Nagamine, A., Kojima, T., Uemiya, S., “Absorption of CO2 by Rock Weathering”, in Japanese, presented in Tsukuba meeting of Soc. Chem. Eng. Jpn. (1994)
Nesbitt H. W., Young G. M., “ Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations “, Geochim. Et Cosmochim. Acta, 48, 1523(1984)
O’Conner, W. K., D. C. Dahlin, D. N. Nilsen, G. E. Rush, R. P. Waters, P. C. Tunner, “Carbon Dioxide Sequestration by Direct Mineral Carbonation: Results from Recent Studies and Current Status”, Presented at the First National Conference on Carbon Sequestration, Washington, DC, May 14-17(2001)
O’Conner, W. K., D. C. Dahlin, D. N. Nilsen, G. E. Rush, R. P. Waters, P. C. Tunner, „dioxide Sequestration by Direct Mineral Carbonation With Carbonic Acid”, presented at the Prcoceedings of the 25th International Conference on Coal Utilization & Fuel Systems, Coal Technilogy Association, Match 6-9, Clearwater, Florida(2000)
Ozaki, Masahiko, K. Takeuchi, Y. Fujioka, K. Sonoda, Y. Suetake, “Studies on Dispersion of Refrigerant Composition for Muti-Air Conditioners with Non-Azeotropic Refrigerant Mixture”, Technical Review, 35, 2, 36(1998)
Plummer, L. N., Eurybiades B., “The solubilities of Calcite, Aragonite and Vaterite in CO2-H2O Solutions Between 0 and 90℃ , and an Evaluation of Aqueous Model for the System CaCO3-CO2-H2O”, Geochimica et Cosmochimica Acta, 46, 1040 (1982)
Plummer, L. N., Wigley, T. M. L., Parkhurst, D. L., “The Kinetics of Calcite dissolution in CO2-water Systems at 5-60℃ and 0.0-1.0 atm CO2”, Am. J. Sci., 278, 179(1978)
Pokrovesky, O. S., J. Schott, “Kinetics and Mechanism of Forsterite Dissolution at 25oC and pH from 1 to 12”, Geochimica et Cosmochimica Acta, 64, 19, 3313(2000)
Riazi, M. R., A. Faghri, ” Solid dissolution with first-order Chemical Reaction “, Chem. Eng. Sci., vol. 40, no. 8, p.1601-1603 (1984)
Rimstidt, J. D., Dove, P. M., “Mineral Solution Reaction-Rates in a Mixed Flow Reactor-Wollastonite Hydrolysis”, Geochimica et Cosmochimical Acta, 50, 2509(1986)
Shen, K. P., Li, M. H., “Solubility of Carbon Dioxide in Aqueous Mixtures of Monoethanolamine with Methyldiethanolamine”,J.Chem. Eng., 3, 96(1992)
Shin, M. S., Lin, J. P., Shiau, G. Y., “Dissolution Rates of limestones of Different S ources”, Journal of Hazardous Materials, B79, 159(2000)
Suzuki, T., K. Ohtagachi, T. Koidek, “Effect of Gas Flow Rate of CO2 Enriched Air, High CO2 Concentration, and Anaerobic Atmosphere on The Growth of Blue-Green Alga. Anacystis nidalans”, J.Chem. Eng. Jpn, 24, 797(1991)
Tai, Y. D., Chen W. R., Shih, S. M., “Factors affecting Wollastonite Carbonation under CO2 Sipercritical Conditions”, AIchE Journal, 52, 292 (2006)
Teir, S., Revitzer H., Eloneva S., “Dissolution of Natural Sepentinite in Mineral and Organic Acids”, International Journal Mineral Processing, 83, 36(2007).
Walker, J. C. G., Hays, P. B., Kasting, J. F., “ A Negative Feedback Mechanism for the Long-term Stabilization of the Earth’s Surface Temperature “,Journal of Geophysical Research, 86, 9776(1981)
Watanabe, Y., N. Ohmura, H. Saiki, “Isolation and Determination of Cultural Characteristics of Microalage Which Functions under CO2 Enriched Atmosphere”, Energy Convers. Mgmt., 33, 545(1992)
Wu C. S. J., Sheen J.D., Chen S. Y., Fan Y. C., “Feasibility of CO2 Fixation via Artificial Rock Weathering”, Ind. Eng. Chem. Res., 40, 3902(2001)
Xie, Z., J. V. Walther, “Dissolution Stochiometry and Apsorption of Alkaline Earth Elements to the Acid-Reacted Wollastonite Surface at 25oC”, Geochimica et Cosmochimica acta, 58, 12, 2587(1994)
林志平, “石灰石溶解之研究”, 碩士論文, 國立台灣大學, 台北, 台灣 (1998)。
卓啟正, “矽酸鹽礦物泥漿吸收二氧化碳之研究-矽酸鹽礦物溶解之研究”, 碩士論文, 國立台灣大學, 台北, 台灣(2000)。
劉韻萍, “矽酸鹽礦石溶解之研究”, 碩士論文, 國立台灣大學, 台北, 台灣(2001)。
林俊佑, “矽酸鹽礦石於水溶液中吸收二氧化碳之研究-矽酸鹽礦石之溶解”, 碩士論文, 國立台灣大學, 台北, 台灣(2002)。
陳威仁, “超臨界二氧化碳轉化為碳酸鹽之探討”, 碩士論文, 國立台灣大學, 台北, 台灣(2003)。
蘇乾元, “鈣矽石轉換成碳酸鹽的改良程序”, 碩士論文, 國立台灣大學, 台北, 台灣(2007)。
林武煌, “地球大氣之二氧化碳濃度與氣溫變化”, 台電工程月刊, 81. 7, p.31-39。
陳茂松, “CO2回收及其處理技術”, 台電工程月刊, 81. 7, p.54-59。
台灣省礦物局, “台灣主要礦物與岩石”, (1996)。
戚啟勳, “地球科學”,(1978)。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42262-
dc.description.abstract本研究探討在常壓下以二氧化碳和鈣矽石漿液產生碳酸鈣而捕捉二氧化碳的可行性。考慮的操作變數包含漿液固體含量、反應溫度、攪拌轉速、二氧化碳流量、溶液pH值及漿液之組成。使用礦石粒徑為22μm。
由實驗結果觀察得知,攪拌轉速和二氧化碳流量對反應沒有影響。鈣矽石轉化率隨漿液固體含量增加而降低。反應溫度有一最佳值,約為60oC。及固體含量0.4%的去離子水漿液通入一大氣壓的二氧化碳,600分鐘後轉化率可達43.9%; 600分鐘後,停止二氧化碳通入並添加氫氧化鈉使pH值上升至9,可將轉化率提升至56.8%。使用0.64M碳酸氫納�1M氫氧化鈉溶液配置漿液,可以提升轉化率,轉化率可達34.2%。
鈣矽石在水相中的碳酸化反應包括二氧化碳的水解,鈣矽石的溶解及碳酸鈣的生成,其反應速率決定步驟為鈣矽石的溶解。
使用1M的醋酸溶液先將鈣矽石溶解2小時,再使用氫氧化鈉中和醋酸並通入二氧化碳,可得到84.5%的碳酸化轉化率,但此程序會消耗大量醋酸和氫氧化鈉。
zh_TW
dc.description.abstractThe feasibility of using the slurry of wollastonite to capture CO2 to form CaCO3 at 1atm was studied. The effects of the operation variables, including the solid content, reaction temperature, stirrer speed, flow rate of carbon dioxide, solution pH, and solution chemistry on the carbonation of wollastonite(22μm) were investigated.
The stirrer speed and the flow rate of carbon dioxide affected little the carbonation reaction of wollastonite. The conversion decreased with increasing solid content of the slurry. The optimum reaction temperature was about 60oC. A conversion of 43.9% was achieved when the slurry of wollastonite (slurry solid content: 0.4% in deionized water) was reacted at 60oC and 1atm for 600minutes; the conversion was raised to 56.8% when NaOH was then added to raise the solution pH to 9. The use of 0.64M NaHCO3/1M NaCl Solution instead of deionized water increased the extent of carbonation. The conversion was raised to 34.2%.
The carbonation of wollastonite in aqueous phase involved the hydrolysis of carbon dioxide, the dissolution of wollastonite, and the precipitation of calcium carbonate. The dissolution of wollastonite was found to be the rate determining step.
