Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42136
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張龍生(Loong-Sheng Chang)
dc.contributor.authorMei-Jiuan Leeen
dc.contributor.author李美娟zh_TW
dc.date.accessioned2021-06-15T00:48:43Z-
dc.date.available2010-09-02
dc.date.copyright2008-09-02
dc.date.issued2008
dc.date.submitted2008-08-20
dc.identifier.citation王聞淨。2000。番木瓜兩性株花器形成之可變動性。國立台灣大學園藝學研究所碩士論文 p.76。
王德男。1980。影響木瓜兩性株株型表現之因子研究。中華農業研究 29: 225-237。
王德男。1991。台灣木瓜栽培之回顧與展望。台灣果樹之生產及研究發展研討會專刊 p.357-373。
謝明憲。1997。品種、全互交集溫度於番木瓜兩性株性型之表現。國立台灣大學園藝學研究所碩士論文 p.91。
Ackerman, C. M., Q. Yu, S. Kim, R. E. Paull, P. H. Moore and R. Ming. 2008. B-class MADS-box genes in trioecious papaya: two paleoAP3 paralogs, CpTM6-1 and CpTM6-2, and a PI ortholog CpPI. Planta 227: 741-753.
Allan, P., J. Mc Chlery and D. Biffs. 1987. Environmental dffects on clonal female and male Carica papaya L. plants. Scientia Horticulturea. 32: 221-232.
Alvarezm L., C. L. Guli, X. H. Yu and D. R. Smyth. 1992. Terminal flower: A gene affecting inflorescence development in Arabidopsis thaliana. Plant J. 2: 103-106.
Amasino, R. M. 1996. Control of flowering time in plant. Curr. Opin. Genet. Dev. 6: 480-487.
Angenent, G.. C. and L. Colombo. 1996. Molecular control of ovule development. Trends Plant Sci. 1: 228-232.
Angenent, G.. C., M. Busscher, J. Franken, H. J. M. Dons and A. J. van Tunen. 1995a. Functional interaction between the homeotic genes fbp1 and pMADS1 during petunia floral organogenesis. Plant Cell 7: 505-516.
Angenent, G.. C., J. Franken, M. Busscher, A. van Dijken, J. L. van Went, H. J. M. Dons and A. J. van Tunen. 1995b. A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell 7: 1569-1582.
Araki, T. and Y. Komeda. 1993. Analysis of the role of the late-flowering locus, GI, in the flowering of Arabidopsis thaliana. Plant J. 3: 231-239.
Arkle, T. D. and H. Y. Nakasone. 1984. Floral differentiation in the hermaphroditic papaya. Hortscience 19: 832-834.
Aubert, D., L. Chen, Y. -H. Moon, D. Martin, L. A. Castle, C. -H.Yang and Z. -R. Sung. 2001. EMF1, a novel protein involved in the control of shoot architecture and flowering in Arabidopsis. Plant Cell 13: 1865-1875.
Aukerman, M. J., I. Lee, D. Weigel and R. M. Amasino. 1999. The Arabidopsis flowering-time gene LUMINIDEPENDENS is expressed primarily in regions of cell proliferation and encodes a nuclear protein that regulates LEAFY expression. Plant J. 18: 195-203.
Awada, M. 1958. Relationship of minimum temperature and growth rate with sex expression of papaya plants (Carica papaya L.). Hawaii Agr. Exp. Station Tech. Bull. 38: 3-16.
Awada, M. 1967. Effects of defoliation and defloration of sex expression and growth of papaya(Carica papaya L.). Am. Soc. Hort. Sci. 9: 138-143.
Awada, M. and W. Ikeda. 1957. Effects of water and nitrogen application on composition, growth, sugar in fruit, yield, and sex expression of the papaya plants (Carica papaya L.). Haw. Arg. Expt.Sta. Tech. Bull. 33: 1-13.
Awada, M. 1958. Relationships of minimum temperature and growth rate with sex expression of papaya plants. Hawaii Agr. Exp. Station. Tech. Bull. 38: 1-16.
Batty, N. H. and F. Tooke. 2002. Molecular control and variation in the floral transition. Curr. Opin. Plant Biol. 5: 62-68.
Blázquez, M. A. and D. Weigel. 2000. Integration of floral inductive signals in Arabidopsis. Nature 404: 889-892.
Bowman, J. L., D. R. Smyth and E. M. Meyerowitz. 1991. Genetic interaction among floral homeotic genes of Arabidopsis. Development 112: 1-20.
Bowman, J. L., J. Alvarez, E. M. Meyerowitz and D. R. Smyth. 1993. Control of flower development in Arabidopsis thaliana By APETALA1 and interacting gene. Development 119: 721-743.
Bradley D., O. Ratcliffe, C. Vincent, R. Carpenter and E. Coen. 1997. Inflorescence commitment and architecture in Arabidopsis. Science 275: 80-83.
Bracale, I., E. Caporali, M. G. Galli, C. Longo, G. Marziani-Longo, G. Rossi, A. Spada, E. Soave, A. Falavigna, F. Raffaldi, E. Maestri, F. M. Restivo and F. Tassi. 1991. Sex determination and differentiation in Asparagus officinalis L. Plant Sci. 80: 67-77.
Bridges, C. B. 1925. Sex in relation to chromosomes and ages. Am. Naturalist 59: 127-137.
Chasan, R. and V. Walbot. 1993. Mechanisms of plant reproduction: questions and approaches. Plant Cell. 5: 1139-1146.
Chailakhyan, M. K. and V. N. Khrianin. 1987. Sexuality in plants and its hormonal regulation. Springer-Verlag. New York.
Chiu, C. -T., C. -R. Yen, L. -S. Chang, C. -H. Hsiao and T. -S. Ko. 2003. All hermaphrodite progeny are derived by self-pollinating the Sunrise papaya mutant. Plant Breed. 122: 431-434.
Clarke, J. H. and C. Dean. 1994. Mapping FRI, a locus controlling flowering time and vernalization response. Mol. Gen. Genet. 242: 81-89.
Clarke, J. H., R. Mithen, J. K. M. Brown and C. Dean. 1995. QTL analysis of flowering time in Arabidopsis thaliana. Mol. Gen. Genet.248: 278-286.
Clay, K. 1993. Size-dependent gender change in green dragon (Arisaema dracontium; Araceae) .Am. J. Bot. 80: 769-777.
Coen, E. S. and E. M. Meyerowitz. 1991. The war of the whorls: Genetic interactions controlling flower development. Nature 353: 31-37.
Coen, E. S., J. m. Romero, S. Doyle, R. Elliott, G. Murphy and R. Carpenter. 1990. Floricarla: a homeotic gene required for flower development in Antirrhinum majus. Cell 63: 1311-1322.
Colombo, L., J. Franken, E. Koetje, J. van Went, H. J. M. Dons, G. C. Angenent and A. J. van Tunen. 1995. The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7: 1859-1968.
Colombo, L., J. Franken, R. Alexander, R. van der Krol, P. E. Wittich,, H. J. M. Dons and G. C. Angenent. 1997a. Down regulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development. Plant Cell 9: 703-715.
Colombo, L., A. J. van Tunen, H. J. M. Dons and G. C. Angenent. 1997b. Molecular control of flower development in Petunia hybrida. Adv. Bot. Res. 26: 229-250.
Coupland, G.. 1995. Genetic and environmental control of flowering time in Arabidopsis. Trends Genet. 11: 393-397.
Dauphin-Guerin, B., G. Teller and B. Durand. 1980. Different endogenous cytokinins between male and female Mercurialis annua L. Planta. 148: 124-129.
Durand, R. and B. Durand. 1985. Mercurialis. CRC Handbook of flowering, Vol. III. Halevy, A. H., Ed. CRC Press, Boca Raton, Fla. p.376-387.
Durand, B. and R. Durand, 1991. Sex determination and reproductive organ differentiation in Mercurialis. Plant Sci. 80: 49-65.
Dellaporta, S. and A. Calderon-Urrea. 1993. Sex determination in flowering plants. Plant Cell 5: 1241-1251.
Deputy J. C., R. Ming, H. Ma, Z. Liu. M. M. M. Fitch. 2002. Molecular markers for sex determination in papaya (Carica papaya L.). Theor. Appl. Genet. 106: 107-111.
Diggle, P. K. 1994. The expression of andromonoecy in Solanum hirtum (Solananceae) : phynotypic plasiticity and ontogenetic contingency. Am. J. Bot. 81 : 1354-1356.
Diggle, P. K. 1997. Ontogenetics contingency and floral morphology: the effect of architecture and resource limitation. J. Plant Sci. 158 (6 Suppl) : S99-S107.
Doebley, J. 1992. Mapping the genes that made maize. Trends Genet. 8: 302-309.
Drews, G.. N., J. L. Bowman and E. M. Meyerowitz. 1991. Negative regulation of the Arabidopsis thaliana gene Agamous by the Apetal2 product. Cell 65: 991-1002.
Egea-Cortines, M., Saedler, Hand Sommer, H. (1999).Ternary complex formation between MADS-box proteins SQUAMOSA, DEFICIENS, and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 18: 5370-5379.
Eimert, K., S. -W. Wang, W. -L. Lue and J. Chen. 1995. Monogenic recessive mutations causing both late floral initiation and excess starch accumulation in Arabidopsis. Plant Cell 7: 1703-1712.
Flanagan, C. A., Y. Hu and H. Ma. 1996. Specific expression of the AGL1 MADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule development. Plant J. 10: 343-353.
Fowler, S., K. Lee, H. Onouchi, A. Samach, K. Richardson, B. Morris, G.. Coupland and J. Putterill. 1999. GIGANTEA: a circadian clock controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane spanning domains. EMBO J. 18: 4679-4688.
Frankel, R. K. and E. Galun. 1977. Pollination mechanism and the application in plant breeding . Springer-Verlag. Heideberg.
Franken, A. A. 1970. Sex characteristics and inheritance of sex in asparagus (Asparagus officinalis L.). Euphytica 19: 277-278.
Ghosh, S. P. and S. P. Sen. 1975. The modification of sex expression in papaya ( Carica papaya L.). J. Hort. Sci. 50: 91-96.
Chailakhyan, M. K. and V. N. Khrianin. 1987. Sexuality in plants and its hormonal regulation. Springer-Verlag. New York.
Giacometii, D. C. 1987. Papaya breeding. Acta Hortic. 196: 53-60.
Goto, K. and E. M. Meyerowitz. 1994. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8: 1548-1560.
Guo, H., H. Yang, T. C. Mockler and C. Lin. 1998. Regulation of flowering time by Arabidopsis photoreceptors. Science 279: 1360-1363.
Gustafson-Bown C., B. Savedge and M. F. Yanofasky. 1994. Regulation of the Arabidopsis floral homeotic gene APETALA1. Cell 76: 131-143.
Hanks, S. K., A. M. Quinn and T. Hunter. 1988. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42-52.
Hansen, D. J., S. K. Bellman and R. M. Sacher. 1976. Gibberellic controlled sex expression in corn tassel. Crop Sci. 16: 371-374.
Hicks, K. A., T. M. Albertson and D. R. Wagner. 2001. EARLY FLOWERING3 encodes a novel protein that regulates circadian clock function and flowering in Arabidopsis. Plant Cell 13: 1281-1292.
Hirayama, T. and A. Oka. 1992. Novel protein kinase of Arabidopsis thaliana (APK1) that phosphorylates tyrosine, serine and threonine. Plant Mol. Biol. 20:653-662.
Hofmeyr J. D. J. 1967. Some genetic breeding aspects of Carica papaya L. Agron. Trop. 17: 345-351.
Hofmeyr J. D. J. 1939. Sex reversal in Carica papaya L. S. Afr. J. Sci. 26: 286-287.
Hofmeyr J. D. J. 1938. Genetical studies of Carica papaya L. I. The inheritance and relation of sex and certain plant characteristics. II. Sex reversal and sex forms. S. Afr. Dept. Agri and Sci. Bull. No. 187:64.
Honma, T. and K. Goto. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525-529.
Hopkins, W. G. 2003. Introduction to Plant Physiology. John Wiley Press, Hoboken.
Horovitz, S. and H. Jimenez. 1967. Cruzamientos interespecificos e intergenericos en caricaceas y sus implicaciones fitotechicas. Agron. Trop. 17: 323-343.
Huang, H., Y. Mizukame, Y. Hu and H. Ma. 1993. Isolation and characterization of the binding sequences for the product of the Arabidopsis floral homeotic gene AGAMOUS. Nucl. Acid Res. 21: 4769-4776.
Hwang, I. and H. M. Goodman. 1995. An Arabidopsis thanliana root-specific kinase homolog is induced by dehydration, ABA and NaCl. Plant J. 8: 37-43.
Irish, V.F. and I. M. Sussex. 1990. Function of the apetal-1 gene during Arabidopsis floral development. Plant Cell 2: 741-753.
Irish, E. E., J. Langdale and T. M. Nelson. 1994. Interactions between tassel seed genes and other sex determing genes in maize. Dev. Genet. 15: 155-171.
Irish, E. E. and T. Nelson. 1989. Sex determination in monoecious and dioecious plants. Plant Cell 1: 737-744.
Ito, T., N. Takahashi, Y. Shimura and K. Okada. 1997. A serine/threonine protein kinase gene isolated by an in vivo biding procedure using the Arabidopsis floral homeotic gene product, AGAMOYS. Plant Cell Physiol. 38: 248-258.
Jack, T. 2001a. Plant development going MSDA. Plant Mol. Biol. 46: 515-520.
Jack, T. 2001b. Relearning our ABCs: new twists on an old model. Trends Plant Sci. 6: 310-316.
Jack, T., L. L. Brockman and E. M. Meyerowitz. 1992. The homeotic gene APETAL3 of Arabidopsis thaliana endoces a MADS bos and is espressed in petals and stamens. Cell 68: 683-688.
Jofuku, K.D., B. G.. den Boer, E. M. Montagn and J. K. Okamuro. 1994. Control of Arabidopsis flower and seed development by the homeotic gene APETAL2. Plant Cell 6: 1211-1225.
Jonak, C., E. H-Bors and H. Hirt. 1995. Inflorescenct-specific expression of AtK-1, a novel Arabidopsis thaliana homologue of shaggy/glycogen kinase-3. Plant Mol. Biol. 27: 217-221.
Kempin, S. A., B. Savidge and M. F. Yanofsky. 1995. Molecular Basis of the cauliflower phenotype in Arabidopsis. Science 267: 522-525.
Kobayashi, Y., H. Kaya, K. Goto, M. Iwabuchi and T. Araki. 1999. A pair of related genes with antagonistic roles in mediating flowering signals. Science 286: 1960-1962.
Koornneef, M., C. J. Hanhart, and J. H. van der Veen. 1991. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229: 57-66.
Koornneef, M., Alonso-Blanco, A. J. Peeters and W. Soppe. 1998. Genetic control of flowering time in Arabidopsis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 345-370.
Kvarnheden, A., K. Tandre and P. Engstrom. 1995. A cdc2 homologue and closely related processed retropseudogenes from Norway spruce. Plant Mol. Biol. 27: 391-403.
Lange,A. H. 1961a. Factor affecting sex changes in the flowers of Carica papaya L. Proc. Am. Soc. Hort. Sci. 77: 252-264.
Lange, A. H. 1961b. The effect of 2.3-dichloroisobutyrate and 2.3- dichloropropionate on the sex expression of Carica papaya L. Proc. Am. Soc. Hortic. Sci. 78: 218-224.
Lazarte, J. and E. Palser. 1979. Morphology, vascurlar anatomy any embryology of pistillate and staminate flowers of Asparagus officinalis L. Am. J. Bot. 66: 753-764.
Lee, I., M. J. Aukerman, S. L. Gore, K. N. Lohman, S. D. Michaels, L. M. Weaver, M. C. John, K. A. Feldmann and R. M. Amasino. 1994. Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis. Plant Cell 6: 75-83.
Lee, I., A. Bleecker and R. M. Amasino. 1993. Analysis of naturally occurring late flowering in Arabidopsis thaliana. Mol. Gen. Genet. 237: 171-176.
Levy, Y. Y. and C. Dean. 1998. The transition to flowering. Plant Cell 10: 1973-1990.
Liu, Z., P. H. Moore, H. Ma, C. M. Ackerman, M. Ragiba, Q. Yu, H. M. Pearl, M. S. Kim, A. H. Paterson and R. Ming. 2004. A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427: 348-352.
Liljegren, S. J., C. Gustafson-Brown, A. Pinyopich, G. S. Ditta and M. F. Yanofsky. 1999. Interactions among APETALA1, LEAFY and TERMINAL FLOWER1 specify meristem fate. Plant Cell 11: 1007-1018.
Louis, J. P. 1989. Genes for the regulation of sex differentiation process in Mercurialis annua L. J. Hered. 80: 104-111.
Ma, H. and C.dePamphilis 2000 The ABCs of flower evolution. Cell 101: 5-8.
Macknight, R., I. Bancroft, T. Page, C. Lister, R. Schmidt, K. Love, L. Westphal, G. Murphy, S. Sherson, C. Cobbett and C. Dean. 1997. FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domain. Cell 89: 737-745.
Malepszy, S. and K. Neimirowicz-Szczytt. 1991. Sex determination in cucumber ( Cucumis sativus) as a model for molecular biology. Plant Sci. 80: 39-47.
Mandel, M. A. and M. F. Yamyfsky. 1995. A gene triggering flower formation in Arabidopsis. Nature 377: 522-524.
Mandel, M.A., C. Gustafosn-Brown, B. Savidge and M. F. Yanofsky. 1992. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360: 273-277.
Martinez-Zapater, J. M., G. Coupland, C. Dean and M. Koornneef. 1994. The transition to flowering in Arabidopsis. In “Arabidopsis” (C. R. Somerville and E. M. Meyerowitz, Eds.). Cold Spring Harbor Laboratory Press, New York. p.403-434.
Martinez-Zapater, J. M., J. A. Jarillo, M. Cruz-Alvarez, M. Roldan and J. Salinas. 1995. Arabidopsis late-flowering fve mutants are affected in both vegetative and reproductive development. Plant J. 7: 543-551.
Mather, K. 1949. Genetics of dioecy and monoecy in Ecballium. Nature. 163:926.
McDaniel, C. N., S. R. Singer and S. M. E. Smith. 1992. Development states associated with the floral transition. Dev. Biol. 153: 59-69.
Metzger, J. D. and J. A. D. Zeevaart. 1989. Spinacia oleracea. CRC Handbook of flowering, Vol. IV.. Halvey, A. H., Ed. CRC Press, Boca Raton. p.384-392.
Ming, R., Q. Yu and P. H. Moore. 2007. Sex determination in papaya, Semin. Cell Dev. Biol. 18: 401-408.
Mizukami, Y. and H. Ma. 1997. Determination of Arabidopsis floral meristem identity by AGAMOUS. Plant Cell 9: 393-408.
Modrusan, Z., L. Reiser, K. A. Feldmann, R. L. Fischer and G. W. Haughn. 1994. Homeotic transformation of ovules into carpel-like structure in Arabidopsis. Plant Cell 6: 333-349.
Mohan, H. Y. and R. Sett. 1985. Cannabis sativa. CRC Handbook of Flowering, Vol. II Halvey, A. H., ED. CRC Press, Boca Raton. p.131-139.
Ohshima, S., M. Murata, W. Sakamoto, Y. Ogura and F. Motoyoshi. 1997. Cloning and molecular analysis of the Arabidopsis gene Terminal Flower 1. Mol. G.en. Genet. 254: 186-194.
Okada, K. and Y. Shimura. 1994. Genetic analyses of signaling in flower development using Arabidopsis. Plant Mol. Biol. 26: 1357-1377.
Page, T., R. Macknight, C. -H. Yang and C. Dean. 1999. Genetic interactions of the Arabidopsis flowering time gene FCA, with genes regulating floral initiation. Plant J. 17: 231-239.
Parasnis, A. S., W. Ramakrishna, K. V. Chowdar, V. S. Gupta, and P. K. Ranjekar. 1999. Microsatellite (GATA)n reveals sex-specific differences in papaya. Theor. Appl. Gene. 99: 1047-1052.
Park, D. H., D. E. Somers, Y. S. Kim, Y. H. Choy, H. K. Lim, M. S. Soh, H. J. Kim, S. A. Kay and H. G. Nam. 1999. Control of circadian rhythms and photoperiodic control of flowering by the Arabidopsis GIGANTEA gene. Science 285: 1579-1581.
Parker, J. S. and M. S. Clark. 1991. Dosage sex- chromosome systems in plants. Plant Sci. 80: 79-92.
Peirce, L. C. and T. M. Currence. 1962. The inheritance of hermaphroditism in Asparagus officinalis L. Proc. Am. Soc. Hort. Sci. 80: 368-376.
Pelaz, S., G.. S. Ditta, E. Baumann, E. Wisman and M. F. Yanofsky. 2000. B and C floral organ identity functions require SEALLATA MADS-box genes. Nature 405: 200-203.
Poethig, R. S. 1990. Phase change and the regulation of shoot morphogenesis in plant. Science 150: 923-930.
Poething, R. S. 1988. A non-cell-autonomous mutation regulating juvenility in maize. Nature 336: 82-83.
Pnueli, L., D. Harven, S. D. Rounsley, M. F. Yanofsky and E. Lifschitz. 1994. Isolation of the tomato AGAMOUS gene TAGI and analysis of its homeotic role in transgentic plants. Plant Cell 6: 163-173.
Putterill, J., F. Robson, K. Lee, R. Simon and C. G.oupland. 1995. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80: 847-857.
Richey, F. D. and G. F. Sprague. 1932. Some factors affecting the reversal of sex expression in the tassels of maize. Am. Naturalist 66: 433-443.
Rick, C. M. and G. C. Hanna. 1943. Determination of sex in Asparagus officinalis L. Am. J. Bot. 30: 711-714.
Riechmann, J. L. and E. M. Meyerowitz. 1997. MADS domain proteins in plant development. Biol. Chem. 378: 1079-1101.
Riechmann, J. L., B. A. Krizek and E. M. Meyerowitz. 1996. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Proc. Natl. Acad. Sci. USA 93: 4793-4798.
Robinson, R. W., H. M. Munger, T. W. Whitaker and G. W. Bohn. 1976. Genes of Cucurbitaceae. HortScience 11: 554-568.
Roe, J. L., C. J. Rivin, R. A. Sessions, K. A. Feldmann and P. C. Zambryski. 1993. The Torsled gene in A. thaliana encodes a protein kinase homolog that is required for leaf and flower development. Cell 75: 939-950.
Rood, S. B., R. P. Pharis and D.J. Major. 1980. Changes of endogenous gibberellin- like substances with sex reversal of the apical inflorescence of corn. Plant Physiol. 66: 793-796.
Rounsley, S. D., G. S. Ditta and M. F. Yanofsky. 1995. Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7: 1259-1269.
Ruiz-Garcia, L., F. Madueno, M. Wilkinson, G. Haughn, J. Salinas and J. M. Martinez-Zapate. 1997. Different roles of flowering time genes in the activation of floral initiation genes in Arabidopsis. Plant Cell 9: 1921-1934.
Saito, S., N. Fujii, Y. Miyazawa, S. Yamasaki, S. Matsuura, H. Mizusawa, Y. Fujita and H. Takahashi. 2007. Correlation between development of female flower buds and expression of the CS-ACS2 gene in cucumber plants. J. Exp. Bot. 58: 2897-2907.
Sanda, S. L., and R. M Amasino. 1996. Ecotype-specific expression of a flowering mutant phenotype in Arabidopsis thaliana. Plant Physiol. 111: 641-644.
Schmidt, R. J., B. Veit, M. A. Mandel, M. Mena, S. Hake and M. F. Yanofsky. 1993. Identification and molecular characterization of ZAG1, the maize homolog of the Arabidopsis floral homeotic gene AGAMOUS. Plant Cell 5: 729-737.
Schomburg, F. M., D. A. Patton, D. W. Meinke and R. M.Amasino. 2001. FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. Plant Cell 13: 1427-1436.
Schultz, E. A. and G. W. Haughn. 1993. Genetic analysis of the floral initiation process (FLIP) in Arabidopsis. Development 119: 745-765.
Schuster, W. H. 1985. Helianthus annus. CRC Handbook of Flowering, vol.III. Halvey. A. H., Ed. CRC, Boca Raton p.98-121.
Schwarz-Sommer, Z., P. Huijser, W. Nacken, H. Saedler and H. Sommer. 1990. Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250: 931-936.
Shannon, S. and D. R. Meeks-Wagner. 1991. Amutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3: 877-892.
Shannon, S. and D. R. Meeks-Wanger. 1993. Genetic interactions that regulate inflorescence development in Arabidopsis. Plant Cell 5: 639-655.
Sharan, R., P. R. Prasad and K. Mohan. 1994. Influence of nitrogen, phosphate, growth regulators and aminal sex hormone on sex expression in papaya. Adv. Plant Sci. 7: 273-279.
Shiraishi, H., K. Okada and Y. Shimura. 1993. Nucleotide sequences recognized the AGAMOUS MADS domain of Arabidopsis thaliana in vitro. Plant J. 4: 385-398.
Shore, P. and A. D. Sharrocks. 1995. The MADS-box family of transcription factors. Eur. J. Biochem. 229: 1-13.
Simon, R., M. I. Igeno and G. Coupland. 1996. Activation of floral meristem identity genes in Arabidopsis. Nature 384: 59-62.
Sommer, H., J. -P. Beltran, P. Huijser, H. Pape, W. -E. Lonning, H. Saedler and Z. Schwarz-Sommer. 1990. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9: 605-613.
Soppe, W. J., S. E. Jacobsen, C. Alonso-Blanco, J. P. Jackson, T. Kakutani, M. Koornneef and A. J. Peeters. 2000. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell 6: 791-802.
Sondur, S. N., R. M. Manshardt and J. I. Stiles. 1996. A genetic linkage map of papaya based on rabdomly amplified polymorphic DNA markers. Theor. Appl. Genet. 93: 547-553.
Spears, E. E. JR. and P. G. May. 1988. Effect of defoliation on gerder expression and fruit set in Passiflora incarnata. Amer. J. Bot. 75: 1842-1847.
Storey, W. B. 1985. Carica papaya CRC Handbook of flowering volume II. CRC press, Boca Raton. p.147-157.
Storey, W. B. 1953. Genetics of papaya. J. Hered. 44: 70-78.
Storey, W. B. 1967. Theory of the derivations of the unisexual flowers of Caricaceae. Agron. Trop. 17: 273-321.
Storey, W. B. 1984. Papaya. Evolution of crop plants. Edited Simmonds, W. New York p.21-24.
Sung, Z. R., A. Belachew, S. Bai and R. Bertrand-Garcia. 1992. EMF, an Arabidopsis gene required for vegetative shoot development. Science 258: 1645-1647.
Theiβen, G.. 2001. Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4: 75-85.
Theiβen, G., and H. Saedler. 1995. MADS-box genes in plant ontogeny and phylogeny: Haeckel’s ‘biogenetic law’ revisited. Curr. Opin. Genet. Dev. 5: 628-639.
Theiβen, G. and H. Saedler. 2001. Floral quartets. Nature 409: 469-471.
Theiβen, G., A. Becker, A. D. Rosa, A. Kanno, J. T. Kim, T. Munster, K. U. Winter and H. Saedler. 2000. A short history of MADS-box genes in plant. Plant Mol. Biol. 42: 115-149.
Theiβen, G.., J. Kim and H. Saedler. 1996. Classification and phylogeny of the MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol. 43: 484-516.
Thummler, F., M. Kirchner, R. Teuber and P. Dittrich. 1995. Differential accumulation of the transcripts of 22 novel protein kinase genes in Arabedopsis thaliana. Plant Mol. Biol. 29: 551-565.
Tilly, J. J., D. W. Allen and T. Jack. 1998. The CarG boxes in the promoter of the Arabidopsis floral organ iden tity gene APETALA3 mediate diverse regulatory effects. Development 125: 1647-1657.
Torii, K. U., N. Mitsukawa, T. Oosumi, Y. Matsuura, R. Yokoyama, R. F. Whitteier and Y. Komeda. 1996. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell 8: 735-746.
Urasaki, N., M. Tokumoto, K. Tarora, Y. Ban and T. Kayano. 2002. A male and hermaphrodite specific RAPD marker for (Carica papaya L.) papaya. Theor. Appl. Genet. 104: 281-285.
Valleau, W. D. 1923. The inheritance of flower types and fertility in the strawberry. Am. J. Bot. 10: 259-274.
Weigel, D., J. Alvarez, D. R. Smysh, M. F. Yanofsky and E. M. Meyerowitz. 1992. LEAFY controls floral meristem identity in Arabidopsis. Cell 69: 843-859.
Weigel, D. and E. M. Meyerowitz. 1994. The ABCs of floral homeotic genes. Cell 78: 203-209.
Westergaard, M. 1958. The mechanism of sex determination in dioecious flowering plants. Adv. Genet. 9: 217-281.
Winge, O. 1929. On the nature of the sex chromosomes in Humulus. Hereditas 12: 53-63.
Yang, C. -H., L. -J. Cheng and Z. R. Sung. 1995. Genetic regulation of shoot development in Arabidopsis: the role of EMF genes. Dev. Biol. 169: 421-435.
Yanofsky, M. F., H. Ma, J. L. Bowman, G. N. Drews, K. A. Feldmann and E. M. Meyerowitz. 1990. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346: 35-39.
Ye, D., M. Oliveira, J. Veuskens, Y. Wu, P. Installe, S. Hinnisdaels, A. T. Truong, S. Brown, A. Mouras and I. Negrutiu. 1991. Sex determination in the dioecious Melandrium. The X/Y chromosome system allows complementary cloning strategies. Plant Sci. 80: 93-106.
Yoshida, N., Y. Yanai, L. Chen, Y. Kato, J. Hiratsuka, T. Miwa, Z. R. Sung and S. Takahashi. 2001. EMBRYONIC FLOWER2, a novel polycomb group protein homolog mediates shoot development and flowering in Arabidopsis. Plant Cell 13: 2471-2819.
Yu, Q., S. Hou, R. Hobza, F. A. Feltus, X. Wang, W. Jin, R. L. Skelton, A. Blas, C. Lemke, J. H. Saw, P. H. Moore, M. Alam, J. Jiang, A. H. Paterson, B. Vyskot, R. Ming. 2007. Chromosome location and gene paucity of the male specific region on papaya Y chromosome. Mol. Genet. Genomics 278: 177-185.
Zagotta, M. T., S. Shannon, C. Jacobs and R. Meeks -Wagner. 1992. Early-flowering mutants of Arabidopsis thaliana. J. Plant Physiol. 19: 411-418.
Zagotta, M. T., K. A. Hick, C. I. Jacobs, J. C. Young, R. P. Hangarter and R. Meeks-Wagner. 1996. The Arabidopsis ELF3 gene regulates vegetative photomorphogenesis and the photoperiodic induction of flowering. Plant J. 10: 691-702.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42136-
dc.description.abstract番木瓜(Carica papaya L.)為世界重要果樹,2006年全球栽培面積約40萬公頃,其具雌株、雄株和兩性株三種性型植株,兩性株可自花授粉,子腔小運銷成本較低,果肉利用率較高,故大部分番木瓜生產國家以栽培兩性株為主。但兩性株花朵受環境等影響,易造成異常的花朵性型表現,產生畸型果或開花不結果,影響產量與經濟產值。
番木瓜花性型表現主要決定於花器形成過程,為瞭解花器決定MADS box基因於番木瓜花朵發育與性別決定所扮演之角色,本試驗以番木瓜花芽為材料,選殖了MADS box E-class基因CpMADS1、CpMADS3與屬於B-class TM6系基因CpMADS2。由RT-PCR 和real-time PCR 分析結果顯示CpMADS1和CpMADS3 於內三輪花器表現,以心皮表現量最大,雄蕊、花瓣次之,CpMADS2則表現於花瓣及雄蕊,顯現B-class和E-class MADS box基因之特性,且此三個花器分化基因在番木瓜花朵發育極早時期(花芽小於1mm)就大量表現。以此3個基因為探針,進行不同性別,包括雌株、雄株、兩性株和特殊之後裔全兩性、後裔全雄性共10個木瓜品系基因組DNA之南方雜合分析,結果偵測雜合之限制酶切片段及數目於植株性別及品系間無差異,顯示花器分化基因CpMADS與木瓜植株性別決定可能不是在基因構造層次。進一步進行E-class基因CpMADS1、CpMADS3轉殖於煙草試驗,經CpMADS1和CpMADS3基因全長以限制酶切及黏合反應轉入pCAMBIA1305.3雙偶載體,並以電穿孔法轉型於農桿菌LBA4404後,將基因轉殖於‘Wisconsin 38’煙草,轉殖培植體經由抗生素篩選、組織GUS活性之化學染色分析及PCR確認後,經馴化栽培至開花。CpMADS1和CpMADS3基因轉殖煙草植株外觀、花序、開花時間無明顯改變,細部觀察花朵的四輪花器也與野生型相同。
zh_TW
dc.description.abstractPapaya (Carica papaya L.) is an economically important fruit. The harvested area around the world is about 400 thousand hectares in 2006. Papaya plants are trioecious, with female, male and hermaphrodite, respectively. In hermaphrodite papaya, male flower and imperfect hermaphrodite flower are often observed because the floral organ development may be influenced by environmental and hormonal factors. Despite various causes led to malformation of papaya fruits, hermaphrodite papayas are favored worldwide for economic production. However, several drawbacks were observed during the formation of bisexual flowers, such as pistil degeneration and carpel-like anthers, which led to fruit malformation and resultant yield loss.
Sex expression in papaya flowers probably is determined very early during floral differentiation. In order to understand the roles played by the MADS-box genes in flower development and sex determination, cDNAs of E-class genes CpMADS1, CpMADS3 and a TM6 lineage of the B-class gene CpMADS2 were cloned from young flower buds of papaya. RT-PCR and real-time PCR analyses revealed that CpMADS1 and CpMADS3 were preferentially expressed in the carpel and also expressed in petals and stamens. CpMADS2 was expressed in both petals and stamens. These genes all expressed early during floral development. Comparison of ten papaya genotypes with 5 different sex phenotypes, viz. hermaphrodite, male, female, progeny-all-hermaphrodite, progeny-all-male, by Southern blot analysis of the genomic DNAs using probes of the three genes revealed similar restriction pattern and copy number, suggesting low correlation at genomic level of the three CpMADS genes with sex expression of papaya plants.
The CpMADS1 and CpMADS3 genes were constructed respectively in a binary vector and introduced into tobacco (Wisconsin 38) genome using Agrobacterium- mediated transformation. Amplification by polymerase chain reaction of genomic DNA confirmed the integration of the CpMADS1 and CpMADS3 genes into the transgenic tobacco genome. However, the phenotype of tansgenic tobacco plants carrying CpMADS1 or CpMADS3 were similar to the wild type.
en
dc.description.provenanceMade available in DSpace on 2021-06-15T00:48:43Z (GMT). No. of bitstreams: 1
ntu-97-D88628002-1.pdf: 1739478 bytes, checksum: 98e244762217ed90866fcb34c4ab9f57 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents口試委員會審定書…………………………………………i
誌謝…………………………………………………………ii
中文摘要………………………………………………………iii
英文摘要……………………………………………………iv
目錄………………………………………………………………v
圖目錄…………………………………………………vii
表目錄………………………………………………ix
緒言………………………………………………………1
第一章 前人研究……………………………………2
1.1顯花植物開花誘導與發育之分子研究………………2
1.2番木瓜之花器形成與變動………………………………………………7
1.3顯花植物植株性別之決定………………………………10
1.4番木瓜植株性別決定………………………………15
1.5參考文獻…………………………………………………………18
第二章 番木瓜MADS box E-class基因CpMADS1, CpMADS3與TM6 系基因 CpMADS2之選殖與分析………………………………………31
2.1摘要……………………………………………………31
2.2前言…………………………………………31
2.3材料與方法…………………………………………32
2.4結果……………………………………………43
2.5討論…………………………………46
2.6參考文獻…………………………………………………51
第三章 番木瓜MADS box E-class基因CpMADS1, CpMADS3轉殖分析……71
3.1摘要…………………………………………………71
3.2前言………………………………………………71
3.3材料與方法……………………………72
3.4結果…………………………………………76
3.5討論………………………………………77
3.6參考文獻……………………………………………80
附錄 English manuscript……………………………91
dc.language.isozh-TW
dc.title番木瓜MADS box E-class基因CpMADS1、 CpMADS3與TM6 系基因CpMADS2之選殖與分析zh_TW
dc.titleIsolation and characterization of the papaya (Carica papaya) MADS box E-class genes, CpMADS1, CpMADS3 and a TM6 lineage gene CpMADS2en
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree博士
dc.contributor.coadvisor陳福旗(Fure-Chyi Chen)
dc.contributor.oralexamcommittee林宗賢(Tzong-Shyan Lin),楊雯如(Wen-Ju Yang),洪挺軒(Ting-Hsung Hung)
dc.subject.keyword番木瓜,花器決定基因,MADS box基因,花性表現,植株性別決定,zh_TW
dc.subject.keywordCarica papaya,floral organ identity gene,MADS box gene,floral sex expression,plant sex determination,en
dc.relation.page124
dc.rights.note有償授權
dc.date.accepted2008-08-21
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
1.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved