Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42109Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 康照洲(Jaw-Jou Kang) | |
| dc.contributor.author | Wei-Cheng Wang | en |
| dc.contributor.author | 王偉丞 | zh_TW |
| dc.date.accessioned | 2021-06-15T00:47:13Z | - |
| dc.date.available | 2012-10-07 | |
| dc.date.copyright | 2011-10-07 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-14 | |
| dc.identifier.citation | 參考文獻 (References)
Agbor TA, Cheong A, Comerford KM, Scholz CC, Bruning U, Clarke A, Cummins EP, Cagney G, Taylor CT (2011) Small ubiquitin-related modifier (SUMO)-1 promotes glycolysis in hypoxia. J Biol Chem 286: 4718-4726 Ali MM, Yoshizawa T, Ishibashi O, Matsuda A, Ikegame M, Shimomura J, Mera H, Nakashima K, Kawashima H (2007) PIASxbeta is a key regulator of osterix transcriptional activity and matrix mineralization in osteoblasts. J Cell Sci 120: 2565-2573 Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, Cooper M, Laznik D, Chinsomboon J, Rangwala SM, Baek KH, Rosenzweig A, Spiegelman BM (2008) HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature 451: 1008-1012 Arnesen T, Kong X, Evjenth R, Gromyko D, Varhaug JE, Lin Z, Sang N, Caro J, Lillehaug JR (2005) Interaction between HIF-1 alpha (ODD) and hARD1 does not induce acetylation and destabilization of HIF-1 alpha. FEBS Lett 579: 6428-6432 Arora T, Liu B, He H, Kim J, Murphy TL, Murphy KM, Modlin RL, Shuai K (2003) PIASx is a transcriptional co-repressor of signal transducer and activator of transcription 4. J Biol Chem 278: 21327-21330 Azuma Y, Arnaoutov A, Dasso M (2003) SUMO-2/3 regulates topoisomerase II in mitosis. J Cell Biol 163: 477-487 Bae SH, Jeong JW, Park JA, Kim SH, Bae MK, Choi SJ, Kim KW (2004) Sumoylation increases HIF-1alpha stability and its transcriptional activity. Biochem Biophys Res Commun 324: 394-400 Beg AA, Scheiffele P (2006) Neuroscience. SUMO wrestles the synapse. Science 311: 962-963 Beliakoff J, Lee J, Ueno H, Aiyer A, Weissman IL, Barsh GS, Cardiff RD, Sun Z (2008) The PIAS-like protein Zimp10 is essential for embryonic viability and proper vascular development. Mol Cell Biol 28: 282-292 Berra E, Richard DE, Gothie E, Pouyssegur J (2001) HIF-1-dependent transcriptional activity is required for oxygen-mediated HIF-1alpha degradation. FEBS Lett 491: 85-90 Berta MA, Mazure N, Hattab M, Pouyssegur J, Brahimi-Horn MC (2007) SUMOylation of hypoxia-inducible factor-1alpha reduces its transcriptional activity. Biochem Biophys Res Commun 360: 646-652 Box AH, Demetrick DJ (2004) Cell cycle kinase inhibitor expression and hypoxia-induced cell cycle arrest in human cancer cell lines. Carcinogenesis 25: 2325-2335 Bracken CP, Fedele AO, Linke S, Balrak W, Lisy K, Whitelaw ML, Peet DJ (2006) Cell-specific regulation of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha stabilization and transactivation in a graded oxygen environment. J Biol Chem 281: 22575-22585 Brahimi-Horn MC, Chiche J, Pouyssegur J (2007) Hypoxia and cancer. J Mol Med 85: 1301-1307 Brantley EC, Nabors LB, Gillespie GY, Choi YH, Palmer CA, Harrison K, Roarty K, Benveniste EN (2008) Loss of protein inhibitors of activated STAT-3 expression in glioblastoma multiforme tumors: implications for STAT-3 activation and gene expression. Clin Cancer Res 14: 4694-4704 Bruick RK, McKnight SL (2001) A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294: 1337-1340 Cai Q, Verma SC, Kumar P, Ma M, Robertson ES (2010) Hypoxia inactivates the VHL tumor suppressor through PIASy-mediated SUMO modification. PLoS One 5: e9720 Carbia-Nagashima A, Gerez J, Perez-Castro C, Paez-Pereda M, Silberstein S, Stalla GK, Holsboer F, Arzt E (2007) RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-1alpha during hypoxia. Cell 131: 309-323 Carrero P, Okamoto K, Coumailleau P, O'Brien S, Tanaka H, Poellinger L (2000) Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor 1alpha. Mol Cell Biol 20: 402-415 Carver LA, Bradfield CA (1997) Ligand-dependent interaction of the aryl hydrocarbon receptor with a novel immunophilin homolog in vivo. J Biol Chem 272: 11452-11456 Cheng J, Kang X, Zhang S, Yeh ET (2007) SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell 131: 584-595 Dadke S, Cotteret S, Yip SC, Jaffer ZM, Haj F, Ivanov A, Rauscher F, 3rd, Shuai K, Ng T, Neel BG, Chernoff J (2007) Regulation of protein tyrosine phosphatase 1B by sumoylation. Nat Cell Biol 9: 80-85 de Wet JR, Wood KV, DeLuca M, Helinski DR, Subramani S (1987) Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol 7: 725-737 Desterro JM, Rodriguez MS, Hay RT (1998) SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 2: 233-239 Desterro JM, Rodriguez MS, Kemp GD, Hay RT (1999) Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J Biol Chem 274: 10618-10624 Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107: 43-54 Fu J, Xiong Y, Xu Y, Cheng G, Tang H (2011) MDA5 is SUMOylated by PIAS2beta in the upregulation of type I interferon signaling. Mol Immunol 48: 415-422 Garcia-Dominguez M, Gilardi-Hebenstreit P, Charnay P (2006) PIASxbeta acts as an activator of Hoxb1 and is antagonized by Krox20 during hindbrain segmentation. EMBO J 25: 2432-2442 Gareau JR, Lima CD (2010) The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 11: 861-871 Geiss-Friedlander R, Melchior F (2007) Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 8: 947-956 Gong L, Li B, Millas S, Yeh ET (1999) Molecular cloning and characterization of human AOS1 and UBA2, components of the sentrin-activating enzyme complex. FEBS Lett 448: 185-189 Guo B, Yang SH, Witty J, Sharrocks AD (2007) Signalling pathways and the regulation of SUMO modification. Biochem Soc Trans 35: 1414-1418 Guo D, Li M, Zhang Y, Yang P, Eckenrode S, Hopkins D, Zheng W, Purohit S, Podolsky RH, Muir A, Wang J, Dong Z, Brusko T, Atkinson M, Pozzilli P, Zeidler A, Raffel LJ, Jacob CO, Park Y, Serrano-Rios M, Larrad MT, Zhang Z, Garchon HJ, Bach JF, Rotter JI, She JX, Wang CY (2004) A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nat Genet 36: 837-841 Guo WH, Yuan LH, Xiao ZH, Liu D, Zhang JX (2011) Overexpression of SUMO-1 in hepatocellular carcinoma: a latent target for diagnosis and therapy of hepatoma. J Cancer Res Clin Oncol 137: 533-541 Harder Z, Zunino R, McBride H (2004) Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Curr Biol 14: 340-345 Huang J, Zhao Q, Mooney SM, Lee FS (2002) Sequence determinants in hypoxia-inducible factor-1alpha for hydroxylation by the prolyl hydroxylases PHD1, PHD2, and PHD3. J Biol Chem 277: 39792-39800 Ivan M, Kaelin WG, Jr. (2001) The von Hippel-Lindau tumor suppressor protein. Curr Opin Genet Dev 11: 27-34 Jeong JW, Bae MK, Ahn MY, Kim SH, Sohn TK, Bae MH, Yoo MA, Song EJ, Lee KJ, Kim KW (2002) Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell 111: 709-720 Kagey MH, Melhuish TA, Wotton D (2003) The polycomb protein Pc2 is a SUMO E3. Cell 113: 127-137 Kallio PJ, Okamoto K, O'Brien S, Carrero P, Makino Y, Tanaka H, Poellinger L (1998) Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha. EMBO J 17: 6573-6586 Ke Q, Costa M (2006) Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 70: 1469-1480 Kirsh O, Seeler JS, Pichler A, Gast A, Muller S, Miska E, Mathieu M, Harel-Bellan A, Kouzarides T, Melchior F, Dejean A (2002) The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase. EMBO J 21: 2682-2691 Kotaja N, Karvonen U, Janne OA, Palvimo JJ (2002) PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol Cell Biol 22: 5222-5234 Kwon SJ, Song JJ, Lee YJ (2005) Signal pathway of hypoxia-inducible factor-1alpha phosphorylation and its interaction with von Hippel-Lindau tumor suppressor protein during ischemia in MiaPaCa-2 pancreatic cancer cells. Clin Cancer Res 11: 7607-7613 Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML (2002) Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295: 858-861 Lee JS, Thorgeirsson SS (2004) Genome-scale profiling of gene expression in hepatocellular carcinoma: classification, survival prediction, and identification of therapeutic targets. Gastroenterology 127: S51-55 Liu B, Liao J, Rao X, Kushner SA, Chung CD, Chang DD, Shuai K (1998) Inhibition of Stat1-mediated gene activation by PIAS1. Proc Natl Acad Sci U S A 95: 10626-10631 Liu LM, Yan MG, Yang DH, Sun WW, Zhang JX (2011) PIAS3 expression in human gastric carcinoma and its adjacent non-tumor tissues. Clin Res Hepatol Gastroenterol 35: 393-398 Loor G, Schumacker PT (2008) Role of hypoxia-inducible factor in cell survival during myocardial ischemia-reperfusion. Cell Death Differ 15: 686-690 Ma KW, Au SW, Waye MM (2009) Over-expression of SUMO-1 induces the up-regulation of heterogeneous nuclear ribonucleoprotein A2/B1 isoform B1 (hnRNP A2/B1 isoform B1) and uracil DNA glycosylase (UDG) in hepG2 cells. Cell Biochem Funct 27: 228-237 Masson N, Ratcliffe PJ (2003) HIF prolyl and asparaginyl hydroxylases in the biological response to intracellular O(2) levels. J Cell Sci 116: 3041-3049 Matic I, Macek B, Hilger M, Walther TC, Mann M (2008) Phosphorylation of SUMO-1 occurs in vivo and is conserved through evolution. J Proteome Res 7: 4050-4057 Mo YY, Yu Y, Theodosiou E, Ee PL, Beck WT (2005) A role for Ubc9 in tumorigenesis. Oncogene 24: 2677-2683 Moilanen AM, Karvonen U, Poukka H, Yan W, Toppari J, Janne OA, Palvimo JJ (1999) A testis-specific androgen receptor coregulator that belongs to a novel family of nuclear proteins. J Biol Chem 274: 3700-3704 Muller S, Berger M, Lehembre F, Seeler JS, Haupt Y, Dejean A (2000) c-Jun and p53 activity is modulated by SUMO-1 modification. J Biol Chem 275: 13321-13329 Mylonis I, Chachami G, Samiotaki M, Panayotou G, Paraskeva E, Kalousi A, Georgatsou E, Bonanou S, Simos G (2006) Identification of MAPK phosphorylation sites and their role in the localization and activity of hypoxia-inducible factor-1alpha. J Biol Chem 281: 33095-33106 Nishida T, Yasuda H (2002) PIAS1 and PIASxalpha function as SUMO-E3 ligases toward androgen receptor and repress androgen receptor-dependent transcription. J Biol Chem 277: 41311-41317 Ohshima T, Koga H, Shimotohno K (2004) Transcriptional activity of peroxisome proliferator-activated receptor gamma is modulated by SUMO-1 modification. J Biol Chem 279: 29551-29557 Okuma T, Honda R, Ichikawa G, Tsumagari N, Yasuda H (1999) In vitro SUMO-1 modification requires two enzymatic steps, E1 and E2. Biochem Biophys Res Commun 254: 693-698 Owerbach D, McKay EM, Yeh ET, Gabbay KH, Bohren KM (2005) A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation. Biochem Biophys Res Commun 337: 517-520 Pichler A, Gast A, Seeler JS, Dejean A, Melchior F (2002) The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108: 109-120 Rytinki MM, Kaikkonen S, Pehkonen P, Jaaskelainen T, Palvimo JJ (2009) PIAS proteins: pleiotropic interactors associated with SUMO. Cell Mol Life Sci 66: 3029-3041 Sachdev S, Bruhn L, Sieber H, Pichler A, Melchior F, Grosschedl R (2001) PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev 15: 3088-3103 Sainson RC, Harris AL (2006) Hypoxia-regulated differentiation: let's step it up a Notch. Trends Mol Med 12: 141-143 Saitoh H, Hinchey J (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem 275: 6252-6258 Santti H, Mikkonen L, Anand A, Hirvonen-Santti S, Toppari J, Panhuysen M, Vauti F, Perera M, Corte G, Wurst W, Janne OA, Palvimo JJ (2005) Disruption of the murine PIASx gene results in reduced testis weight. J Mol Endocrinol 34: 645-654 Sarge KD, Park-Sarge OK (2009) Sumoylation and human disease pathogenesis. Trends Biochem Sci 34: 200-205 Schmidt D, Muller S (2002) Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity. Proc Natl Acad Sci U S A 99: 2872-2877 Schofield CJ, Zhang Z (1999) Structural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes. Curr Opin Struct Biol 9: 722-731 Seeler JS, Bischof O, Nacerddine K, Dejean A (2007) SUMO, the three Rs and cancer. Curr Top Microbiol Immunol 313: 49-71 Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3: 721-732 Shalizi A, Bilimoria PM, Stegmuller J, Gaudilliere B, Yang Y, Shuai K, Bonni A (2007) PIASx is a MEF2 SUMO E3 ligase that promotes postsynaptic dendritic morphogenesis. J Neurosci 27: 10037-10046 Shao R, Zhang FP, Tian F, Anders Friberg P, Wang X, Sjoland H, Billig H (2004) Increase of SUMO-1 expression in response to hypoxia: direct interaction with HIF-1alpha in adult mouse brain and heart in vivo. FEBS Lett 569: 293-300 Shuai K, Liu B (2003) Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol 3: 900-911 Sun HC, Tang ZY (2004) Angiogenesis in hepatocellular carcinoma: the retrospectives and perspectives. J Cancer Res Clin Oncol 130: 307-319 Suzuki H, Tomida A, Tsuruo T (2001) Dephosphorylated hypoxia-inducible factor 1alpha as a mediator of p53-dependent apoptosis during hypoxia. Oncogene 20: 5779-5788 Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG, Palvimo JJ, Hay RT (2008) RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10: 538-546 Tatham MH, Kim S, Jaffray E, Song J, Chen Y, Hay RT (2005) Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection. Nat Struct Mol Biol 12: 67-74 Tempe D, Piechaczyk M, Bossis G (2008) SUMO under stress. Biochem Soc Trans 36: 874-878 Ulrich HD (2007) SUMO teams up with ubiquitin to manage hypoxia. Cell 131: 446-447 Wada H, Nagano H, Yamamoto H, Yang Y, Kondo M, Ota H, Nakamura M, Yoshioka S, Kato H, Damdinsuren B, Tang D, Marubashi S, Miyamoto A, Takeda Y, Umeshita K, Nakamori S, Sakon M, Dono K, Wakasa K, Monden M (2006) Expression pattern of angiogenic factors and prognosis after hepatic resection in hepatocellular carcinoma: importance of angiopoietin-2 and hypoxia-induced factor-1 alpha. Liver Int 26: 414-423 Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92: 5510-5514 Wang Y, Dasso M (2009) SUMOylation and deSUMOylation at a glance. J Cell Sci 122: 4249-4252 Wu XZ, Xie GR, Chen D (2007) Hypoxia and hepatocellular carcinoma: The therapeutic target for hepatocellular carcinoma. J Gastroenterol Hepatol 22: 1178-1182 Xie Y, Kerscher O, Kroetz MB, McConchie HF, Sung P, Hochstrasser M (2007) The yeast Hex3.Slx8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation. J Biol Chem 282: 34176-34184 Xu Y, Zuo Y, Zhang H, Kang X, Yue F, Yi Z, Liu M, Yeh ET, Chen G, Cheng J (2010) Induction of SENP1 in endothelial cells contributes to hypoxia-driven VEGF expression and angiogenesis. J Biol Chem 285: 36682-36688 Yang SH, Sharrocks AD (2005) PIASx acts as an Elk-1 coactivator by facilitating derepression. EMBO J 24: 2161-2171 Yang SH, Sharrocks AD (2006) PIASxalpha differentially regulates the amplitudes of transcriptional responses following activation of the ERK and p38 MAPK pathways. Mol Cell 22: 477-487 Yang W, Sheng H, Warner DS, Paschen W (2008) Transient global cerebral ischemia induces a massive increase in protein sumoylation. J Cereb Blood Flow Metab 28: 269-279 Yasinska IM, Sumbayev VV (2003) S-nitrosation of Cys-800 of HIF-1alpha protein activates its interaction with p300 and stimulates its transcriptional activity. FEBS Lett 549: 105-109 Zhang XD, Goeres J, Zhang H, Yen TJ, Porter AC, Matunis MJ (2008) SUMO-2/3 modification and binding regulate the association of CENP-E with kinetochores and progression through mitosis. Mol Cell 29: 729-741 Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15: 871-875 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/42109 | - |
| dc.description.abstract | 肝癌在許多先進國家是癌症死亡的主要原因,而一直以來也高居台灣十大癌症死因首位,對國人健康影響甚鉅。肝癌的發展過程常常伴隨著缺氧狀態的產生,且肝癌是多血管型的腫瘤,缺氧狀態下其缺氧誘導因子-1α(HIF-1α)所主導的血管新生會促進肝癌腫瘤的發育。此外,臨床證據顯示肝癌病人組織SUMO-1的表現較正常組織為高,顯示SUMO化在肝癌癌化過程中扮演了一定的角色。缺氧誘導因子-1α,為一種對於氧分壓敏感的轉錄因子,在正常氧分壓下很快就會被降解,在缺氧狀態下的轉錄活性與穏定度受到多種轉譯後修飾(posttranslational modifications)所調控,其中包括SUMO化。SUMO化能改變細胞中分子的行為,諸如轉錄因子的活化或抑制、影響細胞中分子的穏定度、改變分子在細胞膜上的位置。而目前已知HIF-1α在缺氧狀態下會被SUMO化修飾,且SUMO化的循環中有E1活化酶(AOS1/UBA2)、E2銜接酶(UBC9)及SENP-1去SUMO酵素的參與,且SENP-1為HIF-1α下游基因,與HIF-1α之間存在著正迴饋的關係,但目前仍不清楚為何種SUMO E3黏合酶參與其中。近年來許多研究指出SUMO E3黏合酶-PIAS家族成員和腫瘤惡化與血管新生的相關性,其中PIAS2,又名PIASx(Protein Inhibitors of Activated STAT 2;PIAS2;PIASx)為PIAS SUMO E3連結酶家族成員之一,在正常肝臟組織中會高度表現,故本研究希望能夠透過進一步實驗,觀察當肝癌細胞處於缺氧微環境時,PIAS2是否參與在HIF-1α SUMO化過程中,以了解PIAS2在缺氧狀態下肝癌發育中所扮演的角色。本研究採用肝癌細胞株HepG2及HEK293T做為材料,以西方墨點法分析,利用缺氧系統培養箱或氯化亞鈷(II)所引起的缺氧狀態處理HepG2,發現其PIAS2的蛋白表現量並沒有改變;利用pcDNA3.1 -HA-HIF-1α對HEK293T進行暫時性轉染(transient transfection),發現HIF1-α大量表現後並不會去影響PIAS2蛋白表現量;而利用免疫沈澱法觀察到細胞在缺氧狀態下不改變HepG2中PIAS2及SUMO-1蛋白表現量,且SENP-1被誘發的條件下,會促進PIAS2與HIF-1α之間的交互作用,也會增進HIF-1α與SUMO-1之間的交互作用;以PIAS2 shRNA慢病毒載體將HepG2的PIAS2進行靜默,觀察到缺氧狀態下PIAS2靜默HepG2和正常細胞相比,其HIF-1α與SUMO-1之間的交互作用程度會降低,且HIF-1α的穏定度也會下降,而在核質分離的結果中也發現,HIF-1α及SENP-1在核內的分布會減少。另外,在HRE promoter reporter assay方面,發現缺氧狀態下,在內生性PIAS2表現量靜默後,缺氧反應元件(hypoxia responsive element, HRE)活性會明顯地下降,此外利用RT-PCR也觀察到HepG2中HIF-1α下游基因VEGF及Glut-1,其mRNA表現量也有明顯減少的現象。總結以上結果,在缺氧狀態下HepG2中的PIAS2可藉由與HIF-1α交互作用並對其SUMO化,增加穏定度進而使HIF-1α進入核內。進核後SUMO型態的HIF-1α,會被SENP-1去SUMO化,而趨於穏定與HIF-1β結合至缺氧反應元件(hypoxia-resposive element, HRE),使HRE活性上升,並轉錄活化下游基因VEGF及Glut-1之表現。本研究證明PIAS2於缺氧狀態訊息傳遞與下游反應的功能性重要角色。然而,其中可能牽涉其他SUMO E3黏合酶與轉譯後修飾作用參與則需要更進一步的實驗來探討相關機制。 | zh_TW |
| dc.description.abstract | Hepatocellular carcinoma(HCC), which posed dangerous threat to human health, was the leading cause of death among cancers worldwide, including Taiwan. The development of HCC was always along with hypoxic conditions. Moreover, HCC was a hypervascular tumor and hypoxia-inducible factor-1α(HIF-1α)-mediated angiogenesis under hypoxia played an important role in its progression. Additionally, clinical studies have shown that the expression level of SUMO-1 was more higher in HCC tissue than non-neoplastic tissue, which suggested that SUMOylation plays a key role in the development of HCC. HIF-1α was a transcription factor that was rapidly degraded during normoxia and its ability to transactivate downstream genes and stability of HIF-1α was tightly regulated by many posttranslational modifications under hypoxia, including SUMOylation. SUMOylation could regulate diverse cellular functions, including transcription, nuclear translocation, and stress response. Previous studies have shown HIF-1α was modified by SUMO-1 under hypoxic conditions. In the process of HIF-1α SUMOylation, E1-AOS1/UBA2, E2-UBC9 and SENP-1 were involved. SENP-1, which was also a target gene of HIF-1α, could regulate HIF-1α by positive feedback under hypoxia. Nevertheless, how HIF-1α became SUMOylated by which SUMO E3 ligases during hypoxia is still unknown. According to recent research, there was emerging evidence showing that several members of PIAS(Protein Inhibitors of Activated STAT) SUMO E3 ligase family were possibly correlated to tumorogenesis and angiogenesis. PIAS2, a member of PIAS protein family, was highly expressed in liver. The aim of this study was to investigate the correlation of SUMOylation between HIF-1α and PIAS2 in human hepatocarcinoma cell line(HepG2). Treatment of 0.5% oxygen in hypoxia chamber and CoCl2 could not alter the protein level of PIAS2 in HepG2 cells. Molecular approaches to overexpress HIF-1α protein expression in HEK293T cells did not affect the protein level of PIAS2. Additionally, hypoxic conditions could enhance not only the interaction between PIAS2 and HIF-1α but also SUMO-1 and HIF-1α by Immunopreciptation(IP) in HepG2 cells on condition that SENP-1 could be induced. Besides, we used PIAS2 shRNA to silence the endogenous PIAS2 expression in HepG2 cells, and we subsequently found that the interaction between SUMO-1 and HIF-1α, the nuclear translocation of HIF-1α and SENP-1 and HRE activity were significantly reduced in PIAS2 silenced HepG2 cells compared to wild type cells under hypoxia. Furthermore, mRNA level of hypoxia-responsive genes such as VEGF and Glut-1 were significantly decreased in PIAS2 silenced HepG2 cells under hypoxia. Overall, we concluded that PIAS2 could play a key role in the process of HIF-1α nuclear translocation and transactivation activity via SUMOylating HIF-1α under hypoxic conditions. This study demonstrated that PIAS2 may play a key role in the hypoxia-mediated signaling and downstream gene expression. However, we will further confirm if there is any other SUMO E3 ligase and posttranslational modification involved in the mechanism of HIF-1α SUMOylation under hypoxia. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-15T00:47:13Z (GMT). No. of bitstreams: 1 ntu-100-R98447011-1.pdf: 1949291 bytes, checksum: db7ca52dcc5fc701b6ec30bbf0d1d63c (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 目錄 (Contents)
縮寫表(Abbreviations) ……………………………….………………………………..iv 圖表目錄(Figures and Tables) …………………………………………………………v 中文摘要…………………………………………….….……………………………...vii 英文摘要………………………………..……………….……………………………...ix 第一章 緒論(Introduction) 1.1缺氧(hypoxia)與肝癌(Hepatocellular carcinoma, HCC)的關係...............................1 1.2缺氧誘導因子-1α(hypoxia inducible factor-1α, HIF-1α)………………………2 1.3缺氧誘導因子-1α之轉譯後修飾作用(posttranslational modifications)………….3 1.4小泛素修飾蛋白(small ubiquitin-like modifier, SUMO)與SUMO化(SUMOylation).................................................................................................................5 1.5 SUMO E3黏合酶與PIAS2(Protein Inhibitors of Activated STAT 2)……………..7 1.6 PIAS家族(Protein inhibitors of STAT protein family)在HIF-1α SUMO化中可能 扮演的角色…………………………………………………………………..……. .9 1.7研究動機…………………………………………………………………………...10 第二章 實驗材料與方法(Materials and Methods) 2.1 實驗材料 2.1.1細胞株(Cell lines)………………………………………………………………..12 2.1.2 藥品與試劑(Chemicals and Reagents)………………………………………….12 2.1.3 抗體(Antibodies)………………………………………………………………...13 2.1.4 質體(Plasmids) ………………………………………………………………….14 2.2 實驗方法 2.2.1 細胞培養(Cell culture)..........................................................................................14 2.2.2 缺氧系統培養箱(Hypoxia chamber)..................................................................15 2.2.3 細胞總蛋白質液收集(Cell lysate collection)………………………………….15 2.2.4 西方墨點法(Western blot analysis)…………………………………………….15 2.2.5 免疫沉澱法(Immunoprecipitation) …….……………………………...............16 2.2.6 細胞RNA萃取(RNA extraction)……………………………………………...16 2.2.7反轉錄聚合酶鏈鎖反應(Reverse Transcription Polymerase Chain Reaction, RT-PCR) ….…………………………………………………….…………....... 17 2.2.8質體轉染(Plasmid transfection)…………………………………………….......17 2.2.9 HRE冷光酶分析法(HRE luciferase assay) ……………....................................18 2.2.10 生產重組慢病毒載體(Lentiviral vector)….………….....................................18 2.2.11 病毒液感染與細胞篩選……………………………………............................19 2.2.12 細胞核質分離(Nuclear and cytoplasmic fraction)…………………………....19 2.2.13 統計分析(Statistic analysis) .............................................................................19 第三章 實驗結果(Results) 3.1 缺氧狀態會增進HepG2細胞中缺氧誘導因子-1α與SUMO-1間的交互作用……………………………………………………………………………………...20 3.2缺氧狀態或氯化亞鈷(II)並不會改變HepG2細胞中PIAS2及SUMO-1蛋白表現量………………………………………………………………………………...20 3.3 缺氧誘導因子-1α大量表現並不會影響HEK293T細胞中PIAS2蛋白表現量……………………………………………………………………………………....21 3.4 缺氧狀態會促進HepG2細胞中缺氧誘導因子-1α與PIAS2間的交互作用……………………………………………………………………………..………..22 3.5 PolyJetTM轉染試劑對293T細胞及慢病毒載體對HepG2細胞PIAS2的靜默 ……………………………....……………………………………………..………22 3.6 PIAS2靜默的HepG2細胞會減少缺氧狀態下HepG2細胞中缺氧誘導因子-1α與SUMO-1間的交互作用...................................................................................23 3.7 HepG2細胞之PIAS2靜默後會影響缺氧誘導因子-1α蛋白的穏定性並加速其降 解速率……………………………………………………………………………..23 3.8 PIAS2靜默的HepG2細胞會影響缺氧狀態下細胞核內的缺氧誘導因子-1α分布…….…………………………………………………………………………...24 3.9野生型與PIAS2靜默型細胞在正常氧分壓與缺氧狀態下對缺氧反應元件(HRE) 活性的影響…………….…………………………................................................25 3.10正常氧分壓與缺氧狀態下對野生型與PIAS2靜默的HepG2細胞缺氧反應元件(HRE)下游基因VEGF與Glut-1 mRNA表現之影響………………................26 第四章 討論(Disccusion) 4.1缺氧狀態對SUMO E3黏合酶PIAS2及SUMO-1可能的調控………………..28 4.2缺氧狀態PIAS2在HIF-1α SUMO化可能扮演的角色……………………….30 4.3缺氧狀態下內生性PIAS2表現量減少對於HIF-1α在細胞核內的分布與穏定度的影響…...................................................................................................................31 4.4缺氧狀態下內生性PIAS2表現量減少對於HIF-1α轉錄活性的影響………....32 4.5 缺氧狀態下HIF-1αSUMO化與其他轉譯後修飾之間的交互作用 第五章 結論(Conclusion) …………............................................................................36 參考文獻(References) …………....................................................................................37 圖表集(Figures and Tables) ...........................................................................................46 圖表目錄 Figure 1. Hypoxia enhanced the protein-protein interaction between HIF-1α and SUMO-1 in HepG2 cells.…………………………..…………….……….....46 Figure 2. Neither PIAS2 nor SUMO-1 protein expression was induced under hypoxia in HepG2 cells……………………………………………………………….47 Figure 3. PIAS2 protein induction was not found in HIF-1α overexpressed HEK293T cells……………………………………………………………………………48 Figure 4. Hypoxia promoted the protein-protein interaction between HIF-1α and PIAS2 in HepG2 cells …………………..………………………………………..…..49 Figure 5. The silenced efficiency of PIAS2 in HEK293T and HepG2 cells…………...50 Figure 6. The protein-protein interaction between HIF-1α and SUMO-1 was impaired in PIAS2 silenced HepG2 cells under hypoxia……………………………….51 Figure 7. The protein stability of HIF-1α was decreased in PIAS2 silenced HepG2 cells under hypoxia.………………………………………………………...52 Figure 8. Hypoxia-induced HIF-1α nuclear translocation was diminished in PIAS2 silenced HepG2 cells…………………….…………………………………53 Figure 9. Hypoxia-induced HRE reporter activity was decreased in PISA2 silenced HEK293T and HepG2 cells….……………………………………………..55 Figure 10. Hypoxia-induced VEGF and Glut-1 mRNA expression was reduced in PIAS2 silenced HepG2 cells..…………………………………………..…..57 Figure 11. Schema of pathway by which PIAS2 SUMOylates HIF-1α under hypoxic conditions…………………………………………………………………..60 Figure I. Coordinating posttranslational modifications of HIF1α……………………...61 Figure II. The mechanism of reversible SUMOylation………………………………...62 Figure III. Schematic structures of PIAS proteins……………………………………...63 Table 1. The primer sequences used for RT-PCR. ……………………………………..64 | |
| dc.language.iso | zh-TW | |
| dc.subject | SUMO E3黏合酶 | zh_TW |
| dc.subject | 缺氧反應元件 | zh_TW |
| dc.subject | 缺氧誘導因子-1α | zh_TW |
| dc.subject | (AOS1/UBA2) | zh_TW |
| dc.subject | SUMO-1 | zh_TW |
| dc.subject | 肝癌 | zh_TW |
| dc.subject | E2銜接酶 | zh_TW |
| dc.subject | (UBC9) | zh_TW |
| dc.subject | SENP-1 | zh_TW |
| dc.subject | 缺氧狀態 | zh_TW |
| dc.subject | SUMO化 | zh_TW |
| dc.subject | PIAS2 | zh_TW |
| dc.subject | E1活化酶 | zh_TW |
| dc.subject | SENP-1(Sentrin/SUMO-specific protease -1) | en |
| dc.subject | HCC(hepatocellular carcinoma) | en |
| dc.subject | hypoxia | en |
| dc.subject | HIF-1α (hypoxia-inducible factor-1α) | en |
| dc.subject | HRE(hypoxia responsive element) | en |
| dc.subject | PIAS2(protein inhibitors STAT 2) | en |
| dc.subject | SUMO-1(small ubiquitin-like modifier-1) | en |
| dc.subject | SUMOylation | en |
| dc.subject | E1-AOS1/UBA2 | en |
| dc.subject | E2-UBC9 | en |
| dc.title | 以肝癌細胞株HepG2探討缺氧狀態下PIAS2對於缺氧誘導因子-1α SUMO化機制 | zh_TW |
| dc.title | Studies on the Mechanism of SUMOylation between HIF-1α and PIAS2 under Hypoxia in HepG2 Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 彭福佐(Fu-Chuo Peng),李珍珍(Chen-Chen Lee) | |
| dc.subject.keyword | 肝癌,缺氧狀態,缺氧誘導因子-1α,缺氧反應元件,SUMO E3黏合酶,PIAS2,SUMO-1,SUMO化,E1活化酶,(AOS1/UBA2),E2銜接酶,(UBC9),SENP-1, | zh_TW |
| dc.subject.keyword | HCC(hepatocellular carcinoma),hypoxia,HIF-1α (hypoxia-inducible factor-1α),HRE(hypoxia responsive element), PIAS2(protein inhibitors STAT 2),SUMO-1(small ubiquitin-like modifier-1),SUMOylation,E1-AOS1/UBA2,E2-UBC9,SENP-1(Sentrin/SUMO-specific protease -1), | en |
| dc.relation.page | 64 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2011-08-15 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 毒理學研究所 | zh_TW |
| Appears in Collections: | 毒理學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-100-1.pdf Restricted Access | 1.9 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