A conversion of 84.5% was achieved when wollastonite was dissolved in 1M acetic acid for 2 hours and NaOH was then added to keep pH at 9 while CO2 was bubbled; but this process consumed agreat amounts of acetic acid caustic soda.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:56:10Z (GMT). No. of bitstreams: 1
ntu-97-R95524033-1.pdf: 2324358 bytes, checksum: ab831221a6da14e3804ae0a30a33a789 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents中文摘要
英文摘要
符號說明
圖表索引……………………………………………………Ⅰ
第一章 緒論…………………………………………………1
1-1 研究背景…………………………………………………1
1-2 本研究之目標……………………………………………2
第二章 文獻回顧……………………………………………3
2-1 二氧化碳回收分離技術…………………………………3
2-2 二氧化碳與矽酸鹽礦石風化……………………………4
2-3 矽酸鹽礦石溶解…………………………………………9
2-4 二氧化碳、碳酸鈣和水系統濃度平衡………………17
2-5 矽酸鹽類礦石的碳酸化反應……………………………24
第三章 實驗部分…………………………………………30
3-1 試樣的製備………………………………………………30
3-1-1 試藥的來源………………………………………30
3-1-2 試樣製備方法……………………………………31
3-2 物性與成份分析…………………………………………32
3-2-1 粒徑測量…………………………………………32
3-2-2 BET比表面積測量………………………………32
3-2-3 熱重分析與熱差分析儀(TGA)…………………33
3-2-4 EDTA滴定鈣含量…………………………………33
3-2-5 X-ray繞射分析……………………………………34
3-2-6 掃瞄式電子顯微鏡(SEM)觀察…………………34
3-3 實驗裝置…………………………………………………34
3-3-1 pH計………………………………………………35
3-3-2 攪拌槽反應器……………………………………35
3-3-3 實驗系統溫度控制………………………………35
3-3-4 攪拌裝置…………………………………………38
3-3-5 實驗系統二氧化碳氣體進料控制………………38
3-4 實驗操作步驟…………………………………………39
3-4-1 未調整pH值之實驗………………………………39
3-4-2 不同固體收集方式之實驗………………………40
3-4-3 調整pH值之實驗…………………………………40
3-4-4 階段式調整pH值之實驗…………………………40
3-4-5 使用碳酸氫鈉�氯化鈉之實驗…………………41
3-4-6 漿液添加硝酸之實驗……………………………41
3-4-7 以醋酸代替碳酸溶解鈣矽石之實驗……………41
3-4-8 鈣矽石碳酸化轉化率及二氧化碳捕捉率之量測41
第四章 結果與討論…………………………………………47
4-1 二氧化碳�水和二氧化碳�碳酸鈣�水系統平衡pH值之探討……………………47
4-1-1 溫度對二氧化碳�水系統平衡pH值的影響……………………………47
4-1-2溫度對二氧化碳�碳酸鈣�水系統平衡pH值的影響……………………………47
4-2 未控制pH值之鈣矽石漿液碳酸化反應………………52
4-2-1 攪拌速率的影響…………………………………52
4-2-2 二氧化碳流量的影響……………………………55
4-2-3 溫度的影響………………………………………59
4-2-4 漿液固液比的影響………………………………64
4-3 收集固體方式不同的影響………………………………69
4-4 控制pH值之鈣矽石漿液碳酸化反應…………………71
4-4-1 調整pH值的影響…………………………………71
4-4-2 溫度的影響………………………………………72
4-4-3 漿液固液比的影響………………………………72
4-4-4 階段式調整pH值的影響…………………………75
4-5 碳酸氫鈉/氯化鈉溶液對碳酸化反應轉化率的影響…75
4-6 添加硝酸對碳酸化反應轉化率的影響…………………80
4-7 以醋酸溶解鈣矽石之實驗………………………………83
4-8 鈣矽石反應前後之X-ray繞射分析…………………87
4-9 鈣矽石反應前後之SEM觀察…………………………92
第五章 結論………………………………………………101
參考文獻……………………………………………………103
dc.language.isozh-TW
dc.title以鈣矽石漿液捕捉二氧化碳之研究zh_TW
dc.titleCapture of Carbon Dioxide by Slurry of Wollastoniteen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee戴怡德(Yi-Der Tai),楊憲昌
dc.subject.keyword碳酸化,二氧化碳捕捉和隔離,鈣矽石,zh_TW
dc.subject.keywordcarbonation,carbon dioxide,carbon dioxide capture and sequestration,wollastonite,en
dc.relation.page109
dc.rights.note有償授權
dc.date.accepted2008-08-04
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
2.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved