請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42153完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周佳 | |
| dc.contributor.author | Yi-Chun Liao | en |
| dc.contributor.author | 廖怡君 | zh_TW |
| dc.date.accessioned | 2021-06-15T00:49:38Z | - |
| dc.date.available | 2011-08-20 | |
| dc.date.copyright | 2011-08-20 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-14 | |
| dc.identifier.citation | Allen, M. R., and W. J. Ingram, 2002: Constraints on future changes in climate and the hydrologic cycle. Nature, 419, 224-232.
Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J Climate, 17, 1517-1528. Chou, C., and C. A. Chen, 2010: Depth of Convection and the Weakening of Tropical Circulation in Global Warming. J Climate, 23, 3019-3030. Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J Climate, 19, 4605-4630. Dai, A., and K. E. Trenberth, 2004: The diurnal cycle and its depiction in the Community Climate System Model. J Climate, 17, 930-951. Dai, A., G. A. Meehl, W. M. Washington, T. M. L. Wigley, and J. M. Arblaster, 2001: Ensemble simulation of twenty-first century climate changes: Business-as-usual versus CO2 stabilization. Bulletin of the American Meteorological Society, 82, 2377-2388. Douville, H., F. Chauvin, S. Planton, J. F. Royer, D. Salas-Melia, and S. Tyteca, 2002: Sensitivity of the hydrological cycle to increasing amounts of greenhouse gases and aerosols. Climate Dynamics, 20, 45-68. Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys Res Lett, 32, L17706, doi:10.1029/2005GL023272. Folkins, I., and C. Braun, 2003: Tropical rainfall and boundary layer moist entropy. J Climate, 16, 1807-1820. Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J Climate, 19, 5686-5699. Holloway, C. E., and J. D. Neelin, 2007: The convective cold top and quasi equilibrium. J Atmos Sci, 64, 1467-1487. Holloway, C. E., and J. D. Neelin, 2009: Moisture Vertical Structure, Column Water Vapor, and Tropical Deep Convection. J Atmos Sci, 66, 1665-1683. Houze, R. A., 1989: Observed Structure of Mesoscale Convective Systems and Implications for Large-Scale Heating. Q J Roy Meteor Soc, 115, 425-461. Kaufman, Y. J., D. Tanre, and O. Boucher, 2002: A satellite view of aerosols in the climate system. Nature, 419, 215-223. Kharin, V. V., F. W. Zwiers, X. B. Zhang, and G. C. Hegerl, 2007: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Climate, 20, 1419-1444. Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. Journal of Applied Meteorology, 39, 1965-1982. Lau, K. M., H. T. Wu, and S. Bony, 1997: The role of large-scale atmospheric circulation in the relationship between tropical convection and sea surface temperature. J Climate, 10, 381-392. Lenderink, G., and E. Van Meijgaard, 2008: Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat Geosci, 1, 511-514. Lin, B., B. A. Wielicki, P. Minnis, L. Chambers, K. M. Xu, Y. X. Hu, and A. Fan, 2006: The effect of environmental conditions on tropical deep convective systems observed from the TRMM satellite. J Climate, 19, 5745-5761. Lin, I. I., W. T. Liu, C. C. Wu, J. C. H. Chiang, and C. H. Sui, 2003: Satellite observations of modulation of surface winds by typhoon-induced upper ocean cooling. Geophys Res Lett, 30, doi:10.1029/2002GL015674. Meehl, G. A., W. D. Collins, B. A. Boville, J. T. Kiehl, T. M. L. Wigley, and J. M. Arblaster, 2000: Response of the NCAR climate system model to increased CO2 and the role of physical processes. J Climate, 13, 1879-1898. Meehl, G. A., T.F. Stocker, W.D. Collins, P. Friedlingstein, A.T. Gaye, J.M. Gregory, A. Kitoh, R. Knutti, J.M. Murphy, A. Noda, S.C.B. Raper,I.G. Watterson, A.J. Weaver and Z.-C. Zhao, 2007: Global Climate Projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S.,D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Myoung, B., and J. W. Nielsen-Gammon, 2010: Sensitivity of Monthly Convective Precipitation to Environmental Conditions. J Climate, 23, 166-188. Neelin, J. D., O. Peters, and K. Hales, 2009: The Transition to Strong Convection. J Atmos Sci, 66, 2367-2384. O'Gorman, P. A., and T. Schneider, 2009: The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proceedings of the National Academy of Sciences of the United States of America, 106, 14773-14777. Pall, P., M. R. Allen, and D. A. Stone, 2007: Testing the Clausius-Clapeyron constraint on changes in extreme precipitation under CO2 warming. Climate Dynamics, 28, 351-363. Peters, O., and J. D. Neelin, 2006: Critical phenomena in atmospheric precipitation. Nat Phys, 2, 393-396. Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001: Aerosols, climate, and the hydrological cycle. Science, 294, 2119-2124. Reynolds, R. W., C. L. Gentemann, and F. Wentz, 2004: Impact of TRMM SSTs on a Climate-Scale SST Analysis. J Climate, 17, 2938-2952. Ricciardulli, L., and F. J. Wentz, 2004: Uncertainties in sea surface temperature retrievals from space: Comparison of microwave and infrared observations from TRMM. J Geophys Res-Oceans, 109, C12013, doi:10.1029/2003JC002247. Rosenfeld, D., 2000: Suppression of rain and snow by urban and industrial air pollution. Science, 287, 1793-1796. Saha, S., and Coauthors, 2010: The Ncep Climate Forecast System Reanalysis. Bulletin of the American Meteorological Society, 91, 1015-1057. Soden, B. J., D. L. Jackson, V. Ramaswamy, M. D. Schwarzkopf, and X. L. Huang, 2005: The radiative signature of upper tropospheric moistening. Science, 310, 841-844. Sud, Y. C., G. K. Walker, Y. P. Zhou, and W. K. M. Lau, 2008: Influence of local and remote sea surface temperatures on precipitation as inferred from changes in boundary-layer moisture convergence and moist thermodynamics over global oceans. Q J Roy Meteor Soc, 134, 147-163. Sun, Y., S. Solomon, A. Dai, and R. W. Portmann, 2006: How often does it rain? J Climate, 19, 916-934. Trenberth, K. E., 1999: Conceptual framework for changes of extremes of the hydrological cycle with climate change. Climatic Change, 42, 327-339. Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons, 2003: The changing character of precipitation. Bulletin of the American Meteorological Society, 84, 1205-1217. Waliser, D. E., 1996: Formation and limiting mechanisms for very high sea surface temperature: Linking the dynamics and the thermodynamics. J Climate, 9, 161-188. Waliser, D. E., and N. E. Graham, 1993: Convective Cloud Systems and Warm-Pool Sea-Surface Temperatures - Coupled Interactions and Self-Regulation. Journal of Geophysical Research-Atmospheres, 98, 12881-12893. Wang, B., and Q. H. Ding, 2006: Changes in global monsoon precipitation over the past 56 years. Geophys Res Lett, 33, L06711, doi:10.1029/2005GL025347. Wang, B., and Q. H. Ding, 2008: Global monsoon: Dominant mode of annual variation in the tropics. Dynamics of Atmospheres and Oceans, 44, 165-183. Wentz, F. J., C. Gentemann, D. Smith, and D. Chelton, 2000: Satellite measurements of sea surface temperature through clouds. Science, 288, 847-850. Wentz, F. J., L. Ricciardulli, K. Hilburn, and C. Mears, 2007: How much more rain will global warming bring? Science, 317, 233-235. Williams, K. D., C. A. Senior, and J. F. B. Mitchell, 2001: Transient climate change in the Hadley Centre models: The role of physical processes. J Climate, 14, 2659-2674. WMO, 2003: Guide to the WMO table driven code form used for the representation and exchange of regularly spaced data in binary form: FM 92 GRIB Edition 2. Technical Report, World Meteorological Organization, 99 pp. Wu, R. G., and B. Wang, 2000: Interannual variability of summer monsoon onset over the western North Pacific and the underlying processes. J Climate, 13, 2483-2501. Wu, R. G., and B. P. Kirtman, 2007: Regimes of seasonal air-sea interaction and implications for performance of forced simulations. Climate Dynamics, 29, 393-410. Yu, J. Y., C. Chou, and J. D. Neelin, 1998: Estimating the gross moist stability of the tropical atmosphere. J Atmos Sci, 55, 1354-1372. Zhang, C. D., 1993: Large-Scale Variability of Atmospheric Deep Convection in Relation to Sea-Surface Temperature in the Tropics. J Climate, 6, 1898-1913. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42153 | - |
| dc.description.abstract | 本研究分析熱帶海洋的降雨特徵,從海表面溫度(Sea Surface Temperature, SST)及大氣熱力環境場改變兩部分著手,討論環境改變時降雨的變化。
在SST與降雨的關係上,過去研究中指出降雨與SST有正比與反比關係。當SST大於26℃,小於30℃,SST與降雨成正比關係,意味著SST在海氣交互作用中扮演主動的角色。而當SST超過30℃,SST與降雨成反比關係,SST則扮演被動的角色。然而過去研究降雨與SST關係多以月平均以及低解析度資料進行分析,並非接近實際情況的降雨與SST。在此,我們分析高解析的日平均資料顯示降雨與SST為正比關係,而降雨對SST的影響則有延遲的效應,因此,以月平均資料的分析中出現SST與降雨的反比關係。 大氣環境中,降雨與水氣的關係相當密切,而大氣中水氣的變化又與溫度有關。我們選取夏季與冬季兩個水氣條件有差異的區域:季風區,討論在溫度改變時環境對於降雨的影響。當溫度增加,水氣增加,接近Clausius-Clapeyron方程得出的7%,然而強降雨的增加率遠高於水氣的變化,主要與垂直速度的增加有關。而大氣溫度在垂直結構上的改變,使得大氣穩定度產生變化,可能改變垂直速度增加率。而模式的模擬中,不同模式模擬的垂直速度差異很大,可能是模式間模擬的降雨增加率有差異的原因。 | zh_TW |
| dc.description.abstract | The characteristics of precipitation in tropical oceans were examined in this study. We focused on the influence of the atmospheric thermal condition and the boundary condition, such as sea surface temperature (SST).
Previous studies show that the relationship between precipitation and SST could be either positive or negative. When SST is between 26 ℃ and 30℃, the correlation is positive, which SST plays an active role in the air-sea interaction. On the other hand, a negative correlation appears with SST greater than 30℃, so SST plays a passive role. The relationship between precipitation and SST discussed above is usually obtained from monthly data with a relatively coarse resolution, so it might not be able to represent a realistic relationship between these two variables. Here we examine the relationship between precipitation and SST by using daily satellite data with a high spatial resolution. Only a positive correlation is found between SST and precipitation. Precipitation shows a delayed impact on SST, i.e. a cooling 2-3 days after the peak of precipitation. This delayed impact might be the reason causing the negative correlation between SST and precipitation in monthly data with a relatively coarse resolution. The strength of precipitation is related to water vapor, which is strongly linked to temperature. We examined the differences of precipitation between summer and winter. We focus on monsoon regions, where moisture presumably varies a lot between these two seasons. When temperature increases, water vapor in the atmosphere increases by about 7%/K, which is close to the Clausius-Clapeyron thermal expansion under the condition that the relative humidity is constant. The increased rate of extreme precipitation is much greater than the increase in water vapor, which implies that vertical velocity is more important. The vertical structure of temperature differences between summer and winter is consistent with the atmospheric stability, which can affect the strength of upward motion. In model simulations, changes in extreme precipitation vary a lot among models, which might be due to differences in vertical velocity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T00:49:38Z (GMT). No. of bitstreams: 1 ntu-100-R98229004-1.pdf: 26214053 bytes, checksum: 6d8746985a7d4125f2e17c6837c7d7da (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 誌謝 II
摘要 III ABSTRACT IV 目錄 VI 圖表目錄 IX 第一章 前言 1 1.1 海表面溫度與降雨 1 1.2 大氣環境與降雨 2 1.3 研究動機與目的 3 第二章 資料來源與分析方法 5 2.1 資料來源 5 2.1.1 觀測與重分析資料 5 2.1.1.1 降雨 5 2.1.1.2 其他 6 2.1.2 模式資料 6 2.2 研究區域 7 2.3 分析方法 8 第三章 海表面溫度與降雨的關係 9 3.1 海表面溫度與降雨量的關係 9 3.2 日、月降雨量與SST關係不同的原因 9 3.2.1 月降雨量中的降雨頻率與強度 10 3.2.2 海洋延遲作用 11 3.3 討論 12 第四章 大氣熱力環境改變對降雨強度的影響 14 4.1 夏季與冬季的降雨強度 14 4.1.1 觀測資料 14 4.1.2 重分析資料 15 4.2 大尺度環境場對於降雨強度的影響 16 4.3 觀測與重分析資料降解析度的分析 19 4.3.1 降雨 19 4.3.2 大尺度環境場 20 4.4 氣候模式的降雨強度與大尺度環境場的關係 22 4.4.1 夏季與冬季的降雨強度 22 4.4.2 大尺度環境場對於降雨強度的影響 23 第五章 討論與結論 27 5.1 討論 27 5.2 結論 27 第六章 問題與討論 29 參考文獻 31 圖表 37 附錄1 資料前處理 64 附錄1.1 海表面溫度-近陸地異常高海溫的影響 64 附錄1.2 降雨-觀測與重分析對應於垂直速度 65 附錄1.3 垂直速度-重分析資料的極限 66 附錄2 降雨的其他特性-降雨頻率及變異度 72 附錄2.1 降雨頻率 72 附錄2.2 變異度 73 | |
| dc.language.iso | zh-TW | |
| dc.subject | 降雨 | zh_TW |
| dc.subject | 水氣 | zh_TW |
| dc.subject | 溫度 | zh_TW |
| dc.subject | Water vapor | en |
| dc.subject | Precipitation | en |
| dc.subject | Temperature | en |
| dc.title | 熱帶海洋的降雨特徵 | zh_TW |
| dc.title | Characteristics of Precipitation in Tropical Oceans | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林依依,余嘉裕,楊明仁 | |
| dc.subject.keyword | 降雨,溫度,水氣, | zh_TW |
| dc.subject.keyword | Precipitation,Temperature,Water vapor, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-15 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
| 顯示於系所單位: | 大氣科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 25.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
